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1. Introduction

Let D(s) =
∑
n≥1 ann

−s be a Dirichlet-series, such that an 6= 0 infinitely often,

and lim supn:an 6=0
log |an|
logn + 1 = σ0 6= ±∞. Then D converges uniformly in the

half-plane < s > σ0.
In examples usually encountered the Dirichlet series is either meromorphically

continuable to the whole complex plane or its maximal domain of meromorphic
continuation is a half plane.

A classical result is due to Estermann[3] who showed that the Dirichlet-series
D(s) =

∏
pW (p−s) with W (x) an integer valued polynomial when not meromorphi-

cally continuable to the whole complex plane has the half-plane to the left of < s = 0
as its maximal domain of meromorphic continuation. Many extensions of this result
followed. More recently the maximal domain of meromorphic continuationof Dirich-
let series arising from different contexts like counting rational points on algebraic
varietes have been popular. Thus De la Breteche and Swinnerton-Dyer [1] proved
that the height zeta function associated to singular cubic surface x1x2x3 = x3

4, has
a natural boundary at < s = 3/4, by considering the Euler-product corresponding
to the rational function

W (X,Y ) = 1 + (1−X3Y )(X6Y −2 +X5Y −1 +X4 +X2Y 2 +XY 3 + Y 4)−X9Y 3.

Another spark of interest came from the study of analytic properties of group
zeta functions The local zeta function associated to the algebraic group G is defined
as

Zp(G, s) =

∫
G+
p

| det(g) |−sp dµ

where G+
p = G(Qp) ∩ Mn(Zp) , | . |p denotes the p-adic valuation and µ is the

normalised Haar measure on G(Zp). In particular the zeta function associated to
the group G = GSp6 given by

Z(s/3) = ζ(s)ζ(s− 3)ζ(s− 5)ζ(s− 6)
∏
p

(
1 + p1−s + p2−s + p3−s + p4−s + p5−2s

)
has the natural boundary of meromorphic continuation < s = 4 ( du Sautoy and
Grunewald[6]).

It is in the context of zeta functions of groups that Du Sautoy and Woodward
[7], Pg 153, asked whether the maximal domain of meromorphic continuation of D
is always a half-plane. Here we give a negative answer to this question. In fact, we
show that every subset of the complex plane, which satisfies the obvious restrictions
occurs as maximal domain of holomorphic continuation of a Dirichlet-series.
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Theorem 1. Let Ω ⊆ C be an open connected set, and σ0 be a real number, such
that {s : < s ≤ σ0} ⊆ Ω. Then there exists a Dirichlet-series D(s) =

∑
ann

−s,
which is holomorphic in Ω, has simple poles in every isolated point of C \ Ω, is
absolutely convergent precisely in the half-plane < s > σ0, and cannot be meromor-
phically continued into any larger domain.

This result may not be completely satisfactory, since the Dirichlet series con-
structed lacks any structure such as an Euler product. Restricting Ω we obtain
examples which do have an Euler product.

Theorem 2. Let Ω ⊆ C be an open connected set, and assume that

{s : < s > 1} ⊆ Ω ⊆ {s : < s > 5

18
}.

Then there exists a Dirichlet-series D(s) =
∑
ann

−s, which has an Euler product,
is holomorphic in Ω, has a pole in every isolated point of C \ Ω, and cannot be
meromorphically continued into any larger domain.

Again this result leaves something to be desired, as the different factors of the
product representation cannot be described in a uniform way. However, if we
assume the Riemann hypothesis and further restrict the shape of Ω we obtain a
uniform result.

Theorem 3. Assume the Riemann hypothesis. Let Ω be a simply connected open
set, such that

{s : < s ≤ 1

2
} ⊆ Ω ⊆ {s : < s < 1}.

Then there exists a function h, holomorphic in |z| > 1, bounded on the positive
real axis, such that the Dirichlet series given by the Euler product D(s) =

∏
p

(
1 +

h(p)p−s
)

is holomorphic in Ω, and cannot be meromorphically continued into any
larger domain.

2. Preparations

For our proof we have to define a continuous path γ from some point p ∈ Ω
to a point q ∈ ∂Ω. Unfortunatelly in general this is impossible. For example, if
Ω = {s : < s > 0} \ {x + iy : 0 ≤ x ≤ 1, y = 1

x sin 1
x}, then for s on the imaginary

axis there exists no path γ : [0, 1] → C with γ(0) = 2, γ(1) = s, and γ(t) ∈ Ω for
0 < t < 1. In this section we will remedy this problem.

