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Abstract

Let K1, ..., K,, be finite Abelian extensions over Q with pairwise
coprime discriminants. For j = 1,...,m let F}; be the corresponding
norm form. Let Ur(z) denote the number of integers n < x that can
be represented by all forms Fj, j = 1,...,m. In this paper uniform
upper and lower bounds for Ug are derived.
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1 Introduction and statement of results

In [11], Odoni gave (among other things) an asymptotic formula for the
number Up(z) of positive integers not exceeding x that can be represented
by a given norm form F'. The error term, however, depends on the involved
number field, and for applications often uniform results are required, see
e.g. [1, 2]. In this paper we derive in the case of Abelian number fields

uniform estimates for Up(x). In fact, we consider the following more general

situation:
Let K1,..., K,, be finite Abelian extensions of Q of degrees d1,...,d,,
with pairwise coprime discriminants. For j = 1,...,m let O; C K; be the

ring of integers. Choose an integral basis {w;, | 1 <v < d;} of O; and let
Fj(x) = N (2, wjotn), x=(z,) €LY,

be the corresponding norm form. A change of base in O; yields a new form
F! = Fj o M with some M € GLg;(Z). Thus F; and Fj represent the same
integers. Let Up(z) be the number of integers n < z such that the system
of the m diophantine equations |Fj(x;)| =n, (j = 1,...,m) is solvable. In
other words, Ur(x) is the number of integers n < x, such that each field K;

contains an Kj-integer whose norm (in absolute value) is n.



The coprimality of the discriminants implies K; N K; = Q for i # j (see
e.g. [15], p.322). Let L = K1 --- Ky, Then Gal(L/Q) =[]}, Gal(K;/Q)
actson € := H;”Zl ¢;, the direct product of the class groups of the fields K.

We write h(k) for the class number of a number field k£ and define

—:

h:= || MKj), A:=|Dpgl, G:=Gal(L/Q), dp:=][L:Q]
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Several times we shall use the bound d; < log A. Here and henceforth all
implicit and explicit constants do not depend on the involved fields, and

they are also independent of m. Odoni’s result implies (in the case m = 1)
Up(z) ~ ¢(F)z(log z)/4)~1 (1.1)

for fixed K7y, . .., K,, and x — oo where the constant ¢(F) is neither very big
nor very small. However, as we shall see below, in general this asymptotic
becomes incorrect if A can increase (even moderately) with x.

In order to state the main result, we write, for a € [0,1] and each
subgroup H < G,

E(a,H) := —1+ a1 —log(alH|))

and
Fix H:={Ce€|C’=Cforallc € H}.

We shall prove:

Theorem 1. Let M > 0,e > 0 be given. Let x > xo(M, ), and assume
A < (logz)™. Then

z(log a:)E(O"H)_6

VRl 2ot 0% B0 e -2
If in addition df, = o (loglog ), then
z(log z)ElaH)+e
Url@) Sase Q035 BT R 3

Theorem 1 follows directly from the following Theorem. For n € N and
C=(Cy,...,Cp) € € we write n € R(C) and say that n is norm in C if for

each j =1,...,m there is an ideal a; in the class C; with norm n.



Theorem 2. Let M > 0, ¢ > 0, and Cy € € be given. Let Ug,(z) be
the number of integers n < x such that n is the norm of some ideal in Cjy.
Then we have for x > xo(M,¢) and A < (logz)M

E(a,H)—¢

. z(logx)
Veolr) > e (025 P~ FixcH]

If in addition dj, = o (loglog ), then

)E(a,H)—i—a

z(log x
Uco(w) are max, min ——m

Taking H = {e} and H = G, this contains the two upper bounds

1 €
Uc, (z) < M%””)

which can be obtained by counting norms of ideals with multiplicity of their

occurrence (see e.g. [16]), and
1
Uc,(z) < z(log x) e (1.4)

The bound (1.4), uniformly in A < (logz)™, can be obtained by applying
a Landau-type argument to ¢z (s)"/% H(s) where H(s) < [T)a(l+p7%) in
Rs > 2/3. In general it might be hard to estimate Fix H for all subgroups
H of G, but for example the following bound holds.

