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1. INTRODUCTION

Let D(s) =3, ~; ann~° be a Dirichlet-series, such that a,, # 0 infinitely often,
TOg ‘an‘
logn

and limsup,,., o +1 = 09 # £oo. Then D converges uniformly in the
half-plane s > 0.

In examples usually encountered the Dirichlet series is either meromorphically
continuable to the whole complex plane or its maximal domain of meromorphic
continuation is a half plane.

A classical result is due to Estermann[3] who showed that the Dirichlet-series
D(s) =[], W(p~*) with W(z) an integer valued polynomial when not meromorphi-
cally continuable to the whole complex plane has the half-plane to the left of R s = 0
as its maximal domain of meromorphic continuation. Many extensions of this result
followed. More recently the maximal domain of meromorphic continuationof Dirich-
let series arising from different contexts like counting rational points on algebraic
varietes have been popular. Thus De la Breteche and Swinnerton-Dyer [1] proved
that the height zeta function associated to singular cubic surface x1z223 = 23, has
a natural boundary at s = 3/4, by considering the Euler-product corresponding
to the rational function

WX, Y)=1+(1-X3V) (XY 2+ XV '+ X4+ X2V2 4+ XV3 474 — XOv3.

Another spark of interest came from the study of analytic properties of group
zeta functions The local zeta function associated to the algebraic group G is defined
as

2,(G.s) = / | det(g) |5° dy
[ehs

where G = G(Qp) N Myn(Zy) , | . |p denotes the p-adic valuation and p is the
normalised Haar measure on G(Z,). In particular the zeta function associated to
the group G = GSpg given by

Z(5/3) = C(s)C(s = 3)(s = 5)¢(s = O) [T (1+ 9" 49?7 +9" = 40" +577)

has the natural boundary of meromorphic continuation # s = 4 ( du Sautoy and
Grunewald[6]).

It is in the context of zeta functions of groups that Du Sautoy and Woodward
[7], Pg 153, asked whether the maximal domain of meromorphic continuation of D
is always a half-plane. Here we give a negative answer to this question. In fact, we
show that every subset of the complex plane, which satisfies the obvious restrictions
occurs as maximal domain of holomorphic continuation of a Dirichlet-series.
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Theorem 1. Let 2 C C be an open connected set, and og be a real number, such
that {s : Rs < oo} C Q. Then there exists a Dirichlet-series D(s) = Y ap,n~?,
which is holomorphic in Q, has simple poles in every isolated point of C\ Q, is
absolutely convergent precisely in the half-plane R s > ¢, and cannot be meromor-
phically continued into any larger domain.

This result may not be completely satisfactory, since the Dirichlet series con-
structed lacks any structure such as an Euler product. Restricting 2 we obtain
examples which do have an Euler product.

Theorem 2. Let 2 C C be an open connected set, and assume that
5
{s:§R5>1}§Q§{s:§Rs>1—8}.

Then there exists a Dirichlet-series D(s) =Y a,n™%, which has an Euler product,
is holomorphic in Q, has a pole in every isolated point of C\ Q, and cannot be
meromorphically continued into any larger domain.

Again this result leaves something to be desired, as the different factors of the
product representation cannot be described in a uniform way. However, if we
assume the Riemann hypothesis and further restrict the shape of {2 we obtain a
uniform result.

Theorem 3. Assume the Riemann hypothesis. Let § be a simply connected open
set, such that

{s:%sﬁ%}@(lg{s:?}%s<1}.

Then there exists a function h, holomorphic in |z| > 1, bounded on the positive
real axis, such that the Dirichlet series given by the Euler product D(s) = Hp (1 +
h(p)pfs) s holomorphic in Q, and cannot be meromorphically continued into any
larger domain.

2. PREPARATIONS

For our proof we have to define a continuous path 7 from some point p € €
to a point ¢ € 9Q. Unfortunatelly in general this is impossible. For example, if
Q={s:Rs>0}\{z+iy:0<ax<1ly= %sin%}, then for s on the imaginary
axis there exists no path v : [0,1] — C with v(0) = 2, v(1) = s, and v(¢) € Q for
0 <t < 1. In this section we will remedy this problem.

