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Abstract. We introduce the concept of asymptotic stability for a set of complex
functions analytic around the origin, implicitly contained in an earlier paper of the
first mentioned author (“Finite group actions and asymptotic expansion of eP (z)”,
Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find
that the collection of entire functions exp(P) with P the set of all real polynomials
P (z) satisfying Hayman’s condition [zn] exp(P (z)) > 0 (n ≥ n0) is asymptotically
stable. This answers a question raised in loc. cit.

1. Asymptotic stability

Let F be a set of complex functions analytic in the origin, and for f ∈ F let f(z) =∑
n α

f
n z

n be the expansion of f around 0. F is termed asymptotically stable, if

(i) ∀ f ∈ F ∃nf ∈ N0 ∀n ≥ nf : αfn 6= 0,

(ii) ∀ f, g ∈ F : αfn ∼ αgn → f = g in a neighbourhood of 0.

Here, for arithmetic functions f and g, the notation f(n) ∼ g(n) is short for

g(n) = f(n)
(
1 + o(1)

)
, n→∞.

A set of polynomials P ⊆ C[z] is called asymptotically stable, if the set of entire
functions

F = exp(P) :=
{
eP (z) : P (z) ∈ P

}
is asymptotically stable. Define the degree of the zero polynomial to be −1. For a
polynomial P (z) =

∑d
δ=0 cδz

δ of exact degree d ≥ 1 with real coefficients cδ consider
the following two conditions:

(G) cδ = 0 for d/2 < δ < d,

(H) [zn]eP (z) > 0 for all sufficiently large n.

Here, [zn]f(z) denotes the coefficient of zn in the expansion of f(z) around the origin.
Asymptotically stable sets of functions first appeared in [3], where it was shown among
other things that the set of polynomials

P0 =
{
P (z) ∈ R[z] : P (z) satisfies (G) and (H)

}
1
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is asymptotically stable. Since for a finite group G we have1

∞∑
n=0

|Hom(G,Sn)| zn/n! = exp

(∑
ν

|{U : (G : U) = ν}| zν/ν
)
,

asymptotic stability of P0 implies in particular the following curious phenomenon
(“asymptotic stability” of finite groups):

If for two finite groups G and H we have |Hom(G,Sn)| ∼ |Hom(H,Sn)| as n → ∞,
then these arithmetic functions must in fact coincide.

Condition (H) arises in the work of Hayman [2], where it is shown that for a real poly-
nomial P (z) of degree at least 1 the function eP (z) is admissible in the complex plane in
the sense of [2, pp. 68 - 69] if and only if (H) holds; cf. [2, Theorem X]. The gap con-
dition (G) has turned out to be an efficient way of exploiting the fact that polynomials
P (z) arising from enumerative problems very often have the property that

supp(P (z)) ⊆
{
δ : δ | deg(P (z))

}
.

In [3] the question was raised whether condition (G) could be dropped while still main-
taining asymptotic stability, i.e., whether the larger set of polynomials

P =
{
P (z) ∈ R[z] : P (z) satisfies (H)

}
(1)

is asymptotically stable. The purpose of this note is to establish the following result,
which in particular provides an affirmative answer to the latter question.

Theorem. Let P1(z), P2(z) ∈ R[z] satisfy Hayman’s condition (H), for i = 1, 2 let

{α(i)
n }n≥0 be the coefficients of ePi(z), and put ∆(z) := P1(z) − P2(z) as well as m :=

max
(
deg(P1(z)), deg(P2(z))

)
.

(i) Suppose that either 0 ≤ µ < m, or µ = m and deg(P1(z)) = deg(P2(z)). Then

we have deg(∆(z)) = µ if and only if | logα
(1)
n − logα

(2)
n | � nµ/m.

(ii) If deg(P1(z)) 6= deg(P2(z)), then | logα
(1)
n − logα

(2)
n | � n log n.

Here, f(n) � g(n) means that f(n) and g(n) are of the same order of magnitude; that
is, there exist positive constants c1, c2 such that c1f(n) ≤ g(n) ≤ c2f(n) for all n.

Corollary. The set of polynomials P defined in (1) is asymptotically stable.

Proof. If P1(z), P2(z) ∈ R[z] are polynomials satisfying condition (H) as well as α
(1)
n ∼

α
(2)
n , then logα

(1)
n − logα

(2)
n = o(1). By our theorem, deg(∆(z)) 6∈ [0,m], and hence

P1(z) = P2(z). 2

1Cf. for instance [1, Prop. 1] or [4, Exercise 5.13].
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2. Proof of the theorem

For i = 1, 2 put Pi(z) =
∑di

δ=0 c
(i)
δ z

δ with c
(i)
di
6= 0. Our assumptions that P1(z) and

P2(z) have real coefficients and satisfy (H) ensure via [2, Theorem X] that the func-
tions exp(Pi(z)) are admissible in the complex plane; in particular, in view of [2, for-

mula (1.2)], we have c
(i)
di
> 0. By [2, Theorem I] we find that, for i = 1, 2,

α(i)
n ∼

exp(Pi(ϑ
(i)
n ))(

ϑ
(i)
n

)n√
2πbi(ϑ

(i)
n )

(n→∞),

where ϑ
(i)
n is the positive real root of the equation ϑP ′i (ϑ) = n, and bi(ϑ) = ϑP ′i (ϑ) +

