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1. Introduction and results

For an integer n, denote by U(n) the multiplicative group of residue classes modulo n.

The structure of U(n) is well known:

(i) If n =
∏k

i=1 pai
i , then

U(n) ∼= U(pa1
1 )× U(pa2

2 )× · · · × U(pak
k ).

(ii) If p is an odd prime, then U(pa) ∼= Cpa−1(p−1).

(iii) U(2) is trivial, U(4) ∼= C2, and U(2a) ∼= C2 × C2a−2 for a ≥ 3.

The exponent of U(n), that is, the least integer ν such that aν ≡ 1 (mod n) for all

integers a prime to n, is denoted by λ(n). This function was introduced around 1910

by Carmichael; cf. [2] and [3]. By a primitive λ-root of n, we mean any element of

maximal order λ(n) in U(n). This concept, which was introduced by Carmichael in

[2], is a natural generalization of primitive roots. Let r(n) be the number of primitive

λ-roots of n. It is not difficult to see that

r(n) = ϕ(n)
∏

p|ϕ(n)

(
1− p−m(p)

)
, (1)

where ϕ(n) is Euler’s totient function, and m(p) is the number of elementary divisors

of U(n) whose p-part is maximal. We see that r(n) ≥ ϕ(ϕ(n)) with equality if and only
1
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if m(p) = 1 for all prime numbers p. In [1], Cameron and Preece raise the problem to

determine the density of the set

R = {n : r(n) = ϕ(ϕ(n))}. (2)

They note that a computer search reveals almost 60% of all numbers below 105 to

have this property and wonder whether the set R might have positive density. Integers

n ∈ R have another interesting property. Define an equivalence relation ∼ on the set

of primitive λ-roots by a ∼ b if and only if 〈a〉 = 〈b〉. Then the number of equivalence

classes is at least ϕ(n)/λ(n), with equality occurring in the latter inequality if and only

if n ∈ R.

For a positive integer n, define f(n) to be the number of primes p such that m(p) ≥ 2,

where m(p) is defined as in (1). Our main results are as follows.

Theorem 1. The function f(n) has a normal distribution with mean log2 n
log3 n

and variance

log2 n
2 log3 n

.

Theorem 2. For any constant A > 0, we have

∑
n∈R
n≤x

1 � x

(log2 x)A
;

in particular, R has density 0.

Here, logk x denotes the k-fold iterated logarithm.

2. Proof of theorem 1

We will repeatedly use the following result.
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Lemma 1. Let q ≥ 3 be an integer. Then we have uniformly in x > eq the estimate

∑
p≤x

p≡ 1 (q)

1

p
∼ log2 x

ϕ(q)
.

Proof. Let ε > 0 be given, and set y = exp
(
(log x)ε

)
. Using the Siegel-Walfisz-Theorem

(see [7]), we find that

∑
y≤p≤x

p≡ 1 (q)

1

p
=

log2 x− log2 y

ϕ(q)
+ O(1),

whereas the Brun-Titchmarsh-inequality (cf. [5, Theorem 3.8] or [6]) implies

∑
q2≤p<y

p≡ 1 (q)

1

p
≤ (4 + o(1)) log2 y

ϕ(q)
.

Together with the trivial estimate

∑
q≤p<q2

p≡ 1 (q)

1

p
≤
∑

q≤p<q2

1

p
� 1

our claim follows. �

We now focus on the proof of Theorem 1. Note that m(q) can also be described as the

number of prime power block factors pa of n such that the q-part of ϕ(pa) is maximal

among all such p; that is, f(n) is the number prime powers qa satisfying the following

two conditions:

(i) there exist distinct prime divisors p1, p2 of n, such that p1, p2 ≡ 1 (mod qa);

(ii) there exists no prime divisor p of n such that p ≡ 1 (mod qa+1).
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Fix a parameter 0 < δ < 1, and define the auxiliary function fδ(n) to be the number

of primes q ∈ [δ log2 n, δ−1 log2 n] satisfying conditions (i) and (ii). Our first aim is to

show the estimate

∑
n≤x

(f(n)− fδ(n)) � δx
log2 x

log3 x
. (3)