Let X be a topological space, O C X open, p a point in O. We call a point
q € 00 reachable, if there exists a continuous path ~ : [0,1] — X with v(0) = p,
v(1) = ¢, and ~(t) € O for 0 < ¢t < 1. Then we have the following.

Lemma 1. Assume that X is pathwise and locally pathwise connected, and that O
s pathwise connected. Then the set of reachable points is dense in OC.

Proof. We have to show that every open set U which contains a point ¢ of 9O
contains a reachable point ¢. By assumption U contains a pathwise connected
neighbourhood of ¢, reducing U we may assume that U itself is pathwise connected.
Since g € 00, there exists a point + € U N O. Since O as well as U are pathwise
connected, there exist paths v1, v2 with 41(0) = p, y1(1) = 12(0) =7, 172(1) = g,
such that 7, is contained in O, and 7, is contained in U. Since v, ' (X \ O) is closed,
it contains a least element ty. Clearly v2(tg) € OC. We can combine 7, with 7,

[0,t0]
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to obtain a path v from p to y2(tp), such that v(¢) € X \ C for 0 < ¢t < 1. Since
v(1) = y2(to) € OC we obtain that v(tg) is reachable, and by the construction it is
contained in U. Hence our claim follows. ]

We further need some information about prime numbers, which are contained in
the following. Denote by p, the n-th prime number. Heath-Brown[4] proved the
following.

Theorem 4. We have angm(p”"rl —pn)? < £23/18+¢
From this we deduce the following.

Lemma 2. There exists a Dirichlet-series Z(s) such that the coefficients of Z are
supported on primes only, Z(s) — ((s) is holomorphic in the half plane R s > &,
and |Z(s) — ((s)] < (1+S s)? holds true uniformly in any half plane R s > & +e.

Proof. Define the function A(n) as

/N\(n) _ {pk — Pk—-1, T =Pk

. b
0, n not prime

and define Z(s) = 3, Ké?). Put Si(x) = Zném(x(n) —1). Then S;(p) = 0 holds

true for all prime numbers p, and S;(n) < pr — pr—1 for pr—1 < n < pg. Now put
Sa(x) =3, <, S1(n). Then we have

SQ(I) < Z (pn-‘rl _pn)2 < ?3/18 logIOOO Z,
pPn<T

By partial summation we obtain for o > 1

X A(n) -1 & 1 2 1
Z(S)_C(S):Zl(n)s22152(”)((n+2)s BRCESIE +ns>~

The sum on the right converges absolutely in every half-plane of the form o > 1—58 +e,

thus the abscissa of convergence of the Dirichlet series > % is > 1—58. Since the

upper bound for |Z(s) — ((s)| is true for all Dirichlet series in their half plane of
convergence, see e.g. [5, Theorem 1.5], the proof of the statement is complete. O

3. PROOF OF THE THEOREM

Note first that if C\ 2 is finite, then some linear combination of shifted Riemann
(-functions has the required properties, hence, from now on we assume that C\
is infinite. Then we can choose a sequence (z,) of points satisfying the following
conditions.

(1) {zn} is dense in 9;

(2) z, is reachable for all n;

(3) For n sufficiently large we have Rz, > —y/n, |S z,| < n.

(4) For n # m we have z, # zp,.
By assumption C \ Q is connected, hence this set is pathwise connected, and each
point of 992 is in the closure of C\ . Therefore for each n we can choose a path
Y ¢ [0,1] — C, such that 7, is continuous, 7,(0) = o9 + 1, 7,(1) = z,, and



4 G. BHOWMIK AND J.-C. SCHLAGE-PUCHTA

7 ([0,1)) N Q = 0. For m # n we have that ¢t — |2,,,7,(t)| is continuous, positive,
and defined on a compactum, hence,