Proposition 3. Assume that G; := Gal(K;/Q) is cyclic, and let H <
G =[1G; be any subgroup. Let pr; : G — Gj be the canonical projection,
define H; := pr;(H) and let K]Hj C Kj be the fized field of H;. Then we
have .
|Fiz H| < A T h(K[")
j=1
A typical application of Theorem 2 is the following uniform version of
(1.1):
Corollary 4. With the above notation we have

Ug,(z) = x(log z)1/de)=1+e(1) (1.5)

providing © > exp(Af) + exp(hsTdr/1082),



In general, (1.5) becomes incorrect for smaller x as can already be seen by
taking imaginary quadratic fields [2]. The proof of Theorem 2 is a variant of
the method in [1, 2], but we need some additional ideas to obtain uniformity
in all parameters. Loosely speaking, if ag € [0,1] is the number at which
the maximum in (1.2), (1.3) is taken, then ogloglog x is approximately the
number of prime factors of a “generic” integer n counted by Ug(z). It is clear
that we cannot drop the condition (Dk,/q, Dk, q) = 1 for i # j as one can
already see for two quadratic extensions. The condition d; = o(loglog z),
however, is only for technical reasons and can perhaps be removed.

The first author would like to thank Dr. M. Spitzweck and Prof. U.

Stuhler for helpful discussions.

2 Some Lemmata

For a group G and subsets Ay, ..., Ay define the product set
k
HAj::{al---ak\al€A1,...,ak€Ak}. (2.1)
j=1

Then we have:

Lemma 2.1. A prime p is norm in some C € € if and only if p is
divisible by a prime ideal in L of degree 1. In this case p° is norm in all
the classes in the product set {C° | o € G}? and no others.

Let n = Hp P be the canonical prime factorization of n, and assume that
p°r is norm exactly in the set of classes ) C C, C €. Then n is norm exactly

in all the classes in the product set Hp Cp and no others.

Let €(L) be the class group of L, and for any finite Abelian group G let
G:= {x : G — C*} be the dual group.

Lemma 2.2. We have an injective homomorphism of groups

=)

— (L)
(X15---yxm) = x:=[I{L1 xj 0 Nk,

—

Proof. It is clear that the map is a homomorphism from E to €(L).
We have to show that the kernel is trivial. To this end let xi, say, be
nonprincipal, so that x1(C) # 1 for some C € €;. For any number field



k/Q let k be the class field. Since (Dk;jq: DKk, /q) = 1 for i # j, we have
by properties of the Artin map (see [15], p.400) a commutative diagram

¢(L) ——  Gal(L/L)

- l

=TI, & —— IIj%, Gal(K;/K;)

where the isomorphisms are given by the Artin map; the map on the right-

hand side is given by
Gal(L/L) ==, Gal (H K; /L) ~ [ Gal(K;L/L) = [ Gal(K;/K;)

and therefore obviously surjective. Thus also the norm is surjective and we
have a preimage € € €(L) of (C,1,...,1) with x(€) # 1, i.e. x is nonprinci-
pal.

For any Galois number field £/ Q with discriminant D we know from
results of Siegel [12] (upper bound), and Siegel-Brauer/Stark [13] (lower

bound)

log| D]\ %
e log| D] |> < |D|* (2.2)
dr,

for any € > 0 and some absolute constants ¢, ¢, so that by the class number

|D|™° < ress—1(k(s) < <

formula
h(k) < |D|®. (2.3)

Let
Q = Q. = exp(A7) (2.4)

for some sufficiently small given € > 0, and define
Pg :={p > Q | p totally split in L},
Ro(C):=R(C)N{neN:p|n=pecPy}.
For x € (‘Z/(L\) let L(s, x) be the Hecke L-function, and let

i(5.Q HHexp<p )

pePq Bl(p)

where 3 denotes a prime ideal in L.



Lemma 2.3. For any € > 0 there are absolute positive constants cy,
cs(e) such that for x € € the functions L(s,x), L(s,Q,x) are analytic and
zerofree in the region

Ri={s=0c+itecCl|lo>1-
{ | a7 oA+ )

except for a simple pole at s = 1 if x = xo. For s € R, |0 — 1
min ((log Q)~*, %log_l(A(l + t]))), we have

log L(5,Q,x) | _ (1 :
log L(s. ) by log o1 <. dp loglog(A(1 + [t])) + log A
(2.7)

where logt(x) = log(max(1,z)) and §, =1 if x = xo and else it vanishes.
All constants are absolute (but cs and the constant implied in (2.7) are in-
effective).