ϑ2P ′′i (ϑ). Since c
(i)
di
> 0, the root ϑ

(i)
n is well defined and increasing for sufficiently large

n, and unbounded as n → ∞. This gives ϑ
(i)
n ∼

(
n

dic
(i)
di

)1/di and bi(ϑ
(i)
n ) ∼ di n, and

hence

α(i)
n ∼

exp(Pi(ϑ
(i)
n ))(

ϑ
(i)
n

)n√
2πdin

(n→∞). (2)

Formula (2) implies that

logα(1)
n − logα(2)

n = P1(ϑ
(1)
n ) − P2(ϑ

(2)
n ) − n

(
log ϑ(1)

n − log ϑ(2)
n

)
− 1

2

(
log d1 − log d2

)
+ o(1). (3)

First consider case (ii), that is, the case when d1 6= d2. Then, by (3),

logα(1)
n − logα(2)

n =
( 1

d2
− 1

d1

)
n log n + O(n),

that is, ∣∣ logα(1)
n − logα(2)

n

∣∣ � n log n

as claimed.2 Next suppose that d1 = d2. Then the right–hand side of (3) becomes

d−11 log(c
(1)
d1
/c

(2)
d2

)n + o(n);

in particular, we have deg(∆(z)) = m if and only if | logα
(1)
n − logα

(2)
n | � n, which

proves the last part of (i). Thirdly, for m = 1,

logα(1)
n − logα(2)

n = c
(1)
0 − c

(2)
0 + n log(c

(1)
1 /c

(2)
1 ) + o(1),

in particular, deg(∆(z)) = 0 if and only if | logα
(1)
n − logα

(2)
n | � 1. Hence, we may

assume for the remainder of the argument that m ≥ 2.

Now suppose that 0 ≤ µ := deg(∆(z)) < m. We want to show that in this case

2Here, as well as in certain other places below, a more precise estimate than the one stated is
obtained, but not needed in the argument.
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| logα
(1)
n − logα

(2)
n | � nµ/m. We have

n− ϑ(1)
n P ′2(ϑ

(1)
n ) = ϑ(1)

n

[
P ′1(ϑ

(1)
n )− P ′2(ϑ(1)

n )
]

= ϑ(1)
n ∆′(ϑ(1)

n )

= aµ
(
ϑ(1)
n

)µ
+ o(nµ/m),

(4)

where a is the leading coefficient of ∆(z), which we may suppose without loss of gener-

ality to be positive. Expanding ϑP ′2(ϑ) as Taylor series around ϑ
(1)
n , we find that

ϑP ′2(ϑ) − ϑ(1)
n P ′2(ϑ

(1)
n ) =

(
c(2)m m2

(
ϑ(1)
n

)m−1
+ O

(
n
m−2
m

))(
ϑ− ϑ(1)

n

)
+ O

(
n
m−2
m

(
ϑ− ϑ(1)

n

)2
+
(
ϑ− ϑ(1)

n

)m)
. (5)

If ϑ runs through the interval

I =

[
ϑ(1)
n −

2aµ

m2 c
(1)
m

, ϑ(1)
n +

2aµ

m2 c
(1)
m

]
,

the right–hand side of (5) covers a range containing the interval[
− (2− ε)aµ

(
ϑ(1)
n

)m−1
, (2− ε)aµ

(
ϑ(1)
n

)m−1]
for every given ε > 0 and sufficiently large n depending on ε. Combining this observation

with (4), we find that n − ϑP ′2(ϑ) changes sign in I, that is, ϑ
(2)
n ∈ I for large n; in

particular we have ϑ
(2)
n −ϑ(1)

n = O(1). Since m ≥ 2, setting ϑ = ϑ
(2)
n in (5) and rewriting

the left–hand side via (4) now gives

aµ
(
ϑ(1)
n

)µ
=
(
c(1)m m2

(
ϑ(1)
n

)m−1
+ O

(
n
m−2
m

))(
ϑ(2)
n − ϑ(1)

n

)
+ o(nµ/m). (6)

For x, y real, x→∞, and x− y = O(1),

P2(x) − P2(y) = (x− y)P ′2(x) + O
(
(x− y)xm−2

)
.

Hence, applying (6), we have as n→∞

P1(ϑ
(1)
n ) − P2(ϑ

(2)
n ) = ∆(ϑ(1)

n ) + P2(ϑ
(1)
n ) − P2(ϑ

(2)
n )

= ∆(ϑ(1)
n ) + (ϑ(1)

n − ϑ(2)
n )P ′2(ϑ

(1)
n ) + O

(
(ϑ(1)

n − ϑ(2)
n )(ϑ(1)

n )m−2
)

= a
(
1− µ

m

)( n

mc
(1)
m

)µ/m
+ o(nµ/m).

Moreover, using (6) again,

log ϑ(2)
n − log ϑ(1)

n = log
(

1 +
ϑ
(2)
n − ϑ(1)

n

ϑ
(1)
n

)
=
ϑ
(2)
n − ϑ(1)

n

ϑ
(1)
n

+ o
(ϑ(2)

n − ϑ(1)
n

ϑ
(1)
n

)
=
aµ

m
n−1

( n

mc
(1)
m

)µ/m
+ o(n

µ−m
m ).
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Inserting these estimates in (3) now yields

logα(1)
n − logα(2)

n = a
(
1− µ

m

)( n

mc
(1)
m

)µ/m
+

aµ

m

( n

mc
(1)
m

)µ/m
+ o(nµ/m)

= a
( n

mc
(1)
m

)µ/m
+ o(nµ/m) � nµ/m,

and our theorem is proven.
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