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ABSTRACT. Let G, H be finite groups. We asymptotically compute |[Hom (G, H2
An)|, thereby establishing a conjecture of T. Miiller.
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Let G, H be finite groups. T. Miiller[2] develloped an enumerative theory of
homomorphisms ¢ : G — HS,, as n — oo, and asked to generalize this theory to
other sequences of groups. In particular, he conjectured the following.

Conjecture 1. Let G, H be a finite groups. Then we have for n — oo
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where s2(G) is the number of subgroups of index 2 in G.

|Hom(G, H 1 A,)| = ( ))|Hom(G,HzSn)|,

It is the aim of this note to proof this conjecture.
Theorem 1. Conjecture 1 holds true for all finite groups G and H.

One of the applications of wreath product representations is the recognition of
finite index subgroups of infinite groups. Let I" be an infinite group, A a subgroup
of index n. The action of T on the cosets I'/A by shift defines a homomorphism
p: ' = S,. If in addition we know the number of lifts of ¢ to homomorphisms
v : ' — HS,, we can compute |[Hom(A, H)|. Doing so for different choices
of H one can in certain situations gather sufficient information to reconstruct A.
For I being a free product of cyclic groups of prime order this reconstruction was
completed in [3], for free products of arbitrary finite groups in [5].

Comparing homomorphisms into H ! A,, with homomorphisms into H.S,, gives
information on the embedding of finite index subgroups in large groups. More
precisely define for a subgroup A of a group I' the core A€ as the normal subgroup
U'yGF A7. Then the case H = 1 of Theorem 1 implies that the probability that a
random subgroup A of index n of a free product I' = G1 * ... G, of finite groups
satisfies I'/A¢ = A,, converges to [[;_; #(G) The case of general H yields
that the property I'/A¢ = A,, and the isomorphism type of A are asymptotically
independent. It would be interesting to generalize such considerations to arbitrary
virtually free groups.

We now turn to the proof of the Theorem. We denote by m the canonical pro-
jection H .S, — S,, and by € the sign homomorphism S,, — Cs. We view Cs as
{£1} C Z, that is, we write the group operation of Cy multiplicatively, but allow
for the addition of values as in Z. Let ¢ : G — H S,, be a homomorphism. Then
eomop: G — Cy has a kernel containing G2G’. We denote the induced homo-
morphism V = G/G?G’ — Oy by . To prove our theorem it is therefore sufficient
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to show that if ¢ € Hom(G, H S,,) is chosen at random, then the distribution of
@ converges to a uniform distribution. This is certainly true if so(G) = 0, because
then G = G?G’. We shall therefore from now on assume that s3(G) > 0, that is,
V is a non-trivial elementary abelian 2-group. Then our claim is equivalent to the
statement that for every non-trivial v € V we have

) —-1/|G|
ho (G, H) := A e ’
n( ) |H0m(G,H i Sn)‘ <peHom%HZS )(p(v> )

where we identified Co with {+1} C Z.
We first compute the dependence of hY (G, H) on H.

Lemma 1. Let G, H be finite groups, p : G — S, a transitive permutation repre-
sentation, ™ : H1 .S, — S, the canonical projection. Then the number of homo-
morphisms 1 : G — H .S, satisfying w01 = ¢ equals |[H|" 1.

Proof. This follows form the proof of [3, Proposition 1], more precisely the equality
between [3, (8)] and [3, (9)]. O

Next we compute the generating series of h% (G, H).

Lemma 2. We have
|G|

hv G o k—1,.k
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Proof. This is a weighted version of the exponential principle, see e.g. [6, Theo-
rem 5.1.4]. We only have to show that if 7o ¢ decomposes as wop = € a;1);, where
the v; are transitive permutation representations, then B(v) = [[+(v)®. However,
this follows immediately from the fact that € is a homomorphism. O

To deal with the generating series we need a stability result similar to [4], note
however, that here we do not require P, to be Hayman admissible. In fact it is easy
to see that > - oy (ﬁ’H) 2™ is Hayman admissible if and only if so(G) = 0, which

is precisely the case we are not interested in.

Lemma 3. Let Pi(x) = 25:1 Vv be a polynomial with non-negative real coeffi-
cients, a((il) #0, and let P, = Zizl a,(,2)x” be a polynomial with complex coefficients
satisfying |al(,2)| < a,(,l) for all v < d. Define the sequences bl(,l), bl(,Q) by the relation
>oolo %x” = ePi(®) . Then either there exists some comples number ¢ with |¢| = 1,

such that Py(x) = Py(Cx), or there is some ¢ > 0 such that \b,(,Q)\ < e_c”l/d|bl(,1)| for
all v sufficiently large.

Proof. Let p, be the unique real solution of the equation pP’(p) = n. It then
follows from Hayman’s theorem [1, Theorem I that

OB exp(P1(pn)) .
" pp2m(pn Pl (pn) + P2 P (pn))

We now express bg) using Cauchy’s integral formula as

1 exp(Ps(2))
b = — / —— = d
" 27 zntl i
9B,,,(0)
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to obtain
max |exp(Pa(z)]
|b£,?)| S |Z|:pn

P
max |exp(Pa(z)|

p o d/2 1z1=pn 1)
(Vand-+ oD Gy

max |exp(P2(2)
< e b
exp(P1(pn))
where we used the fact that for n — co we have p,, ~ cn
show that either there is some ¢ with P;(z) = Py(¢x), or

1/d

IN

1/d " Hence it suffices to

max RPy(z) < Pi(pn) —cn

lz[=pn

for some ¢ > 0. If there exists some v with |a,(,2)| < a,(,l)7 then this follows im-

mediately from the triangle inequality. Define the function f : [0,27] — [0, 00)
by
f(0) = max [v0 + arg a;?) mod 2,
a,#0

where we normalize mod in such a way that it takes values in [—m, 7). Being
continuous, this function either has a zero &, or it is uniformly bounded from below
by some positive constant . In the first case we obtain Py(z) = P;(e’z), while in
the second we have

(1 — Reio+arsal)) ()

M=

Pl(ﬂn) - §RP2(ewpn) =

v=1
> (1 —Re') min a,p?
- ( )1§ugd Vpn
a, #0
> 1 — cosd) min a,)n'/?.
= (( )1§y§d ")
a, #0
Hence in either case our claim follows. O

We can now finish the proof of the theorem. We have to show that for v # 0 we
have hY (G, H) < e‘cnl/dh%(G, H). We have

o Hk—l Hk—l
> i) JL! = 2 | JL!

1:G— Sitransitive :G— Sk transitive

for every k, hence we can apply Lemma 3 to find that either our claim holds true,
or there exists some ¢ with |¢| = 1, such that

G| k—1,k Gl k=1, \k
- H[T et [H|" ()

> X Vo= X E—

k=11:G—Stransitive k=11:G—Sjtransitive

Consider first the coefficient of x in these polynomials. There is only the trivial
representation G — S; = 1, hence the coefficient of = on both sides equals 1, and
we conclude ¢ = 1.
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Next we consider the coefficient of 22. Let U < G//G?G’ be a subspace of co-
dimension 1, which does not contain v, and U be the preimage of U under the
canonical map G — G/G?G’. Then 1y : G — G/U =2 Sy is a homomorphism, for
which 1y (v) = —1, and we conclude that

2=y @(v)lfg' < > II;j = %o,

1:G—Satransitive 1:G—Satransitive
say, while the equality P;(z) = P»(Cz) implies that ¥; = (2. Clearly both 3
and Y, are real, and we conclude that (> = —1. However, this contradicts the

condition ¢ = 1 obtained from the coefficient of z, and our claim follows.
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