Proof. We first observe that L(s,Q,x) = L(s, x)G(s,Q, x) where the
Euler-product G is entire and zero-free in Rs > 1/2 and log G(s,Q, x) <
loglog @ = log A® if ®s > 1 — (log@Q)~!. For complex x or |t| > 1 the
existence of a ¢4 > 0 for the zero-free region for L(s, x) is well-known, see
e.g. [9], Lemma 2.3. For real x # xo we note that L(s,x) = (1/(s)/Cr(s) for
some quadratic extension L' 2 L (see [5]) with Dy, < A% Thus it follows

from the theorems of Siegel-Brauer and Stark [13] that there is no zero

B >1—max <CG(€)_dLA_€, C7d£1A_2/dL>
which gives (2.6). To obtain (2.7), we choose § = log™}(A(1+]t|)) in Lemma
4 of [4] getting

Z = ;gL(s), L(s,x) < log® (cs A(1 + |¢]))

uniformly in 1 — 6 < o < 1+ where y denotes any non-principal character.
By Caratheodory’s inequality (see e.g. [10], §§73, 80) and (2.4) we find

1
log L(s, x) — 0y log™ P < drloglog(A(1 + [t])) +

1)
log L <1+§+it,x>‘

1
< drloglog(A(1 + [t])) + log 5T log (ress=1(L(s))

< dr, loglog(A(1 + |t])) + log A®

forse R, 1-6/3<0<1+6 and any x € E After possibly reducing
¢4, ¢5 in (2.6), we obtain (2.7). By the remark at the beginning of the proof



it also holds for i(s, Q,x).

Lemma 2.4. Let € be any finite Abelian group of order h, G < Aut(€)
finite, k € N. For C= (Cy,...,Cy) € € define

k
sie) =#][(csloe)
v=1

in the sense of (2.1). Then

> Sk(C) > ZH<G1H<G<|FZZL"H| <|H|> )

ceek

. h (G|
<
gleaé}gsk(c) ;In<1(;<|Fw:H| <|H|> )

Proof. To obtain the upper bound, we fix a subgroup H < G. Let T
be a transversal for H in G, so that, for any oy,...,0, € G, C4,...,C; € €,

k k k k
ez =Te e e
v=1 v=1 v=1 v=1

for suitable t, € T, 7, € H. (Note that o — 1 is an endomorphism of € for
all 0 € G since € is Abelian.) Let V = (r —1 | 7 € H) < End(€). Since
Noey ker(v) = N,y ker(r — 1) = Fix H, we have

k
h
Tv—1
#{HC’ ]T,,EH} T A

v=1

This shows

h|T|* h G|
<
SkC) S FxH ~ T A <\H\

for any subgroup H < G and any C € ¢*.

For the lower bound we define

v=1

k
Nc(C) = Ne,,...c,(C) = # {(01,...,ok) eGt | [[ecer = C’}



for C € €,C € ¢*. By Cauchy’s inequality,

2
Nc(C
Z Sk(C) = Z Z 1> (Xoeer Lcee Vel )2 . (2.8)
Cee Ceer  Cee > ceer 2cee Nc(C)
Nc(C)>1
Clearly,
> > Ne(C) = |efiGl (2.9)
Cecek Cel
and
S S Ne@)?= Y 3 1
Ceck Cel ceer (o1,0%,....01,0,)EG?F
Ci’l...cgkzci’ﬁ...cgk
_ S #{CGcf’f\cgl...cgk:cfi...cgk}
(01,01 ,-.,0k,0%,)EG2F
:|G|k Z #{Cegﬂcfl—l...cgk—l:l}
(01,..,0%)EGF
(2.10)
For H < G let

Su= y, #{cedjeptopt=ay.
(01,...,Uk)EGk
(0140 )=H

Since the o, — 1 are endomorphisms of €, we obtain

#{ceet|cp e opt =1}

k k k
—# {(01,...,0k) e [[im@ -1 ]]C = 1} [ ker(e, — 1)]
v=1

v=1 v=1
for any k-tuple (o1,...,0%) € G*. Since € is Abelian, the first factor equals
k

1
i v 1 .
[(im(oy —1),...,im(oy, — 1))] Ig‘lm(‘f )l
If we substitute the last two displays in the definition of ) ,;, we obtain
< o | H|¥|Fix H|
o i i < e
2 T =) G
(Ulv---70k>=H

Finally we sum over all H < G and use (2.8)-(2.10) to get the lower bound.

