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Abstract. Let G,H be finite groups. We asymptotically compute |Hom(G,Ho
An)|, thereby establishing a conjecture of T. Müller.

MSC2010-Index: 20E22, 20D60
Let G,H be finite groups. T. Müller[2] develloped an enumerative theory of

homomorphisms ϕ : G→ H o Sn, as n→∞, and asked to generalize this theory to
other sequences of groups. In particular, he conjectured the following.

Conjecture 1. Let G,H be a finite groups. Then we have for n→∞

|Hom(G,H oAn)| =
( 1

1 + s2(G)
+O(e−cn

1/|G|
)
)
|Hom(G,H o Sn)|,

where s2(G) is the number of subgroups of index 2 in G.

It is the aim of this note to proof this conjecture.

Theorem 1. Conjecture 1 holds true for all finite groups G and H.

One of the applications of wreath product representations is the recognition of
finite index subgroups of infinite groups. Let Γ be an infinite group, ∆ a subgroup
of index n. The action of Γ on the cosets Γ/∆ by shift defines a homomorphism
ϕ : Γ → Sn. If in addition we know the number of lifts of ϕ to homomorphisms
ψ : Γ → H o Sn, we can compute |Hom(∆, H)|. Doing so for different choices
of H one can in certain situations gather sufficient information to reconstruct ∆.
For Γ being a free product of cyclic groups of prime order this reconstruction was
completed in [3], for free products of arbitrary finite groups in [5].

Comparing homomorphisms into H oAn with homomorphisms into H o Sn gives
information on the embedding of finite index subgroups in large groups. More
precisely define for a subgroup ∆ of a group Γ the core ∆c as the normal subgroup⋃
γ∈Γ ∆γ . Then the case H = 1 of Theorem 1 implies that the probability that a

random subgroup ∆ of index n of a free product Γ = G1 ∗ . . . Gr of finite groups
satisfies Γ/∆c ∼= An converges to

∏r
i=1

1
1+s2(Gi)

. The case of general H yields

that the property Γ/∆c ∼= An and the isomorphism type of ∆ are asymptotically
independent. It would be interesting to generalize such considerations to arbitrary
virtually free groups.

We now turn to the proof of the Theorem. We denote by π the canonical pro-
jection H o Sn → Sn, and by ε the sign homomorphism Sn → C2. We view C2 as
{±1} ⊆ Z, that is, we write the group operation of C2 multiplicatively, but allow
for the addition of values as in Z. Let ϕ : G→ H o Sn be a homomorphism. Then
ε ◦ π ◦ ϕ : G → C2 has a kernel containing G2G′. We denote the induced homo-
morphism V = G/G2G′ → C2 by ϕ. To prove our theorem it is therefore sufficient
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to show that if ϕ ∈ Hom(G,H o Sn) is chosen at random, then the distribution of
ϕ converges to a uniform distribution. This is certainly true if s2(G) = 0, because
then G = G2G′. We shall therefore from now on assume that s2(G) > 0, that is,
V is a non-trivial elementary abelian 2-group. Then our claim is equivalent to the
statement that for every non-trivial v ∈ V we have

hvn(G,H) :=
1

|Hom(G,H o Sn)|
∑

ϕ∈Hom(G,HoSn)

ϕ(v)� e−cn
−1/|G|

,

where we identified C2 with {±1} ⊆ Z.
We first compute the dependence of hvn(G,H) on H.

Lemma 1. Let G,H be finite groups, ϕ : G → Sn a transitive permutation repre-
sentation, π : H o Sn → Sn the canonical projection. Then the number of homo-
morphisms ψ : G→ H o Sn satisfying π ◦ ψ = ϕ equals |H|n−1.

Proof. This follows form the proof of [3, Proposition 1], more precisely the equality
between [3, (8)] and [3, (9)]. �

Next we compute the generating series of hvn(G,H).

Lemma 2. We have∑
ν≥0

hvn(G,H)

n!
xn = exp

 |G|∑
k=1

∑
ψ:G→Sktransitive

ψ(v)
|H|k−1xk

k!

 .

Proof. This is a weighted version of the exponential principle, see e.g. [6, Theo-
rem 5.1.4]. We only have to show that if π ◦ϕ decomposes as π◦ϕ =

⊕
aiψi, where

the ψi are transitive permutation representations, then ϕ(v) =
∏
ψ(v)ai . However,

this follows immediately from the fact that ε is a homomorphism. �

To deal with the generating series we need a stability result similar to [4], note
however, that here we do not require P2 to be Hayman admissible. In fact it is easy

to see that
∑
ν≥0

hvn(G,H)
n! xn is Hayman admissible if and only if s2(G) = 0, which

is precisely the case we are not interested in.