— t
dyp, := min(1, min min M)
m<nte(0,1] |Zm — Ym(t))
is a positive real number, and so is 6, = 37" HZ=1 d,,. Note that §,, < 37".
Now define the function

oo
(1) D(s) = Z6mC(s—zm+1)+L(s—ao—|—l,X),
m=1
where ( is the Riemann (-function, and L(s, x) is a Dirichlet L-function to some
non-principal character xy. We now prove several properties of D.
We can represent D as a Dirichlet-series with abscissa of absolute convergence
equal to og. We have formally

D(s) = 3 b D+ Do xlmn'=7on " = 3 (x(mn' =7 4 3 dn )0,
m=1 n=1 n=1 n=1 m=1

We have n*m < n°, hence the sum y_~_, dmn®m 1 converges absolutely. More-
over, we have

(oo} (oo}
lam| <m0t 4 Z Smn¥Em =l < n7 1+ Z 27") =2n7" !,
m=1 m=1
hence, the new series converges absolutely for 8 s > o¢, and uniformly in every
half-plane of the form Rs > o¢g + €. On the other hand we have that ((s) is
uniformly bounded in every half-plane of the form s > 1 + ¢, hence, the series
> 6mC(s — zm + 1) also converges absolutely and uniformly in every half-plane
of the form R s > o + ¢, hence, the two series represent the same function, and we
obtain that D is a Dirichlet-series converging in the half-plane R s > oy.
To see that the abscissa of convergence cannot be smaller than oy note that

o [eS)
1
ol 2 07070 = 35 i 2 (1= 30 57 = L,
m=1 m=1

thus the series representing D does not converge absolutely at og. Note that this
is the only reason to include L into the definition of D.

D can be holomorphically continued to C\ Q. Let sy be a point in C \ Q.
Since € is closed, there exists some € € (0,1), such that Ba.(sg) € C\ Q. We
show that the series (1) represents a function holomorphic in B(sp). Since each
summand is holomorphic in C \ €2 it suffices to show that the series converges
uniformly on B(sg). Consider first all indices n satisfying |z, — so| < 2. We
have [((s)] < 2+ 1 for € < [s — 1| < 1, hence, the sum over these indices is
uniformly bounded. Now consider the sum over the remaining points. We have
|C(o +it)| < C(2 + |t])mex(0.(1=)/2)+¢ hence, if m is sufficiently large and satisfies
|2m — So| > 2 we have

lfﬁ(sgfznb) )+€

OmlC(s — 2z + 1) < C27™(2+ (2 — SO)Dmax(o,
< 2724+ m)Vm,

and the sum over 27™(2 + m)V™ is clearly convergent. Hence D(s) can be holo-
morphically continued to C\ €.
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D cannot be meromorphically continued beyond C\ 2. We show for every n that
as z approaches z,, along 7, then |D(z)| tends to infinity. This clearly implies our
claim. Choose € > 0 in such a way that Bac(z,) contains no z,, with m < n and let
d > 0 be so small, that v,([1 — d,1]) C Bc(2,). Then the sum over m < n in (1) is
uniformly bounded in B.(z,), in particular it is uniformly bounded on 7, ([1 -4, 1]).
Repeating the argument we used to show that D is holomorphic in C\ © we see
that the sum over all m with |z, — z,| > 2¢ converges to a function holomorphic
in Be(z,). Hence we obtain for s € B(sg) \

D(s) = 6u(s—za+ 1)+ D (s —zm+1)+G(s)
m>n
|Zm —2n | <2€

-y I ag,

S — Zp S — Zm

m>n
|Zim —2n |<2€

where G and H are holomorphic in Be(z,). For s € v,([1 — §,1]) we therefore
obtain

D > oy Im

On Om t) — zn
-y O (@) = za|

> max
|s — 2] = |s — 2| te[0.1] |Y(t) — 2m]
|Zm—zn‘<2E
o O 3 _Om
T s =z = dmls =z
|Z2m —2n | <2€
5 m—1
- iy e
|5 - an m>n v=n
[2m —2n|<2€
> 57”(1 — Z 3n—m)
|S o Z”| m>n
O
2|s — 2|

Hence, as s — z, along v, we have |D(s)| > |s—712n\7 thus z, is a singularity of D.
Since the set of singularities is dense in 0f), we find that D cannot be extended
meromorphically beyond €.