Next we restate Lemma 4.1 in [1].



Lemma 2.5. Let z,, v = 1,...,k, be k complex numbers with J(z,) <

0 < R(zy) and let z = Hff:l zy. Then —(z) is positive and increasing in

all R(z,) as long as k;gzg > —m for all v.

Lemma 2.6. Let « € [0,1], g € [1/2,1], v > 0, r := aloglogz, J =
[1— (logz)~P,1]. If B > a, then

1 1 " B
- 1 1 B+a(l+log 1) +e
F(r+1)/]<70g1—3> ds < (logx)~

uniformly in o, 3,7.

Proof. By a change of variables § := (loglog z)?/log(7X) the left hand
side equals

vr(loglogx)2/ (log log x)? ox _(loglog:z:)2 ds
Tr+1) Jo s— PO )

The integrand is increasing for § < % and so is < (B loglog x)" (log )"

since # > a. The lemma follows now easily using Stirling’s formula.

log log T

Finally we need a general Siegel-Walfisz theorem for Galois number fields.
For C € € let

e(C) = #{0 €eG|C?=C} (2.11)

|G

be the normalized stabilizer of C.

Lemma 2.7. For any C € € we have

e(0) Z dLh/ —+O {eXp( cB(logx)1/3)> (2.12)

<t logt

PER(C)
p totally split in L

uniformly in A < (log &) for any constant B > 0. In particular,
T T

2.1
Ur(z) > (log ) *<h > (log z)Beat1+ (2.13)
uniformly in A < (logx)?, cf. (2.3).
Proof. This is standard by applying Perron’s formula to
1 M L'(s,x)
U — = v (O ’
(le 7Xm)€g: J=1 (2 14)

fplogp
Ly ydiosr sy
p nxl Pl(p)
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Here B is a prime ideal in L, f,, is the ramification index of p in L, and
X is as in Lemma 2.2. We can absorb the contribution of the p™, n > 1,
and the contribution of the non-split primes in the error term. We integrate
over a suitable rectangle so that the main term comes from the residue
of Ug(s) at s = 1 which is (dyh)™! by Lemma 2.2. Note that we have
%#{‘B | (p) + Npyi;B" € €5} = €(C) for a totally split prime p. For
further details see [6], where the integration is carried out in detail, and

note that we can use Stark’s result [13] to obtain a larger zerofree region as
n [6] if dy, is large (dr, > v/loglog x, say).

3 Suitable Dirichlet series

The proof of the main theorem uses ideas from [1, 2], so we refer to these
papers for some more details. We use a Dirichlet series to count numbers
being norms in a given class. We begin with a Dirichlet series that counts
primes that are norms in a given class C = (C1,...,Cy,). By orthogonality
we have (cf. (2.14))

(X1 xm)EL

1 o . 1
an > l_Ixjwj) log L(s,@Q, x) = €(C gj =

(3.1)

= Poq(s) =t 7 108 C(5) +7(5,C, )

where x is given by Lemma 2.2 and Rg(C) by (2.5). From the defini-
tion we see that T'(s,C, Q) is a Dirichlet series with real coefficients, hence
T(s,C,Q) =1T(5,C,Q) on (1,00]. This identity holds where ever T is holo-
morphic; in particular T is real on [2/3,1] N R by Lemma 2.3. For C € €,
k € N let

k
Mk(C) = {(Cl,...,Ck) ng ‘ Ce H{Cz’UGG}},

v=1

and

Ack(s) = % > H P, (s

(C1,...,Cr)EME(C) v= n=1

8

(say). (3.2)

By Lemma 2.1 the coefficients ac j satisfy

e 0<acyi(n)<1lforalneN
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e ac;(n) > 0only if n € Rg(C) and Q(n) =k
e aci(n) =1if n € Ry(C), Q(n) =k and p%(n) = 1.

