Renormalized solutions for a stochastic p-Laplace equation with L^1-initial data

Aleksandra Zimmermann
University of Rostock and University of Duisburg-Essen

We consider a p-Laplace evolution problem with stochastic forcing on a bounded domain $D \subset \mathbb{R}^d$ with homogeneous Dirichlet boundary conditions for $1 < p < \infty$. The additive noise term is given by a stochastic integral in the sense of Itô. The technical difficulties arise from the merely integrable random initial data u_0 under consideration. Due to the poor regularity of the initial data, estimates in $W^{1,p}_0(D)$ are available with respect to truncations of the solution only and therefore well-posedness results have to be formulated in the sense of generalized solutions. We extend the notion of renormalized solution for this type of SPDEs, show well-posedness in this setting and study the Markov properties of solutions.