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Let π,σ ∈ Sn be chosen at random. Using character estimates we show that in various
aspects the elements πσi behave like independent random variables. As application we
show that almost surely the Cayley graph determined by π and σ has diameter O(n3 logn),
and the directed Cayley-graph has almost surely diameter O(n4 logn). Further we describe
an algorithm for the black-box-recognition of the symmetric group, and show that for each
element τ moving a positive proportion of all points, the number of cycles of a random
element σ and of τσ are nearly independent.

Let π,σ be random elements in the symmetric group Sn. Netto’s conjec-
ture, which was proven by Dixon [8], states that with probability tending to
1 as n goes to infinity, the subgroup generated by π and σ is either An or Sn.
Hence, almost always two random elements which are not both contained
in An define a Cayley graph of Sn. Babai and Seress [1] showed that the
diameter of this graph is always bounded above by exp((1+o(1))

√
n logn),

moreover, Babai and Hetyei [3] showed that for almost all pairs π,σ the di-
ameter is bounded by exp((1/2+o(1)) log2 n). They conjectured that in both
cases the true order of magnitude is nc. Later, Babai and Hayes [4] proved
this conjecture by showing that the diameter of the Cayley graph is almost
always O(n7+ε). Moreover, Babai [5] showed that a polynomial bound for
the diameter of the Cayley graph implies a polynomial bound for the di-
rected Cayley graph, that is, the directed graph with edges passing from x
to πx and σx. More precisely, he showed that if π,σ are permutations cho-
sen at random, then almost surely every permutation can be written as a
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word of length O(n17+ε). All these proofs are combinatorial in nature, here
we give a proof based on character theory. We shall show the following.

Theorem 1. Let π,σ be random elements in Sn, not both in An. Then with
probability tending to 1, π and σ generate Sn, and the Cayley graph with
respect to this system of generators has diameter ≤ n3 logn. The directed
Cayley graph has almost surely diameter ≤3n4 logn.

Note that the proof yields an algorithm to represent an element of Sn as
a word in σ and τ , which in the directed case answers a question posed by
Babai [5].

The proof will use character theory to show that with high probability
there exists an element which can be written as a short word in π and σ and
consists of a short cycle. To do so, we use a conjugacy class which has small
character values, and allows one to reach a single small cycle easily. There
is some freedom in the choice of this element, we will work with the class c
of elements consisting of an (n−2)-cycle and a 2-cycle, if n is odd, and an
(n−3)-cycle, a 2-cycle and a fixed point, if n is even. The main step in the
proof of Theorem 1 is the following.

Proposition 1. Let π∈An and σ∈Sn\An be chosen at random, and let N
be an integer satisfying n<N <n1+1/64. Then the probability that there is
some i in the range 1≤ i≤N , such that πσi∈c is bounded below by 1−c n

N
for some absolute constant c. The same holds true if c is the conjugacy class
consisting of n-cycles or of n−1-cycles.

This result can be used to improve probabilistic algorithms. Instead of
choosing n random permutations one can choose 2 random permutations
σ,τ , and then use σ,στ,στ2 . . . ,στn as pseudo-random elements. This may
be an improvement, since in certain circumstances choosing random elements
in a group is a difficult task in itself. As an example, we show the following.

Theorem 2. Let G be a black box group isomorphic to An or Sn. Then
for every k < n1/64 there exists a Las Vegas algorithm giving an effective
isomorphism with probability 1−O(k−1) which takes 2 random elements,
and kn logn multiplications in G.

Another application of our method concerns near-independence of per-
mutations as defined in [4]. As an example, we show the following.

Theorem 3. Let α > 0 be given, and let τ ∈Sn be a permutation moving
at least αn points. Let σ ∈ Sn be chosen at random. Then the number of
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cycles of σ and τσ are nearly independent, more precisely, denoting by c(π)
the number of cycles of a permutation π, we have

lim
n→∞ max

τ∈Sn
| supp(τ)|>αn

max
x,y

∣
∣P (c(σ) < x, c(τσ) < y)−P (c(σ) < x)P (c(τσ) < y)

∣
∣ = 0.