In fact, it is clear that Ac x(s) counts only n € Rg(C) with Q(n) = k. Fur-
thermore, choose a fixed set of representatives of the quotient G\ € and let for
each C € € be C this representative. For k not necessarily distinct objects
X1,..., Xk let p(Xy,...,X) be the number of rearrangements of the k-
tuple (X1, ... Xg). Then we observe that an n = Hff:l p;j with not necessar-
ily distinct p, € Rg(D,), say, occurs as a denominator of a Dirichlet-series
Hl]f:l Pg, .q(s) for exactly p(Dy,...,Dy) Hl]f:l ¢(D,)~! many k-tuples from
M}, (C). Therefore, ac r(n) < 1 with equality if n € Rg(C) is squarefree.

The preceding discussion gives

Z aCo, < UCO( ) (3'3)

n<x

for all £ € N and Cy € €. To obtain an upper bound, we have to include

some more numbers in our Dirichlet series. To this end, let

Zogls)=e(C) 3 ~.

For k,1 € Ny let

Aci(s) = %% > H Pc, (s H Zp.qls) =y —0— Gokin

(Ci,....Cp)eek  v=1 n=1
(Dy,...,.D;)ed!
(C1,...,Dy)EM}1(C)

Then we see as before that ac k(n) =1 if n € R(C), p%(n) = 1, and n has
exactly [ prime factors < ) and k greater than Q.

Now we observe that by Lemma 2.1, if n = ning € R(C) and (n1,n2) =
1, then n; € R(Cy) and ny € R(Cy) for some C;Cy = C. This also holds if
(n1,n2) consists only of totally split primes. Finally let

1
Bc(S) = 50 + Z E

neR(C)
n powerful

where ¢ = 1if C = 1 € € and else it vanishes. Then by the above discussion
the coefficients of

& (1)

Z Z Z Acki(s)Bgo-1c,(s) = Z % (say) (3.4)

Celr<Rk+l=r n=1

(say).
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satisfy
3 @) (n) = UG (x) (3.5)

n<z
where U(C}? (z) denotes those numbers n < z, n € R(Cy) with Q(n) < R.
For k£ = 0 we count numbers with multiplicity at most h that consist only
of primes p < @, and by Corollary 1.3 of [8] there are, for sufficiently small
e in (2.4), at most z exp(—(log )*/*) numbers of this kind up to x. Thus
we may assume k > 0.
In preparation for Perron’s formula let S = exp ((log z)Y/ %) and
Typ:=[1- (logz) ' +iS,1+ (logz)~! +4iS],
Ty :=[1 — (logz)~1% 1 — (logz) 17 + 9],
T3 :=[1 —exp (—(loglogx)*), 1 — (logz) "],
Iy:={s€C||s—1] =exp(—(loglogz)")}.
Let I'y 2 (1 < v < 3) be the image of I, ; under reflection on the real axis,

oriented such that
[':=T120220'320'4'3 12 11" 1

is homotopic to [1 + (logz)™! —iS,1 + (logx)~! +iS]. By (2.4), (2.6),
(2.7) the functions Pc ¢ extend for sufficiently large = holomorphically to a
neighbourhood of I', and we have Pc ¢(s) < (loglog r)% on [y 292Ul 1T 5
and Pcg(s) < (loglogz)* on I'y, so that

Ack(s) < (h(loglog :13)4)k < exp ((loglog z)*) (3.6)

on I := [l UTy Uy T for kb < loglogz and x > x¢(A). Likewise,
since

1
ZC,Q(S) < Z W < log logQ < log logm
p<Q

on I', we see
Ack(s) < exp ((loglog )?) (3.7)
on T for k + 1 < loglog . For future reference we define
J=-T31=[1—(logz) '™ 1 —exp (—(loglog z)M)]. (3.8)

Lemma 3.1. For Ce ¢, |0 — 1| < (logz)~%? and £ > 0 we have

elog A+ O(1)

<
7(0.C.Q) < =20

where T was defined in (3.1).
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Proof. [see Lemma 4.3 in [2] for details.] For fixed p > 0 we have by
(3.1)

d" . (—logp)t 1 (—log p)*

s 1 = lim 3 - Ly

dst (5,C, Q)ls=1 5i>oo «(C) P drh D
pERG(C),p<E <£

For ¢ > @ this can be evaluated by partial summation and (2.12), and we
obtain

elog A + O.(1)
drh

Af +0.(1)

(1) <
and[T(1,€,Q)] < =

T(1,C,Q)| <

for 4 > 1. The lemma follows now from Taylor’s formula up to degree

o = [2c3M + 1], say, where we use the trivial estimation

2]

T(“O)(s, C,Q) < max

x#xo | dsHo logZ(37Q7X) < (log x)*

together with (2.6) for |s — 1| < (logz)~%/3.