Let X be a topological space, O ⊂ X open, p a point in O. We call a point
q ∈ ∂O reachable, if there exists a continuous path γ : [0, 1] → X with γ(0) = p,
γ(1) = q, and γ(t) ∈ O for 0 < t < 1. Then we have the following.

Lemma 1. Assume that X is pathwise and locally pathwise connected, and that O
is pathwise connected. Then the set of reachable points is dense in ∂C.

Proof. We have to show that every open set U which contains a point q of ∂O
contains a reachable point q′. By assumption U contains a pathwise connected
neighbourhood of q, reducing U we may assume that U itself is pathwise connected.
Since q ∈ ∂O, there exists a point r ∈ U ∩ O. Since O as well as U are pathwise
connected, there exist paths γ1, γ2 with γ1(0) = p, γ1(1) = γ2(0) = r, γ2(1) = q,
such that γ1 is contained in O, and γ2 is contained in U . Since γ−1

2 (X \O) is closed,
it contains a least element t0. Clearly γ2(t0) ∈ ∂C. We can combine γ1 with γ2|[0,t0]
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to obtain a path γ from p to γ2(t0), such that γ(t) ∈ X \ C for 0 < t < 1. Since
γ(1) = γ2(t0) ∈ ∂C we obtain that γ(t0) is reachable, and by the construction it is
contained in U . Hence our claim follows. �

We further need some information about prime numbers, which are contained in
the following. Denote by pn the n-th prime number. Heath-Brown[4] proved the
following.

Theorem 4. We have
∑
pn≤x(pn+1 − pn)2 � x23/18+ε.

From this we deduce the following.

Lemma 2. There exists a Dirichlet-series Z(s) such that the coefficients of Z are
supported on primes only, Z(s) − ζ(s) is holomorphic in the half plane < s > 5

18 ,

and |Z(s)− ζ(s)| � (1 += s)2 holds true uniformly in any half plane < s > 5
18 + ε.

Proof. Define the function Λ̃(n) as

Λ̃(n) =

{
pk − pk−1, n = pk

0, n not prime
,

and define Z(s) =
∑
p

Λ̃(n)
ns . Put S1(x) =

∑
n≤x(Λ̃(n) − 1). Then S1(p) = 0 holds

true for all prime numbers p, and S1(n) ≤ pk − pk−1 for pk−1 ≤ n ≤ pk. Now put
S2(x) =

∑
n≤x S1(n). Then we have

S2(x) ≤
∑
pn≤x

(pn+1 − pn)2 � x23/18 log1000 x,

By partial summation we obtain for σ > 1

Z(s)− ζ(s) =

∞∑
n=1

Λ̃(n)− 1

ns
=

∞∑
n=1

S2(n)

(
1

(n+ 2)s
− 2

(n+ 1)s
+

1

ns

)
.

The sum on the right converges absolutely in every half-plane of the form σ > 5
18 +ε,

thus the abscissa of convergence of the Dirichlet series
∑ Λ̃(n)−1

ns is ≥ 5
18 . Since the

upper bound for |Z(s) − ζ(s)| is true for all Dirichlet series in their half plane of
convergence, see e.g. [5, Theorem 1.5], the proof of the statement is complete. �

3. Proof of the theorem

Note first that if C\Ω is finite, then some linear combination of shifted Riemann
ζ-functions has the required properties, hence, from now on we assume that C \ Ω
is infinite. Then we can choose a sequence (zn) of points satisfying the following
conditions.

(1) {zn} is dense in ∂Ω;
(2) zn is reachable for all n;
(3) For n sufficiently large we have < zn > −

√
n, |= zn| < n.

(4) For n 6= m we have zn 6= zm.

By assumption C \ Ω is connected, hence this set is pathwise connected, and each
point of ∂Ω is in the closure of C \ Ω. Therefore for each n we can choose a path
γn : [0, 1] → C, such that γn is continuous, γn(0) = σ0 + 1, γn(1) = zn, and
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γn([0, 1)) ∩ Ω = ∅. For m 6= n we have that t 7→ |zm, γn(t)| is continuous, positive,
and defined on a compactum, hence,

dn := min(1, min
m<n

min
t∈[0,1]

|zn − γm(t)|
|zm − γm(t))

)

is a positive real number, and so is δn = 3−n
∏n
ν=1 dn. Note that δn ≤ 3−n.

Now define the function

(1) D(s) =

∞∑
m=1

δmζ(s− zm + 1) + L(s− σ0 + 1, χ),

where ζ is the Riemann ζ-function, and L(s, χ) is a Dirichlet L-function to some
non-principal character χ. We now prove several properties of D.