We remark that the cycle type of σ and τσ are not independent, in fact,
it is easy to see that the conditional expected number of fixed points of τσ
subject to the condition that σ has k fixed points is k(1−α)+α; and a similar
result holds true for the number of �-cycles for each fixed �, however, we will
see in the proof that longer cycles are independent in a very strong sense.

1. Proof of Theorem 1 and 2

In this section we deduce Theorem 1 and 2 from Proposition 1. The proof
of the first part of Theorem 1 runs parallel to the proof given in [1]. Note
first that the restriction π ∈An is of no relevance, for if both π and σ are
contained in Sn \An, we replace π by πσ. For an element τ ∈ Sn, define
c(τ), the cost of τ with respect to π and σ as the length of the shortest
word in π,π−1,σ,σ−1 representing τ , and c+(τ), the positive cost, as the
length of the shortest word representing τ using only π and σ. Applying
the proposition with N = 1

2n logn we find that almost surely there exists an
element π consisting of one 2-cycle, one cycle of odd length, and possibly
one fixed point. Taking this element to the power of n−2 or n−3, we obtain
a transposition τ of positive cost ≤n2 logn. From this transposition we may
pass to all transpositions in view of the following result, which is a slight
improvement of a result proven by Babai and Seress [1].

Lemma 1. Let π1, . . . ,πk be permutations generating a 2-transitive sub-
group of Sn. Then there exists a set R ⊆ Sn, which acts 2-transitive, and
consists of elements of cost n2 with respect to the generating set {π1, . . . ,πk}
at most.

Proof. Define Ri to be the set of permutations of cost at most i, and define
the set Ωi and Ω as

Ωi := {(1, 2)π : π ∈ Ri} ⊆ {(x, y) : 1 ≤ x, y ≤ n, x �= y} =: Ω.

We have to show that Ωn2 = Ω. Since |Ω| ≤n2, it suffices to show that for
each i either Ωi =Ω, or |Ωi|< |Ωi+1|. Let i be an index such that Ωi =Ωi+1.
Then we have

Ωi+2 =
k⋃

ν=1

{(i, j)πν : (i, j) ∈ Ωi+1} =
k⋃

ν=1

{(i, j)πν : (i, j) ∈ Ωi} = Ωi+1,
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thus, the chain Ω1⊆Ω2⊆ . . . stabilizes at i. However, since 〈π1, . . . ,πk〉 is 2-
transitive, we have Ωi =Ω for i sufficiently large. Hence, our claim follows.

Since two random permutations generate An or Sn with probability tend-
ing to 1, we may restrict ourselves to the case that π and σ generate a
2-transitive subgroup. In this case all transpositions can be reached by con-
jugating the one already obtained by elements of cost ≤ n2, and therefore
have cost ≤ 1

2n2 logn+n2 ≤ n2 logn. Every permutation can be written as
the product of ≤n transpositions, and our claim follows.

For the second part of Theorem 1 we apply Proposition 1 to find an n-
cycle α and an n−1-cycle β of positive cost n logn each. Since α−k =αn−k and
β−k = βn−k−1, conjugating by some power of α or β increases the positive
cost of an element by n2 logn at most. In particular, conjugating β by some
power of α, we obtain the 2-transitive set

R = {α,α2, . . . , αn−1, β, βα, . . . , β2, (β2)α, . . .},
such that each element in R has positive cost ≤2n2 logn and order at most
n. Thus, conjugating by an element in R increases the positive cost by
2n3 logn at most, and we find that all transpositions have positive cost at
most 3n3 logn. Hence, the second part of Theorem 1 follows.