4 The lower bound

We start with the lower bound. By Perron’s formula, (3.2) and (3.3) we

obtain

1 x® xlogx
U > — [ A —ds+ O
Co (:E) - kS(l—IQIéE)lf({)glog:c 2w Jr CO7k(S) S s+ ( S > ’

so that by (3.6)

1 x® z
> _ _ Cx R
Ugy(z) > kg(l_rzggj\fggng( S /JACMS) p ds) +0 <exp<<1og logw)3)>

with J as in (3.8). Note that the integrand in I's ; is the complex conjugate

of the integrand in I's5. We use Lemma 2.5 with z, = Pc, g(s). Note
that by (3.1) and Lemma 3.1 the assumptions are satisfied for z > xzo(M,¢).

Therefore,

k
1 -5z 1 (log—= —clogA —¢cg —im
Ug,(z) > max ——%/ - ( 1-s
1

k<(1—2¢)loglogx 7T 2 k! drh

T logx

X#Mk(CO)%SdS> +0 <exp ((loglog x)3)>
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for some positive constant cg. To estimate #My(Cq), we divide the sum

over € into two sums over € x ¢F1 obtaining

#M(Co) = Y #M;_1(CoC™") = > #M;, 1(C)= Y Sia(C

Ceg Ce¢ Cegh-1

so that by Lemma 2.4

1
Ucy(z) > e (1 — &) loglog z)* sin (

log k<(1— 2&) loglogx k?'

k(1 + 0(1))>
log log x

1 . 1
X - -
S e 1 H2G <|H|'f|Fix H|>
X

1 1
_ ~ (log1 - -
> (log z)1+e kS(l—glE)ii()glogx k;!( oglog)* mln <]H!k\F1X H])

up to an error of O (W). In order to obtain a (crude) bound
for >y« 1, we can observe that there are < |G| nonisomorphic Abelian
groups H of order < G, and each H has at most Q(|H|) generators and
so can occur in at most Q(|H|) < log|G| ways in G. Thus ) .1 <
|G|OUoslG) < (log x)e. -

At the cost of an additional factor (log x)~¢ we may extend the maximum
over all real k € [0, log log z]. Writing & = a'log log x, we obtain after a short
calculation using Stirling’s formula

E(a,H)—¢

. z(log )
Uco(@) > 02021 HSG |Fix H|

This gives the lower bound.

5 The upper bound

Let us first note that by our assumption dy, = o(loglog x) we have

Y Bals) < Y Bg (1 - W) < cft < (logz)*

Cec Cec
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for s € I'. This is the only place where the additional assumption is needed.

By Perron’s formula, (3.4), (3.5) and (3.7), we therefore have as above

U@ <Y Y s /ZACM 9B, (5) 2 ds

r<R k-+l=r Cecg
k#0
z
o (exp((log log x)3)>
T
< z(log ) /maXA ds +
g 7;2]6%:7“ | Ckl( )| exp((loglogaj) )

k£0
(5.1)

Writing €% = ¢ x €71, we see

|Ac k,1(8) k;i Y > [Peials)
geG C1el
> HIPCV,Q |H|ZDWQ

(Cz,....Cx)eg™ ! V=2
(D17"'7Dl)€gl
(CwaDl)eMkaH(CC‘l’)
We relabel the summation variable C; « CCJ. By Lemma 3.1 we have

|Pc.o(s)] < 1+€) log 1= on J. Changing the order of summation, we see

k—1 !
(loglog )%
[Ac i(8)] < Z!PCQ )| > Zpals)
Dec (5.2)
X max lsk—l—i-l((c%---»Dl))'