We can represent D as a Dirichlet-series with abscissa of absolute convergence
equal to σ0. We have formally

D(s) =

∞∑
m=1

δm

∞∑
n=1

+

∞∑
n=1

χ(n)n1−σ0n−s =

∞∑
n=1

(
χ(n)n1−σ0 +

∞∑
m=1

δmn
zm−1

)
n−s.

We have nzm ≤ nσ0 , hence the sum
∑∞
m=1 δmn

zm−1 converges absolutely. More-
over, we have

|am| ≤ nσ0−1 +

∞∑
m=1

δmn
< zm−1 ≤ nσ0−1

(
1 +

∞∑
m=1

2−m
)

= 2nσ0−1,

hence, the new series converges absolutely for < s > σ0, and uniformly in every
half-plane of the form < s > σ0 + ε. On the other hand we have that ζ(s) is
uniformly bounded in every half-plane of the form < s > 1 + ε, hence, the series∑∞
m=1 δmζ(s− zm + 1) also converges absolutely and uniformly in every half-plane

of the form < s > σ0 + ε, hence, the two series represent the same function, and we
obtain that D is a Dirichlet-series converging in the half-plane < s > σ0.

To see that the abscissa of convergence cannot be smaller than σ0 note that

|an| ≥ nσ0−1 −
∞∑
m=1

|δmn< zm−1| ≥ nσ0−1
(
1−

∞∑
m=1

3−m
)

=
1

2
nσ0−1,

thus the series representing D does not converge absolutely at σ0. Note that this
is the only reason to include L into the definition of D.
D can be holomorphically continued to C \ Ω. Let s0 be a point in C \ Ω.

Since Ω is closed, there exists some ε ∈ (0, 1), such that B2ε(s0) ⊆ C \ Ω. We
show that the series (1) represents a function holomorphic in Bε(s0). Since each
summand is holomorphic in C \ Ω it suffices to show that the series converges
uniformly on Bε(s0). Consider first all indices n satisfying |zn − s0| < 2. We
have |ζ(s)| < 2 + 1

ε for ε < |s − 1| ≤ 1, hence, the sum over these indices is
uniformly bounded. Now consider the sum over the remaining points. We have
|ζ(σ + it)| < C(2 + |t|)max(0,(1−σ)/2)+ε, hence, if m is sufficiently large and satisfies
|zm − s0| ≥ 2 we have

δm|ζ(s− zm + 1)| ≤ C2−m(2 + |=(zm − s0)|)max(0,
1−<(s0−zm)

2 )+ε

≤ 2−m(2 +m)
√
m,

and the sum over 2−m(2 + m)
√
m is clearly convergent. Hence D(s) can be holo-

morphically continued to C \ Ω.
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D cannot be meromorphically continued beyond C \Ω. We show for every n that
as z approaches zn along γn, then |D(z)| tends to infinity. This clearly implies our
claim. Choose ε > 0 in such a way that B2ε(zn) contains no zm with m < n and let
δ > 0 be so small, that γn([1− δ, 1]) ⊆ Bε(zn). Then the sum over m < n in (1) is
uniformly bounded in Bε(zn), in particular it is uniformly bounded on γn([1−δ, 1]).
Repeating the argument we used to show that D is holomorphic in C \ Ω we see
that the sum over all m with |zm − zn| > 2ε converges to a function holomorphic
in Bε(zn). Hence we obtain for s ∈ Bε(s0) \ Ω

D(s) = δnζ(s− zn + 1) +
∑
m>n

|zm−zn|<2ε

δmζ(s− zm + 1) +G(s)

=
δn

s− zn
+

∑
m>n

|zm−zn|<2ε

δm
s− zm

+H(s),

where G and H are holomorphic in Bε(zn). For s ∈ γn([1 − δ, 1]) we therefore
obtain

|D(s)| ≥ δn
|s− zn|

−
∑
m>n

|zm−zn|<2ε

δm
|s− zm|

≥ δn
|s− zn|

−
∑
m>n

|zm−zn|<2ε

δm
|s− zn|

max
t∈[0,1]

|γ(t)− zn|
|γ(t)− zm|

≥ δn
|s− zn|

−
∑
m>n

|zm−zn|<2ε

δm
dm|s− zn|

=
δn

|s− zn|

1−
∑
m>n

|zm−zn|<2ε

3n−m
m−1∏
ν=n

dν


≥ δn
|s− zn|

(1−
∑
m>n

3n−m)

=
δn

2|s− zn|
.