First note that we may replace the interval [δ log2 n, δ−1 log2 n] by [δ log2 x, δ−1 log2 x]

by increasing the value of δ. Let qa be a prime power. We bound the number of integers

n ≤ x such that qa contributes to f(n) by neglecting condition (ii). This quantity equals

∑
p1<p2

p1,p2≡1 (qa)

⌊ x

p1p2

⌋
≤

∑
p1p2≤x

p1,p2≡1 (qa)

x

p1p2

≤ x

( ∑
p≤x

p≡1 (qa)

1

p

)2

∼ x
( log2 x

qa

)2

, (4)

where we have used Lemma 1 for the last step. Summing (4) over prime power values

qa > δ−1 log2 x, we find that the contribution of such prime powers to the left-hand

side of (3) is of acceptable magnitude. Since there are less than log
1/2
2 x proper prime

powers below log2 x, we see that the contribution of proper prime powers is altogether

negligible. Finally, there are O(δ log2 x
log3 x

) prime numbers below δ log2 x, which is again of

acceptable order, and (3) is proved.
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Define f̃δ to be the number of primes q ∈ [δ log2 x, δ−1 log2 x] satisfying condition (i).

Then, using Lemma 1, we have

∑
n≤x

(f̃δ(n)− fδ(n)) ≤
∑

δ log2 x≤q≤δ−1 log2 x

∑
p≡1 (q2)

⌊n

p

⌋

≤ x
∑

δ log2 x≤q≤δ−1 log2 x

log2 x

q2

� x

log3 x + log δ
.

Now we use the method of moments (see, for instance, [4]) to compute the distribution

of f̃δ. For an integer n, denote by m̃(q) the number of primes pi satisfying condition

(i). We claim that, for fixed q ∈ [δ log2 x, δ−1 log2 x] and n ∈ [1, x] chosen at random,

the distribution of m̃(q) converges to a Poisson distribution with mean log2 x
q

, and that

for different primes q1, . . . , qk the random variables are asymptotically independent. It

follows that the random variables

ξq =


1, if m̃(q) ≥ 2

0, otherwise

are asymptotically independent, have means

1− e−(log2 x)/q − log2 x

q
e−(log2 x)/q,

respectively, and variance

(
1− e−(log2 x)/q − log2 x

q
e−(log2 x)/q

)(
e−(log2 x)/q +

log2 x

q
e−(log2 x)/q

)
.

From this, Theorem 1 follows in view of the facts that

∞∫
0

1− e−1/t − 1

t
e−1/t dt = 1
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and
∞∫

0

(
1− e−1/t − 1

t
e−1/t

)(
e−1/t +

1

t
e−1/t

)
dt =

1

2
.

Hence, it remains to study the higher moments of the variables m̃(q) and their corre-

lations. To do so, we compute the expected value of
(

m̃(q)
k

)
for fixed k ≥ 1. We find

that

E

(
m̃(q)

k

)
=

∑
n≤x

∣∣{p1 < p2 < · · · < pk : pi ≡ 1 (mod q), pi|n
}∣∣

=
∑

p1<···<pk

pi≡1 (q)

⌊ x

p1 · · · pk

⌋

=
∑

p1<···<pk

pi≡1 (q)

p1p2···pk≤x

x

p1 · · · pk

+ O
(x logk

2 x

log x

)

=
x

k!

( ∑
p≤x

p≡1 (q)

1

p
+ O

(1
q

))k

+ O
( x

log2 x

)

=
x

k!

( log2 x

q

)k
+ O

( x

log2 x

)
.

On the other hand, the k-th moment of a Poisson distribution with mean log2 x
q

is

E(ξk) =
k∑

κ=0

Sκ,k

( log2 x

q

)κ
,

where the Sκ,k are Stirling numbers of the second kind. By the Stirling inversion

formula, the last assertion is equivalent to

k∑
κ=0

sκ,k

( log2 x

q

)κ
=
( log2 x

q

)k
,
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where the sκ,k are Stirling numbers of the first kind. Since

k∑
κ=0

sκ,kx
κ = x(x− 1) · · · (x− k + 1),

the variables m̃(q) converge to a Poisson distribution with mean (log2 x)/q.