For Theorem 2 we follow an idea of Bratus and Pak [6]. To simplify
notation, assume that n is odd and that G is isomorphic to Sn; the other
cases are similar. Choose random elements g,h∈G, compute xi = ghi, and
test whether these elements have order n or 2(n−2). Suppose that we found
elements x,y of the desired order. If these elements are an n-cycle and an
n−2-cycle together with a transposition, we may assume without loss that
x=(123 . . . n), and t′=yn−2 =(1i). Now [x,t′k] has order 2, unless k= i,n−i.
Replacing t′ by either of t′i or t′n−i yields x = (123 . . . n) and t = (12), and
we found an isomorphism. Thus, if x,y are of the right cycle type, we are
done. The next results shows that the annoying case, where one of x,y has
the correct order, but is not of the desired cycle type, is rare.

Lemma 2. In Sn there are O(n−3 ·n!) elements of order n which are not
n-cycles, or elements of order 2(n−2) which do not consist of an n−2-cycle
and a transposition.

Proof. We only prove the statement for elements of order n. An element of
order n has cycle lengths dividing n. We split the set of elements of order n,
which are not n-cycles, into 3 classes: Those with at least 3 cycles of length
>n/120, those with at most 2 cycles of length >n/120, but at least 12 cycles
of length >

√
n, and the rest. The number of permutations having ni cycles
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of length ki is n!
∏ 1

n
ki
i ki!

. Hence, the number of elements having 3 given

cycle lengths >n/120 is at most 1203n−3n!, since the number of divisors of
n which are less than 120 is bounded, the number of elements of the first
class is of the right order. For elements in the second class we consider the
12 largest cycle lengths. For each fixed choice, the number of permutations
realizing this choice is at most n−6n!, and since n has O(n1/4) divisors,
choosing 12 of them gives a factor <n3, hence, the number of permutations
in the second class is also of the right order. Finally, if a permutation of order
n has at most 2 cycles of length > n/120, these cycles cannot be both of
length n/2, since then the order would be n/2. Hence, the number of points
in cycles of length >n/100 is at most n/2+n/3=5n/6. Thus, a permutation
in the third class has at least n/6−12n/120=n/15 points in cycles of length
<
√

n. Since there are at most O(n1/4) different cycle lengths, there exists
a cycle length which is populated by 	 n1/4 cycles. Hence, the number of
permutations in the third class is at most n!

[cn1/4]!
, which is far smaller than

necessary.

It remains to check whether x and y have indeed the correct cycle struc-
ture, that is, we need an algorithm, which, given two elements x,t ∈ Sn,
where x has order n and t has order 2, decides using O(n logn) multiplica-
tions whether the pair (x,t) is in fact conjugate to ((12 . . . n),(12)). To do
so, we follow an idea of Bratus and Pak [6]. Represent n−2 as the sum of
distinct odd primes p1+ · · ·+pk =n−2. Then we can write the permutation
(12 . . . p1)(p1 +1 . . . p1 +p2) . . . (p1 + · · ·+pk−1 +1 . . .n−2)(n−1n) as a word
in (12) and (12 . . . n) of length 
 k logn, thus, we can form from x and t
an element, which has order 2p1 · · ·pk, provided that x and t have the right
cycle structure. We now check whether the order of this element is correct,
and if this is the case, we take the p1 · · ·pk-th power of this element, thus, we
obtain an element which is necessarily a transposition, and, if our conjec-
ture on x and t is true, is (n−1n). Now conjugating by x2 yields an element
which is necessarily a transposition and should equal t, thus, we can now
decide whether t is in fact a trasposition, and we may assume without loss
that t=(12). Let �1, . . . , �k be the cycle lengths of x, where �1 is the length of
the cycle containing 1, and �2 is the length of the cycle containing 2, unless
1 and 2 are in the same cycle. We now check whether tx has the expected
order n−1, and claim that this already implies that x is an n-cycle. Suppose
that x is not an n-cycle, but that 1 and 2 are in the same cycle of x. Then
tx has cycles of length a,b,�2, . . . , �k, where a+b= �1, and the fact that the
order of tx is n−1 shows that the least common multiple of a,b,�2, . . . , �k is
n−1 and therefore coprime to n, hence, �2 = · · ·=�k =1. But then the order
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of x is �1 =n, and we have shown that x is an n-cycle. If on the other hand
1 and 2 are contained in different cycles of x, then tx has cycles of length
�1 + �2, �3, . . . , �k, thus, we again find that �3 = · · ·= �k = 1, and therefore �1