Hence, as s → zn along γn we have |D(s)| � 1
|s−zn| , thus zn is a singularity of D.

Since the set of singularities is dense in ∂Ω, we find that D cannot be extended
meromorphically beyond Ω.

4. Dirichlet series with Euler products

Note that the only properties of ζ we used are the fact that ζ is holomorphic
in C \ {1}, and that ζ has at most polynomial growth in vertical strips. We can

use the functions Z(s) defined in Lemma 2 or the function ζ′

ζ (s) in place of ζ.

These functions can only be extended into the half planes < s > 1
2 and < s > 5

18 ,
respectively, however, these restrictions are irrelevant if Ω is contained in these half
planes.
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Hence by repeating the proof in the previous section with Z in place of ζ and
using the fact that Ω ⊆ {s : < s > 5

18} we obtain a Dirichtlet series D, which
satisfies the conditions of Theorem 1, and is supported on the set of primes. Write
D(s) =

∑ ap
ps . Then for < s > 1 we have that

exp(D(s)) =
∏
p

exp

(
ap
ps

)
=
∏
p

∑
k≥0

akp
k!psk

can be represented by a Dirichlet series with an Euler product, and the left hand
side is continuable to Ω and not beyond. Now exp(D(s)) has an essential singularity
in each isolated point of C\Ω, since the exponential function applied to a pole yields
an essential singularity.

For Theorem 3 we repeat the construction used for Theorem 2 with ζ′

ζ (s). Note

that we need the Riemann Hypothesis to ensure that ζ′

ζ is holomorphic in < s > 1
2 .

Let D(s) be the resulting Dirichlet series. Then D(s) is supported on the set of
prime powers. We now take exp

( ∫
D(s)

)
, which is well defined, since Ω is simply

connected. Define h(z) =
∑∞
ν=1 δνz

sν−1. Then each summand is holomorphic in
C \ (−∞, 0], and the series converges uniformly in |z| > 1, since {s : < s > 1} ⊆ Ω,
and therefore < sν − 1 ≤ 0 for all n. We conclude that h(z) is holomorphic in
|z| > 1 \ (−∞, 0], bounded on the real axis, and we have

exp
(∫

D(s)
)

=
∏
p

exp
(∑
κ≥1

p−κs

κ

∞∑
ν=1

δνp
κ(sν−1)

)
=

∏
p

(
1 + h(p)p−s +O(p−2s)

)
=

∏
p

(
1 + h(p)p−s)G(s),

where G(s) is holomorphic in < s > 1
2 and uniformly bounded in each half plane

< s > 1
2 + ε. Hence

∏
p

(
1 + h(p)p−s) has the same domain of holomorphic contin-

uation as exp
( ∫

D(s)
)

, and our claim follows.

5. Explicit examples

If the boundary of Ω is not too wild, the argument can be simplified. For
example, if there is some ε > 0 such that for every z0 ∈ ∂Ω there is an δ > 0 and
some α ∈ [0, 2π], such that the set {|z− z0 < δ, | arg(z− z0)−α| < ε} meets Ω only
in z0, then we can choose the paths γn in such a way that the final bit of this path
follows the ray arg(z−z0) = α, and we do not have to worry about the δn anymore.
In particular, let ϕ : R → C is differentiable with non-vanishing derivative, which
describes a Jordan curve on the complex sphere. Assume that one of the connected
components of C \ ϕ(R) contains a right half-plane, and call this domain Ω. Then
we can explicitly write down a Dirichlet series D which has Ω as maximal domain
of meromorphic continuation by choosing ϕ(Q) as a countable dense set of ∂Ω.

As an example consider the domain Ω = {z : (< z)2 > −(=z)3}, that is, the
points to the right of the (singular) curve y2 = −x3. We can parametrize this curve
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as ϕ(t) = (−|t|2/3, t), and ϕ(Q) is obviously dense in ∂Ω. Now consider the series

DΩ(s) =

∞∑
p=−∞

∞∑
q=1

2−|p|+qζ
(
s+ 1 +

∣∣p
q

∣∣2/3 − p

q
i
)
.

It is easy to see that this series has Ω as maximal domain of meromorphic as well
as holomorphic continuation. Note that the map Z × N → Q given by (p, q) 7→ p

q

is not injective, however, this does not seriously affect the behaviour of the series.
Develloping DΩ as a Dirichletseries we obtain

DΩ(s) =

∞∑
n=1

n−s
∞∑

p=−∞

∞∑
q=1

2−|p|+q n−|p/q|
2/3−pi/q

we see that the coefficients are represented by well converging series.
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