Lemma 3. Let P1(x) =
∑d
ν=1 a

(1)
ν xν be a polynomial with non-negative real coeffi-

cients, a
(1)
d 6= 0, and let P2 =

∑d
n=1 a

(2)
ν xν be a polynomial with complex coefficients

satisfying |a(2)
ν | ≤ a

(1)
ν for all ν ≤ d. Define the sequences b

(1)
ν , b

(2)
ν by the relation∑∞

ν=0
b(i)ν
ν! x

ν = ePi(x). Then either there exists some comples number ζ with |ζ| = 1,

such that P1(x) = P2(ζx), or there is some c > 0 such that |b(2)
ν | < e−cν

1/d |b(1)
ν | for

all ν sufficiently large.

Proof. Let ρn be the unique real solution of the equation ρP ′(ρ) = n. It then
follows from Hayman’s theorem [1, Theorem I] that

b(1)
n ∼

exp(P1(ρn))

ρnn
√

2π(ρnP ′1(ρn) + ρ2
nP
′′(ρn))

.

We now express b
(2)
n using Cauchy’s integral formula as

b(2)
n =

1

2πi

∫
∂Bρn (0)

exp(P2(z))

zn+1
dz
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to obtain

|b(2)
n | ≤

max
|z|=ρn

| exp(P2(z)|

ρnn

≤ (
√

2πd+ o(1))ρd/2n

max
|z|=ρn

| exp(P2(z)|

exp(P1(ρn))
b(1)
n

� n1/2

max
|z|=ρn

| exp(P2(z)|

exp(P1(ρn))
b(1)
n

where we used the fact that for n → ∞ we have ρn ∼ cn1/d. Hence it suffices to
show that either there is some ζ with P1(x) = P2(ζx), or

max
|z|=ρn

<P2(z) < P1(ρn)− cn1/d

for some c > 0. If there exists some ν with |a(2)
ν | < a

(1)
ν , then this follows im-

mediately from the triangle inequality. Define the function f : [0, 2π] → [0,∞)
by

f(θ) = max
1≤ν≤d
aν 6=0

|νθ + arg a(2)
ν mod 2π|,

where we normalize mod in such a way that it takes values in [−π, π). Being
continuous, this function either has a zero ξ, or it is uniformly bounded from below
by some positive constant δ. In the first case we obtain P2(x) = P1(eiξx), while in
the second we have

P1(ρn)−<P2(eiθρn) =

d∑
ν=1

(
1−<ei(νθ+arg a(2)ν )

)
a(1)
ν ρνn

≥ (1−<eiδ) min
1≤ν≤d
aν 6=0

aνρ
ν
n

≥
(
(1− cos δ) min

1≤ν≤d
aν 6=0

aν
)
n1/d.

Hence in either case our claim follows. �

We can now finish the proof of the theorem. We have to show that for v 6= 0 we

have hvn(G,H)� e−cn
1/d

h0
n(G,H). We have∣∣∣∣∣∣

∑
ψ:G→Sktransitive

ψ(v)
|H|k−1

k!

∣∣∣∣∣∣ ≤
∑

ψ:G→Sktransitive

|H|k−1

k!

for every k, hence we can apply Lemma 3 to find that either our claim holds true,
or there exists some ζ with |ζ| = 1, such that

|G|∑
k=1

∑
ψ:G→Sktransitive

ψ(v)
|H|k−1xk

k!
=

|G|∑
k=1

∑
ψ:G→Sktransitive

|H|k−1(ζx)k

k!
.

Consider first the coefficient of x in these polynomials. There is only the trivial
representation G → S1 = 1, hence the coefficient of x on both sides equals 1, and
we conclude ζ = 1.
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Next we consider the coefficient of x2. Let U < G/G2G′ be a subspace of co-
dimension 1, which does not contain v, and U be the preimage of U under the
canonical map G → G/G2G′. Then ψ0 : G → G/U ∼= S2 is a homomorphism, for
which ψ0(v) = −1, and we conclude that

Σ1 =
∑

ψ:G→S2transitive

ψ(v)
|H|
2

<
∑

ψ:G→S2transitive

|H|
2

= Σ2,

say, while the equality P1(x) = P2(ζx) implies that Σ1 = ζ2Σ2. Clearly both Σ1

and Σ2 are real, and we conclude that ζ2 = −1. However, this contradicts the
condition ζ = 1 obtained from the coefficient of x, and our claim follows.
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