and �2 have sum n− 1 and least common multiple n. If �1 and �2 have a
common factor, this factor would divide both n and n−1, which is impossi-
ble, thus, we have �1+�2 =n−1, and �1�2 =n, which is impossible for n≥7.
Hence, if our test was positive, then x is in fact an n-cycle. Moreover, tx has
two cycles of length �1, �2, where �1 and �2 have least common multiple n−1
and sum n, thus, �1 and �2 are coprime, and satisfy �1 +�2 =n, �1�2 =n−1,
which implies that one of �1, �2 equals 1. However, this implies that x maps
1 to 2, that is, the pair (x,t) is indeed conjugate to ((12 . . . ,n),(12)).

2. Proof of Proposition 1

The remainder of this article is devoted to the proof of proposition 1. We
will only give the proof for n even, the computations for n odd are slightly
easier.

Fix N in the interval [n,n2]. Then, for π,σ∈Sn, define

r(π, σ) = #{1 ≤ i ≤ N : πσi ∈ c}.
Note that c⊂Sn\An, hence, even values of i never lead to solutions, whereas
for a fixed odd integer i and a fixed permutation σ, there are precisely |c|
choices for π, and we obtain

∑

π∈An
σ∈Sn\An

r(π, σ) =
[
N + 1

2

]
n!
2
|c| =

(

1 + O(n−1)
)n!2N

8n
.

Note, that as N/n → ∞, the expected value of r(π,σ) tends to infinity.
Hence, to show that r(π,σ) > 0 almost always, it suffices to show that the
variance is not too large. We have
∑

π∈An
σ∈Sn\An

r(π, σ)2 = #
{

(π, σ, i, j) : πσi, πσj ∈ c
}

=
∑

π∈An
σ∈Sn\An

r(π, σ) + 2#{(π, σ, i, j) : 1 ≤ i < j ≤ N,πσi, πσj ∈ c}

= 2#
{

(π, σ, i, j) : 1 ≤ i < j ≤ N,πσi, πσj ∈ c
}

+ O
(

N

n
n!2
)

.

We now claim the following, the proof of which is postponed.
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Lemma 3. As n→∞, the estimate

#
{

(π, σ, i, j) : 1 ≤ i < j ≤ N,πσi, πσj ∈ c
}

=
(

1 + O(n/N)
) N2

32n2
n!2

holds true uniformly in the range n<N <n2.

We can now compute the variance of r(σ,π).

∑

π∈An

∑

σ∈Sn\An

(

r(σ, π) − N/(2n)
)2 =

∑

π∈An

∑

σ∈Sn\An

r(σ, π)2 +
N2

16n2
n!2

− N

n

∑

π∈An

∑

σ∈Sn\An

r(σ, π)



(

n

N
+

1
n

)
N2

n2
n!2.

Hence, for n<N <n2 we obtain

#
{

(π, σ) : π ∈ An, σ ∈ Sn \ An, r(σ, π) = 0
}


(
n
N + 1

n

)
N2

n2 n!2

N2/n2
≤ n

N
n!2,

which implies our claim.
It remains to prove Lemma 3. To do so note that πσi∈c⊆Sn\An implies

that i is odd. Hence we have

#
{

(π, σ, i, j) : 1 ≤ i < j ≤ N,πσi, πσj ∈ c
}

=
∑

ν≤N
2|ν

⌊
N − ν + 1

2

⌋
∑

x,y∈c

#{σ ∈ Sn \ An : σν = xy−1}

=
(

1+O(N−1)
) ∑

ν≤N
2|ν

N−ν

2

∑

τ∈Sn

#{σ∈Sn\An : σν=τ}#{x, y∈c : xy−1=τ}.

