ON A CRITERION FOR CATALAN'S CONJECTURE

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. We give a new proof of a theorem of P. Mihăilescu which states that the

equation $x^p - y^q = 1$ is unsolvable with x, y integral and p, q odd primes, unless the

congruences $p^q \equiv p \pmod{q^2}$ and $q^p \equiv q \pmod{p^2}$. hold.

MSC-index: 11D61, 11R18

Keywords: Catalan's conjecture, cyclotomic fields, class group

Improving criterions for Catalan's equation by Inkeri[3], Mignotte[5], Schwarz[9] and

Steiner[10], Mihailescu[8] proved the following theorem.

Theorem 1. Let p,q be odd prime numbers. Assume that $p^q \not\equiv p \pmod{q^2}$ or $q^p \not\equiv q$

(mod p^2). Then the equation $x^p - y^q = 1$ has no nontrivial integer solutions.

Here we will give a different proof of this theorem. More precisely, we will show the

following statement.

Theorem 2. Let p, q be odd prime numbers, and assume that the equation $x^p - y^q = 1$

has some nontrivial solution. Then we have either $q^2|p^q-p$ or the q-rank of the relative

class group of the p-th cyclotomic field is at least (p-5)/2.

Note that different from Mihailescu's proof of Theorem 1, we have to make use of

estimates for the relative size of p and q obtained using bounds for linear forms in

logarithms, thus the passage from Theorem 2 to Theorem 1 is by no means elementary.

However, the proof of Theorem 2 makes much less use of special properties of cyclotomic

fields than Mihailescu's proof of Theorem 1, thus it might be easier to adapt to different

situations.

To deduce Theorem 1 from Theorem 3, it suffices to show that the second alternative

is impossible. Assume that $x^p - y^q = 1$, and that the q-rank of the relative class group of

the p-th cyclotomic field is at least (p-5)/2. This implies $q^{(p-5)/2} \leq h^{-}(p)$. The class

number $h^-(p)$ was estimated by Masley and Montgomery [4], they showed that for p > 200

we have $h^-(p) < (2\pi)^{-p/2} p^{(p+31)/4}$. Thus we get $q < \sqrt{p}$. On the other hand, Mignotte and Roy[6] proved, that for $q \ge 3000$ we have $p \le 2.77q \log q (\log p - \log \log q + 2.33)^2$, combining these inequalities and observing that Mignotte and Roy[7] have shown that $q > 10^5$, thus $\log \log q > 2.33$, we get $p \le 1.92 \log^6 p$, which implies $p < 6.6 \cdot 10^7$, thus $q < \sqrt{p} < 8200$ contradicting the lower bound $q > 10^5$ mentioned above.

To prove theorem 3, we follow the lines of [9], incorporating an idea of Eichler[2]. K be the p-th cyclotomic field, ζ a p-th root of unity, I_K the group of fractional ideals in K, $i:K^* \to I_K$ the canonical map $x \mapsto (x)$, $K^+ = \mathbb{Q}(\zeta + \zeta^{-1})$ be the maximal real subfield of K, \mathcal{O}_K be the ring of integers of K. Denote with r the q-rank of the relative class group of K. We begin with a Lemma. \mathcal{Q} be the set of prime ideals dividing q in K. Choose a primitive root g of p and define $\sigma \in \operatorname{Gal}(K|\mathbb{Q})$ by the relation $\zeta^{\sigma} = \zeta^{g}$.

Lemma 3. There is a subgroup I_0 of I_K with the following properties:

- (1) The prime ideals in Q do not appear in the factorization of any ideal in I_0
- (2) $I_K/(i(K^*)I_0)$ has q-rank r
- (3) If $\epsilon \in K^*$ with $(\epsilon) \in I_0$, then $\epsilon/\bar{\epsilon}$ is a root of unity.

Proof: This is Lemma 1 in [9].

Now assume that x and y are nonzero integers with $x^p - y^q = 1$. We have [3]

$$\left(\frac{x-\zeta}{1-\zeta}\right) = \mathfrak{j}^q$$

for some integral ideal j. The ideal classes with $j^q = (1)$ generate an r-dimensional vector space over \mathbb{F}_q in $I_K/(i(K^*)I_0)$, hence there are integers a_0, \ldots, a_r , not all divisible by q, such that $j^{a_0+a_1\sigma+\ldots+a_r\sigma^r}$ lies in $i(K^*)I_0$. Thus we get

$$\left(\frac{x-\zeta}{1-\zeta}\right)^{a_0+a_1\sigma+\ldots+a_r\sigma^r} = \epsilon\alpha^q$$

with $(\epsilon) \in I_0$ and α is \mathfrak{q} -integral for all prime ideals \mathfrak{q} dividing q, since the left hand side is \mathfrak{q} -integral, and (ϵ) is not divisible by \mathfrak{q} by condition 1 of Lemma 4. We multiply this equation with $(-\zeta^{-1}(1-\zeta))^{a_0+a_1\sigma+\ldots+a_r\sigma^r}$ to get

(1)
$$(1 - x\zeta^{-1})^{a_0 + a_1\sigma + \dots + a_r\sigma^r} = \epsilon' \lambda \alpha^q$$

where λ divides some power of p, and ϵ' differs from ϵ by some power of ζ , especially $(\epsilon) = (\epsilon')$.