(Ca,...,D;)egr= 1+

on J (note that Zp g(s) > 0 there) so that by Lemma 2.4, (5.1) and (5.2)

r—1
(R) e : dy, 1
U, (x) <w(log z)" max min, (m) o

. (5.3)

P )+ Z ds + .
<], 2 Poaol+ Zoale) | ds+ oo oy
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By (3.1) we have } cce ([Po,o(s)] — Pc,g(s)) = 7. Using orthogonality,

the same calculation as in (3.1) shows

—logCL Z h Z H X;(Cj) | log L(s, x)

Cec (X15-- 7Xm)e§: j=1

1 1
y oy Loofuxd
CelpeR(C p p|A p

on J. From (2.7) we thus infer

1+e¢ 1
> (IPeq(s)l + Zoqls)| < —— log -
L J—

Ceg

. +loglog A (5.4)

on J (z > xg(e)). Let us first assume dy < y/loglogz. Then

14¢ 1
Z (|Pc,o(s)| + Zc,g(s))| < pi log .
Cee L

—s
so that by (5.3)

(R) | 1 1/ LY
U, (2) < allogz)” r<¥?§§ng<G<|H| "|Fix H|> gy, ) @

) (log:n) E(a,H)+e
ST ST i A

by Lemma 2.6.
Now assume dj, > +/loglog z and let ¢11 = Mc3 + 2,

. 2011
~ logloglogz

Firstly we show that the contribution of those r in (5.3) with ploglogx <
r < R is neglegible. In fact, if we consider in (5.3) only the case H = G,
then by (5.4) and Lemma 2.6 their contribution is at most

1 <(1 +¢)

(B 1 1
1 (2) < z(log x)* B

1 T
log +loglog A | ds
dL 1—s

< o (logz)° : / 1o L)
max — O, S
viogy r>p10210g:c 7! J log log x & 1-s

< z(logx)~11te
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for sufficiently large x which is admissible by (2.13). On the other hand,
those r with r < ploglog x contribute at most
1 T
> ds.
-5

(5.6)

1 1
c .
JZ(IOg JZ) rgpnl}g)l(ogx Il}lgllCl? <’H’T’F1X H‘) /J r! <613(10g log A) log 1

Since plog(ci3loglog A) = o(1), we find by Lemma 2.6 that

)E(a,H)—i—a

1
U(C}? (r) < x max min (log @

a<p H<G  |Fix H|

Now we choose R := ci4loglogz with c14 = (log2)~!(Mcs + 4) and
bound trivially the number of integers n < x with Q(n) > c¢12loglogz. By
[3], Corollary 1, there are at most O (:L"(log )™M c3_2) numbers of this kind.
By (2.13) this yields an admissible error. By (5.5) and (5.6) the proof is

complete.

6 Proof of Proposition 3 and Corollary 4

Since each G; = Gal(K;/ Q) is cyclic, every C € Fix H contains an m-tuple
of ideals (ay,...,a,,) that remains fixed under the action of H. Indeed, let
o; be a generator of H;. If (by,...,by,) is any m-tuple of ideals in a class
C=(C1,...,Cp) € Fix H, then Cj is fixed by Hj, and so (b]",...,bJ") =
((A1)b1,..., (Am)byy,) for some principal ideals (A;). By Hilbert’s Theorem
90 we can write \; = u] ~7 (e.g. [7], §13), so that a; := (u;)b; gives the
desired ideal tuple. But up to a product of powers of ramified prime ideals,
the a; are lifted ideals from the fixed field K;{j , and so (cf. e.g. [14], Theorem
1.6)

Fic | < JT | n(E;") [T etw)

= H,

where as usual e(p) denotes the ramification index of p in K;. By Dedekind’s

discriminant theorem we know

H )< ] (e+1) < (Do)

bCK| Hj p°llDr /g

This gives the proposition.
The corollary follows immediately from Theorem 2: For each subgroup
H # G we estimate E(o, H) > —1 + (1 — log(ad/2)) and Fix H < h
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getting

—14a(1-log(adr /2))—¢
: “1+a(1-log(ady))—e T(log )
Uc,(z) > Jmax min z(log x) , n

1
> z(logx)

l1—e

if h < (log z)(°82)/dL a5 can be seen by taking o = 1/dy,. The upper bound
in (1.5) follows from (1.4) for z > exp(A*®).
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