To show that the variables m̃(q) are asymptotically independent, it suffices to show

that for fixed integers k1, . . . , kl, we have

E

(
m̃(q1)

k1

)
· · ·
(

m̃(ql)

kl

)
∼
(
E

(
m̃(q1)

k1

))(
E

(
m̃(q2)

k2

))
· · ·
(
E

(
m̃(ql)

kl

))
. (5)

The left-hand side quantity can be written as

∑
n≤x

∣∣{p11 < · · · < p1k1 , . . . , p`1 < · · · < p`k`
: ∀i, j : pij ≡ 1 (qi), pij|n

}∣∣.
If all primes pij are different, this can be computed as above and is easily seen to be

asymptotically equal to the right-hand side of (5). It suffices to compare the contri-

bution of tuples satisfying p11 = p21, say, with all tuples. Note that restricting pij by

x1/(2k) does not change the expectations significantly, hence, writing M for the least

common multiple of all pij, (i, j) 6= (1, 1), (1, 2), we have M ≤
√

x. Then we obtain

∑
n≤x

M |n

∑
p|n

p≡1(q1q2)

1 � x log2 x

Mq1q2

+ m
x

M
,

where m denotes the number of primes among pij, (i, j) 6= (1, 1), (1, 2), which are con-

gruent to 1 modulo q1q2. Since

∑
n≤x

M |n

∣∣{p1 ≡ 1(mod q1), p2 ≡ 1(mod q2) , p1, p2|n
}∣∣� x log2

2 x

Mq1q2

+ m
x

M
,

we see that tuples with repetitions are indeed negligible, proving that the random

variables m̃(q) are asymptotically independent.
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3. Proof of Theorem 2

Define fδ as in the proof of Theorem 1. Since f(n) ≥ fδ(n), it suffices to consider the

set

Rδ := {n : fδ(n) = 0}.

Moreover, from the computation of the moments of f̃δ we know that the number of

integers n ≤ x satisfying f̃δ(n) ≤ 1
2
log2 x is bounded above by O

(
x

logA
2 x

)
for every

constant A, provided that δ is sufficiently small. Hence, it suffices to consider the set

Sδ :=
{
n : f̃δ(n)− fδ(n) ≥ 1

2
log2 x

}
.

For an integer k ≥ 1, we have

∑
n≤x

(
f̃δ(n)− fδ(n)

k

)
≤

∑
δ log2 x≤q1<q2<···<qk≤δ−1 log2 x

∣∣{(n, p1, . . . , pk) : pi|n, pi ≡ 1 (q2
i )}.

(6)

Restricting the range for pi, 1 ≤ i ≤ k to [1, x1/(2k)] introduces an error term of order

∑
δ log2 x≤q1<q2<···<qk≤δ−1 log2 x

1

q2
1q

2
2 · · · q2

k

� δ−k log−k
2 x.

Now fix q1, . . . , qk as above, and assume that p1 = p2, say. Fix p3, . . . , pk, and let M be

the least common multiple of p3, . . . , pk. Then the contribution of all possible choices

for p1 and p2 is

|{(n, p) : pM |n, p ≡ 1 (q2
1q

2
2)}| ≤ (1 + o(1))

x log2 x

Mq2
1q

2
2

,

whereas the number of all triples (n, p1, p2) is (1 + o(1))x log2
2 x

Mq2
1q2

2
. Hence, the contribution

of tuples (n, p1, . . . , pk) with repetitions to the right-hand side of (6) is of lesser order
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than the contribution of tuples without repetitions. We obtain

∑
n≤x

(
f̃δ(n)− fδ(n)

k

)
≤ (1 + o(1))x

∑
δ log2 x≤q1<q2<···<qk≤δ−1 log2 x

k∏
i=1

( ∑
p≤x

p≡1 (q2
i )

1

p

)
(7)

≤ (1 + o(1))x
∑

δ log2 x≤q1<q2<···<qk≤δ−1 log2 x

logk
2 x

q2
1q

2
2 · · · q2

k

≤ (1 + o(1))x(π(δ−1 log2 x))k

δ2k logk
2 x

≤ (1 + o(1))x

δ3k logk
3 x

.

Since integers n with f̃δ(n)− fδ(n) ≥ 1
2
log2 x contribute at least logk

2 x

3kk!
to the left-hand

side of (7), Theorem 2 follows.
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