The inner sum in the last expression is the inner product of the root number
function

r∗ν(τ) = #{σ ∈ Sn \ An : σν = τ}
and the representation function

Nc(τ) = #{x, y ∈ c : xy−1 = τ}.
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Both of these functions can be expressed as sums over irreducible characters.
Here, the coefficient of χ in rν is given as

〈r∗ν , χ〉 =
1
n!

∑

τ∈Sn

r∗ν(τ)χ(τ) =
1
n!

∑

π∈Sn\An

χ(σν).

The coefficient of χ in Nc is equal to χ(c)2

n!χ(1) (confer, e.g. [7, Prop. 9.33], where
we write χ(c) to denote χ(π) for some π ∈ c). Hence, using orthogonality
relations, we obtain

(1) #
{

(π, σ, i, j) : 1 ≤ i < j ≤ N,πσi, πσj ∈ c
}

=
(

1 + O(N−1)
) |c|2

n!

∑

ν≤N
2|ν

N − ν

2

∑

σ∈Sn\An

∑

χ∈Irr(Sn)

χ(σν)χ(c)2

χ(1)
.

In this expression we shall compute the contribution of the linear characters
explicitly, and show that the remaining characters give terms which can be
absorbed into the error term.

First, we compute the contribution of the linear characters. Since ν is
even, we have χ(σν)χ(c)2 = χ(1) = 1 for both the trivial character and the
sign character, and the contribution of the linear characters to the two inner
sums equals n!, and the whole contribution becomes

(

1 + O(N−1)
)|c|2

∑

ν≤N
2|ν

N − ν

2
=
(

1 + O(n−1)
)n!2N2

32n2
,

which is the expected main term with an error of admissible magnitude.
To bound the contribution of non-linear characters to the right-hand side

of (1), we will repeatedly use the following estimate (cf. [10, Theorem 1]).

Lemma 4. Let χ be an irreducible character of Sn, n be sufficiently large,
and σ be an element with k fixed points. Then we have

|χ(σ)| ≤ χ(1)1−
log(n/k)
32 log n .

We assume that the reader is familiar with the correspondance between
irreducible characters of Sn and partitions of n. Due to the special structure
of c, the only characters with χ(c) �=0 correspond to partitions which have
at most 3 cells outside the first row and the first column. 1 By first removing

1 By explicitly enumerating these permutations we could avoid the use of Lemma 4 and
remain completely elementary. However, doing so would dramatically increase the amount
of computations needed, and in the last section we need this bound anyway.
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a rim hook of length n−3, we find that we always have |χ(c)| ≤ 1, that is,
the bound to be established is

(2)
∑

ν≤N
2|ν

∑

σ∈Sn\An

∑

χ∈Irr(Sn)
χ(c)�=0

χ(σν)
χ(1)


 n · n!.

The trivial bound |χ(σ)| ≤χ(1) together with the fact that χ(c)= 0 for all
but 2(n−3) characters yields an upper bound nN ·n!, which is too large for
our purpose by a factor of N ; we shall save this factor by different methods
for different ranges of the summation parameters.

More precisely, we split the summation over ν and σ in (1) into subsums
depending on the number of fixed points of σν . Denote by f(π) the number
of fixed points of π, and set k=f(σν).

Consider first pairs (σ,ν) with k≤√
n. Using Lemma 4 we find that for

ν fixed the sum over all permutations σ is at most

n!
∑

χ : χ(1)�=1
χ(c)�=0

χ(σν)
χ(1)

≤ n!
∑

χ : χ(1)�=1
χ(c)�=0

χ(1)−1/64 
 n! · n−1/64,

where we used the fact that χ(c) = 0 for all but 2(n− 3) characters, and
that for each A, there are O(A) characters satisfying both χ(1) < nA and
χ(c) �=0. We obtain a contribution N ·n−1/64n!, which is sufficiently small,
since by assumption N <n1+1/64.

Next, consider the case
√

n≤k≤2n/3. Then, using Lemma 4, we obtain

∑

χ : χ(1)�=1
χ(c)�=0

χ(σν)
χ(1)

≤
∑

χ : χ(1)�=1
χ(c)�=0

χ(1)−1/(80 log n) 
 1,

that is,

∑

σ∈Sn\An

f(σν )≥√
n

∑

χ∈Irr(Sn)

χ(σν)χ(c)2

χ(1)

 #{σ ∈ Sn : f(σν) ≥ √

n}.