By [1], we have q|x, thus the left hand side of (1) can be simplified (mod q^2). We get

(2)
$$1 - x \left(a_0 \zeta^{-1} + a_1 \zeta^{-\sigma} + \ldots + a_r \zeta^{-\sigma^r} \right) \equiv \epsilon' \lambda \alpha^q \pmod{q^2}$$

The complex conjugate of the right hand side can be written as $\zeta^k \epsilon' \lambda \overline{\alpha}^q$, since every p-th root of unity is the q-th power of some root of unity, this equals $\epsilon' \lambda \beta^q$ for some $\beta \in K^*$. Thus if we substract the complex conjugate of (2), we get

(3)
$$x \left(a_0 \zeta^{-1} + \ldots + a_r \zeta^{-\sigma^r} - a_0 \zeta^{-1} - \ldots - a_r \zeta^{\sigma^r} \right) \equiv \epsilon' \lambda (\alpha^q - \beta^q) \pmod{q^2}$$

The left hand side of (3) is divisible by q, since x is divisible by q, and the bracket is integral. However, $(\epsilon') \in I_0$, and by construction we have $(\epsilon', q) = (1)$, and λ divides some power of p, thus we have $(\lambda, q) = (1)$, too. Hence $q | \alpha^q - \beta^q$, and since q is unramified, this implies $q^2 | \alpha^q - \beta^q$. Hence q^2 divides the left hand side of (3). But x is rational, thus either $q^2 | x$, or q divides the bracket. By [1], we have $x \equiv -(p^{q-1} - 1) \pmod{q^2}$, hence the first possibility implies $q^2 | p^q - p$. Thus to prove our theorem, it suffices to show that the second choice is impossible.

Assume that

$$a_0 \zeta^{-1} + a_1 \zeta^{-\sigma} + \ldots + a_r \zeta^{-\sigma^r} - a_0 \zeta - a_1 \zeta^{\sigma} - \ldots - a_r \zeta^{\sigma^r} = q\alpha$$

This can be written as

$$a_0 X^{\overline{-1}} + a_1 X^{\overline{-g}} + \ldots + a_r X^{\overline{g^r}} - a_0 X - a_1 X^g - \ldots - a_r X^{\overline{g^r}} = qF(X) + G(X)\Phi(X)$$

where F and G are polynomials with rational integer coefficients, Φ is the p-th cyclotomic polynomial, and \overline{a} denotes the least nonnegative residue (mod p) of a. The left hand side is of degree $\leq p-1$, and since we may assume that the leading coefficient of G is prime to q, this implies that G is constant. Further on the left hand side there are at most $2r+2\leq p-3$ nonvanishing coefficients, thus G=0. This implies that all coefficients on the left hand side vanish (mod q). But all the monomials on the left hand side have different exponents, since otherwise we would have $g^{s_1}\equiv \pm g^{s_2}\pmod{p}$, which would imply that the order of g is $\leq 2r \leq p-5$, but g was chosen to be primitive. Hence all a_i vanish (mod q), but this contradicts the choice of the a_i at the very beginning.

References

- [1] J. W. S. Cassels, On the equation $a^x b^y = 1$ Proc. Camb. Philos. Soc. 56, 97-103 (1960)
- [2] M. Eichler, Eine Bemerkung zur Fermatschen Vermutung, Acta Arith. 11, 129-131 (1965)

- [3] K. Inkeri, On Catalan's Conjecture, J. Number Theory 34, 142-152 (1990)
- [4] J. Masley, H. L. Montgomery, Cyclotomic fields with unique factorization J. reine angew. Math. 286/287, 248-256 (1976)
- [5] M. Mignotte, A criterion on Catalan's equation J. Number Theory 52, 280-283 (1995)
- [6] M. Mignotte, Y. Roy Catalan's equation has no new solution with either exponent less than 10651 Exp. Math. 4, 259-268 (1995)
- [7] M. Mignotte, Y. Roy, Minorations pour l'equation de Catalan C. R. Acad. Sci., Paris, Ser. I 324, 377-380 (1997)
- [8] P. Mihăilescu, A class number free criterion for Catalan's conjecture, manuscript, Zürich (1999)
- [9] W. Schwarz, A note on Catalan's equation Acta Arith. 72, 277-279 (1995).
- [10] R. Steiner, Class number bounds and Catalan's equation Math. Comput. 67, 1317-1322 (1998).

Jan-Christoph Puchta

Mathematisches Institut

Eckerstraße 1

79104 Freiburg

Germany

jcp@arcade.mathematik.uni-freiburg.de