4. DIRICHLET SERIES WITH EULER PRODUCTS

Note that the only properties of ( we used are the fact that ¢ is holomorphic
in C\ {1}, and that ¢ has at most polynomial growth in vertical strips. We can
use the functions Z(s) defined in Lemma 2 or the function C?/(s) in place of (.
These functions can only be extended into the half planes & s > % and R s > Tss’
respectively, however, these restrictions are irrelevant if 2 is contained in these half

planes.
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Hence by repeating the proof in the previous section with Z in place of ¢ and
using the fact that @ C {s : ® s > 5} we obtain a Dirichtlet series D, which
satisfies the conditions of Theorem 1, and is supported on the set of primes. Write
D(s) =3 7%. Then for R s > 1 we have that

exp(D(>) = ][ exp (p) =112 k.:

p k>0

can be represented by a Dirichlet series with an Euler product, and the left hand
side is continuable to Q and not beyond. Now exp(D(s)) has an essential singularity
in each isolated point of C\ {2, since the exponential function applied to a pole yields
an essential singularity.

For Theorem 3 we repeat the construction used for Theorem 2 with Cf,(s) Note

that we need the Riemann Hypothesis to ensure that % is holomorphic in i s > %

Let D(s) be the resulting Dirichlet series. Then D(s) is supported on the set of
prime powers. We now take exp ( i D(s))7 which is well defined, since 2 is simply
connected. Define h(z) = Y7 §,2°* 1. Then each summand is holomorphic in
C\ (—00,0], and the series converges uniformly in |z| > 1, since {s: R s > 1} C Q,
and therefore ® s, —1 < 0 for all n. We conclude that h(z) is holomorphic in
|z| > 1\ (=00, 0], bounded on the real axis, and we have

wo([00) = Tow (22 )

k>1

I @ +npp+00p>))

P

= 10 +nrmp)Ges),

p

where G(s) is holomorphic in R s > 1 and uniformly bounded in each half plane
R s> 1+e Hence I, (1+ h(p)p~*) has the same domain of holomorphic contin-

uation as exp ( Ik D(s)), and our claim follows.

5. EXPLICIT EXAMPLES

If the boundary of €0 is not too wild, the argument can be simplified. For
example, if there is some € > 0 such that for every zg € 02 there is an § > 0 and
some « € [0, 2], such that the set {|z —z¢ < §, | arg(z — 20) — | < €} meets  only
in 2y, then we can choose the paths +, in such a way that the final bit of this path
follows the ray arg(z — z9) = «, and we do not have to worry about the §,, anymore.
In particular, let ¢ : R — C is differentiable with non-vanishing derivative, which
describes a Jordan curve on the complex sphere. Assume that one of the connected
components of C\ ¢(R) contains a right half-plane, and call this domain Q. Then
we can explicitly write down a Dirichlet series D which has 2 as maximal domain
of meromorphic continuation by choosing ¢(Q) as a countable dense set of 9€Q.

As an example consider the domain Q = {z : (R 2)? > —(32)3}, that is, the
points to the right of the (singular) curve y?> = —23. We can parametrize this curve
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as @(t) = (—[t|*/3,t), and p(Q) is obviously dense in dQ. Now consider the series

Da(s) = i irlplﬂg(s +14 \§|2/3 = gz)

p=—00g=1

It is easy to see that this series has 2 as maximal domain of meromorphic as well

as holomorphic continuation. Note that the map Z x N — Q given by (p,q) — £

is not injective, however, this does not seriously affect the behaviour of the series.
Develloping Dq, as a Dirichletseries we obtain

Dq(s) = i n=* i ig*lplﬂz np/al*®—pi/q
n=1

p=—00g=1

we see that the coefficients are represented by well converging series.
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