Hence, to show that elements of this form are negligible, it suffices to show
that there are at most O(n−1/64n!) elements σ∈Sn such that σν has more
then

√
n fixed points. To do so, we need the following result on the statistics

of cycles of permutation, which is due to Erdős and Turán [9].

Lemma 5. Let n be an integer.
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1. Let k1, . . . ,k	 be positive integers. Then the number of permutations π∈
Sn which have cycles of length ki for each i is O( n!

k1k2···k�
).

2. The number of permutations π∈Sn which contain k cycles of the same
length is O(n!

k! ).

In particular, when counting permutations σ such that f(σν) >
√

n, we
may neglect permutations containing cycles of any given length with mul-
tiplicity ≥ logn. Let σ be a permutation with f(σν) >

√
n, which does not

contain more than logn cycles of the same length. Since ν has at most O(nε)
divisors, we find that there is some divisor t>n1/3 of d, such that σ contains
a cycle of length t. For each divisor, the number of such permutations is
O(n−1/3 ·n!), hence, summing over all divisors of ν we obtain O(n−1/4 ·n!)
permutations of this type, which is sufficiently small.

We find that for each value of ν the contribution of the range
√

n<k< 2n
3

is bounded above by n−1/3·n!, yielding a total contribution Nn−1/3n, which
is sufficiently small.

Now, consider permutations σ such that the number of fixed points of
σ lies between 2n/3 and n−√

n. The number of permutations σ such that
there are two or more cycles of length ≥n2/3 which are annihilated by ν is
bounded above by

∑

t1,t2|ν
t1,t2>n2/3

n!
t1t2

≤ n!
n4/3−ε

,

that is, the contribution of permutations can be neglected using the trivial
estimate |χ(σν)| ≤ χ(1). Similarly, if σ is a permutation such that σν has
n/6 fixed points lying in cycles of length ≤ n2/3 of σ, some cycle length is
repeated 	 n1/4 times, and there are less than n−2 ·n! permutations with
this property, which give a negligible contribution as well. Hence, we may
suppose that σ has one cycle of length t, where n/2≤ t≤n is a divisor of ν.
The number of such divisors is bounded above by 2ν/n≤2N/n, that is, the
number of permutations σ with this property is bounded above by 4N

n2 n!.
To estimate the character sum, we use the trivial bound |χ(σ)| ≤ χ(1) for
characters corresponding to partitions with λ1 ≥ n−n2/3 or λ′

1 ≥ n−n2/3.
The number of characters with this property and χ(c) �=0 is O(n2/3), hence,
the sum over these characters and permutations σ under consideration is
of size N

n4/3 n!, yielding a total contribution N2n−4/3n! < n3/4n!, which is
acceptable. For the remaining characters we again use Lemma 4 together
with the estimate χ(1)>

(n−n2/3

n2/3

)

>en2/3
to obtain

∑

χ

∗χ(σ)
χ(1)

≤
∑

χ

∗
χ(1)−

1
33

√
n log n 
 ne−

n1/6

33 log n 
 e−n1/7
,
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which gives a contribution Ne−n1/7
n!, which is far smaller than necessary.

Finally, consider permutations σ such that σν has more than n−√
n fixed

points. Then by the same argument as above, we deduce that we may restrict
our attention to the case that σ has a cycle of length t for some divisor t
of ν in the range n−2

√
n≤ t≤n. For fixed t, the number of permutations

σ with this property is ≤ 2n!
n , and the number of possible ν is N

t ≤ 2n1/64.
The trivial bound |χ(σν)|≤χ(1) implies that the sum over χ in (2) is ≤2n,
thus, we find that for fixed t the contribution to the right hand side of (2)
is bounded above by n1/64n!. There are 2

√
n possible values of t, hence, the

contribution of this range is less than n2/3n!.
Collecting the various contributions we find that

|c|2
n!

