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Abstract. We show that a set is almost periodic if and only if the associated
exponential sum is concentrated in the minor arcs. Hence binary additive

problems involving almost periodic sets can be solved using the circle method.

This equivalence is used to give simple proofs of theorems of J. Brüdern.
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A function f : N → C is called B2-almost periodic, if there is a sequence of

periodic functions fq, such that

lim
q→∞

lim sup
x→∞

1

x

∑
n≤x

|f(n)− fq(n)|2 = 0

A set is called B2-almost periodic, if its characteristic function is B2-almost periodic.
The theory of almost periodicity is quite rich, see e.g. [3].

Let N be a set of integers. N is called distributed, if for any q and a, the
density f(q, a) = lim

x→∞
1
x#{n ≤ x, n ∈ N , n ≡ a (mod q)} exists. A set N is called

extremal, if it has positive density ρ, is distributed, and we have

1

ρ
=

∞∑
q=1

∑
(a,q)=1

∣∣∣∣∣
q∑
b=1

f(q, a)

ρ
e

(
ab

q

)∣∣∣∣∣
2

Note that the sum over a runs over residue classes prime to q, whereas the sum over
b runs over all residue classes. Especially, if q > 1 and f(a, q) does not depend on a,
the inner sum vanishes. This definition is motivated by additive number theory. It
turns out that binary additive problems involving extremal sets can be solved using

the circle method. Define the major arcs M(x,Q) =
⋃
q≤Q

⋃
(a,q)=1

[
a
q −

Q
x ,

a
q + Q

x

]
and

the minor arcs m(x,Q) = [0, 1]\M(x,Q). Define r(n) to be the number of solutions
of the equation n = x+ y with x, y ∈ N . Then we have

r(n) =

1∫
0

e(−nθ)

∑
n≤x
n∈N

e(θn)


2

dθ =

∫
M(x,Q)

+

∫
m(x,Q)

The integral over the major arcs can be evaluated whenever N is distributed. Thus
it remains to bound the integral on the minor arcs. Hence one needs a nontrivial
bound for S(θ) =

∑
n≤x
n∈N

e(θn) on the minor arcs. It turns out that this can be done

for extremal sets. More precisely, we have the following theorem.

Theorem 1 (Brüdern). Let N be a distributed set of positive density. Then the
following is equivalent.

(1) N is extremal
1
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(2) As Q and x tend to infinity, we have
∫

m(x,Q)

|S(θ)|2 dθ = o(x).

Hence binary additive problems involving extremal sets can be solved. E.g. the
asymptotic number of representations of an integer as the sum of a k-free and an l-
free number can be computed[2]. Therefore a different characterisation of extremal
sets seems to be interesting. In this note we prove the following theorem.

Theorem 2. The following two statements are equivalent:

(1) N is extremal
(2) N is B2-almost periodic

Note that although additive questions involving almost periodic sets can be deatl
with in an elementary way, the theory of extremal sets gives better error terms as
shown in [2]. From this one obtains the following corollaries.

Corollary 3. The intersection of extremal sets is extremal.

This was conjectured by J. Brüdern[1] and is the real motivation of the present
note. In the mean time J. Brüdern gave a different proof (personal communication).

Corollary 4. If f(n) =

{
1 if n ∈ N
0 if n 6∈ N is multiplicative, and N has positive

density, then N is extremal.

This is theorem 1.4 in [1].
We will obtain theorem 2 as a corollary of a more general statement. To formulate

the next theorem, we have to introduce some notation.
We define eβ(n) := e(βn). Let 1 ≤ q < ∞ be a real number. On the space of

functions N→ C define a seminorm ‖f‖q by ‖f‖qq := lim sup 1
x

∑
n≤x |f(n)|q. Define

the space B of periodic functions, and the space A of trigonometric polynomials∑k
ν=1 aνeαν with αν real. Denote the closure of B with respect to ‖ · ‖q with Bq,

and the closure of A with Aq. For bounded functions we have f ∈ Bq ⇒ f ∈ Bq′

for any q, q′, and similar for Aq. Define the scalar product 〈f, g〉 by

〈f, g〉 = lim
x→∞

1

x

∑
n≤x

f(n)g(n)