∑

ν≤N
2|ν

N − ν

2

∑

σ∈Sn\An

∑

χ∈Irr(Sn)

χ(σν)χ(c)2

χ(1)
=
(

1 + O(n/N)
)N2 · n!2

32n2
,

which proves Lemma 3, and therefore Proposition 1.
Note that we did not use that π and σ generate Sn, hence, our method

also gives a new proof of Netto’s conjecture. In fact, the argument applies to
all classes c which consist of elements with one cycle of length very close to n.
Suppose that π,σ∈Sn are chosen at random, and that not both of them are
contained in An. Then we deduce, that with probability 1−O(n−1/64), 〈π,σ〉
contains an n-cycle, an (n−1)-cycle, and a transposition, that is, 〈π,σ〉=Sn.
To deal with π,σ ∈An, one can use for n odd an n-cycle, an (n−2) cycle
and the product of an (n−4)-cycle with a 3-cycle; for n even one obtains an
(n−1)-cycle, an (n−3)-cycle and the product of an (n−3)-cycle with a 3-
cycle. The exponent 1

64 can be improved, however, doing so would require to
consider characters χ with χ(1) small seperately, which would lead to rather
lengthy computations; moreover, our method cannot detect whether 〈σ,π〉
is transitive or not, thus, the best we could achieve would be an error term
O(n−1), which is worse than the best known result 1− 2

n +O(n−2) obtained
by Babai [2].

3. Proof of Theorem 3

If π is chosen at random, then with probability tending to 1, π has less
than log2 n cycles. The Murnaghan-Nakayama-rule immediately implies that
|χ(π)|<nlog2 n with probability tending to 1 for all irreducible characters χ.

Hence, our claim follows, once we have shown the following.
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Proposition 2. Let c⊆Sn be a conjugacy class consisting of elements with
less than log2 n cycles, and let τ be an element moving at least αn points.
Then the number of cycles of τσ is asymptotically normal distributed with
mean and variance logn.

Since almost all permutations have less than 7log logn cycles of length
≤ log5 n or ≥n/ logn, we may replace the number of cycles by the number
of cycles of length in the interval [log5 n,n/ logn]. Moreover, it suffices to
count cycles of distinct length only, hence, by the method of moments, we
have to show that for fixed k, the probability that τσ contains a cycle of
length �i, 1≤ i≤ k, is 1+o(1)

	1···	k
, where the o-Symbol is uniform in all choices

log5 n<�1 < · · ·<�k < n
logn . Let 1
	

be the characteristic function of the set of
permutations satisfying this condition. Clearly, 1
	

is a class function, hence,
we begin by expressing this function as a linear combination of characters.

Lemma 6. Define m
	
(χ)=�1 · · ·�k〈1
	

,χ〉, and let λ be the partition associ-
ated to χ. Suppose that n>2(�1 + · · ·+�k)

1. If m
	
(χ) �= 0, then one can clip off rim hooks of length �1, . . . , �k from λ

to obtain the trivial partition (n−�1−·· ·−�k).
2. If n−�1 <λ1 <n, then m
	

(χ)=0
3. We have always |m
	

(χ)|<nk.

Proof. Let μ be a partition of n− �1 − ·· · − �k, such that μi ≤ λi for all
i, that is, the Ferrer’s diagram of μ is contained in the Ferrer’s diagram of
λ. Denote by N(λ,μ) the number of ways to obtain μ from λ by removing
rim hooks of length �1, . . . , �k, N∗(λ,μ) be the sum with signs according to
the Murnaghan-Nakayama-rule. Let π be a permutation containing cycles of
length �1, . . . , �k, and let π∗ be the permutation with these cycles removed.
Then we have

χλ(π) =
∑

μ

N∗(λ, μ)χμ(π∗),

thus

m
	
(χ) =

�1 · · · �k

n!

∑

π∈Sn

1
	
(π)χ(π)

=
�1 · · · �k

n!

∑

π∈Sn
1��

(π)=1

N∗(λ, μ)χμ(π∗)

=
1

(n − �1 − · · · − �k)!

∑

μ

N∗(λ, μ)
∑

π∗∈Sn−�1−···−�k

χμ(π∗)
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By orthogonality, the inner sum is 0, unless μ is the trivial partition μ0 =
(n−�1−·· ·−�k), and we obtain

|m
	(χ)| =

∣
∣
∣
∣
∣

∑

μ

N∗(λ, μ0)

∣
∣
∣
∣
∣
≤
∑

μ

N(λ, μ0).

In particular, if N(λ,μ0) = 0, we have m
	
(χ) = 0, which implies the first

claim. If λ1 > n− �1, we cannot remove a rim hook of length �i without
taking boxes from the first row, since the number of boxes outside the first
row is smaller than the number of boxes to be removed. On the other hand,
if λ1 >n−�1, then after removing �1+. . .+�k boxes from the first row, the first
row is still longer than the second one, that is, we did not remove any boxes
outside the first row at all. Hence, N(λ,μ0) is only non-zero, if λ is trivial,
proving our second claim. For the last claim note that |N∗(λ,μ)|≤N(λ,μ),
hence, m
	

(χ) is bounded above by the number of ways to remove k rim
hooks from λ. Every rim hook is defined by its upper-rightmost box, hence,
there are at most n rim hooks, and the third claim is proven as well.

Now we compute the probability P that τσ has cycles of length �1, . . . , �k.
To simplify computations it is convenient to pass from τ to the conjugacy
class [τ ] of τ , clearly, this does not affect the final result. We have

P =
1
|c|
∑

σ∈c

1
	
(τσ)

=
1

�1 · · · �k|c|
∑

σ∈c

∑

χ

m
	
(χ)χ(τσ)

=
1

�1 · · · �k|c||[τ ]|
∑

σ∈c
τ ′∈[τ ]

∑

χ

m
	
(χ)χ(τσ)

=
1

�1 · · · �kn!

∑

π∈Sn

∑

χ1

m
	(χ)χ1(π)
∑

χ2

χ2(σ)χ2(τ)χ2(π)
χ2(1)

.

The sum over π vanishes, unless χ1 =χ2, in which case it becomes n!. Hence,
applying Lemma 6, we obtain

P =
1

�1 · · · �k

⎛

⎜
⎜
⎜
⎝

1 + O
(

nk ·
∑

λ
n− 2n

log n
<λ1<n−log5 n

χλ(σ)χλ(τ)
χλ(1)

)

⎞

⎟
⎟
⎟
⎠

.
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Now we estimate χλ(τ) using Lemma 4, and χλ(σ) by nlog2
n, since σ was

chosen to have at most log2 n cycles. We find that the error term is at most

n2 log2 n
∑

λ
n− 2n

log n
<λ1<n−log5 n

χλ(1)−
α

32 log n

For A < n/3, the number of characters with λ1 = n−A equals the number
of partitions of A, and for each such λ we have χλ(1) >

(
n−A

A

)

, since when
decomposing λ, we may choose which boxes to take from outside the first
row. Hence, the error term is bounded above by

n2 log2 n
∑

log5 n<A< n
log n

ec
√

A

(
n − A

A

)− α
32 log n


 n2 log2 n
∑

log5 n<A< n
log n

e
− αA

32 log n .

Clearly, the summands are decreasing in A, which implies that the whole

sum is of order ne−
α log4 n

32 , and we find that the probability for τσ to have
cycles of length �1, . . . , �k equals

1
�1 · · · �k

(

1 + O
(

e−
α log4 n

40

))

.

Defining the random variables ξi to be the number of cycles of length i,
where log5 n<i< n

logn , we find that for each fixed k the k-th moment of the
sum of the ξi is asymptotically equal to the k-th moment of independent
random variables with the same mean, hence, the distribution of the sum
converges to a normal distribution. Since the contribution of very small or
very large cycles is almost always of smaller order of magnitude, Theorem 3
follows.
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