For f, g ∈ A2, this limit exists and defines a scalar product, which induces the
‖ ·‖2-seminorm. Hence we can apply the theory of Hilbert spaces to obtain Fourier-
series for almost periodic functions. Especially, if f ∈ A2, for every β the scalar
product 〈f, eβ〉 exists, and we define the Fouriercoefficient of f for β to be this
product. We define the spectrum of f to be the set of β, such that 〈f, eβ〉 6= 0
and write spec(f) for this set. Now let α = (αn) be a sequence of numbers from
the interval [0, 1]. Define the major arcs Mα(x,Q) with respect to this sequence by

Mα(x,Q) =
⋃
n≤Q

[
αn − Q

x , αn + Q
x

]
and mα(x,Q) = [0, 1] \Mα(x,Q). A set N is

called α-extremal if it has positive density, all Fouriercoefficients of its characteristic
function exist, and we have

∫
mα(x,Q)

|S(θ)|2dθ = o(x) for any Q = Q(x), tending to

infinity with x.
Now we can state our main theorem.
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Theorem 5. Let N be a set of integers with positive density, f be the characteristic
function of N . Let α = (αn) be some sequence with αn ∈ [0, 1). Then the following
statements are equivalent:

(1) N is α-extremal
(2) f ∈ A2, and spec(f) is contained in α

As theorem 1, this can be applied to additive questions.

Corollary 6. Denote with r(n) the number of positive integer solutions of the

equation n = [
√

2a] + [
√

3b]. Then we have for n→∞, r(n) ∼ n√
6

.

Before we begin with proofs, we recall some facts about almost periodic functions.
All statements of this paragraph can be found in [3].

Lemma 7. Let f ∈ A2 be a bounded. Then the series
∑

β∈spec(f)
〈f, eβ〉eβ converges

to f with respect to the ‖ · ‖2-seminorm.

Lemma 8. The spectrum of any f ∈ A2 is countable. Furthermore, f ∈ B2 if and
only if f ∈ A2, and spec(f) ⊆ Q.

For proofs, see [3], chapter VI.3.

Lemma 9. If f, g ∈ A2 are bounded, we get fg ∈ A2.

Proof: Since fg is bounded, it suffices to show that fg ∈ A1. This follows from
[3], theorem VI.2.3.

Further we will use the characterization of multiplicative almost periodic func-
tions.

Lemma 10. Let f be a multiplicative function with mean value M(f) 6= 0 and
|f(n)| ≤ 1 for all n. Then f ∈ B2 if and only if the following series converge:

(1) S1 =
∑
p

1
p (f(p)− 1)

(2) S2 =
∑
p

1
p |f(p)− 1|2

Proof: This is a special case of [3], Theorem VII.5.1.
First we show that theorem 5 implies theorem 2. Assume that theorem 5 holds.

We claim that all the following statements are equivalent.

(1) N is extremal
(2) N is α-extremal, where α is some denumeration of the rational numbers in

[0, 1)
(3) f ∈ A2, and spec(f) is rational
(4) f ∈ B2.

The equivalence of 1. and 2. is obvious from the definition and theorem 1. Note
that the existence of the Fourier-coefficients is equivalent to the fact that N is
distributed. The equivalence of 2. and 3. is given by theorem 5, and the equivalence
of 3. and 4. is given by theorem 8. Hence 1. and 4. are equivalent, which proves
theorem 2.

Corollary 3 follows from theorem 2 and theorem 9, and corollary 4 follows from
theorem 2 and theorem 10, where the convergence of the series is implied by the
fact that f takes values in {0, 1}, hence convergence of the series is equivalent to
the condition M(f) 6= 0.
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To prove corollary 6, note that the condition “∃a : [
√

2a] = k” is equivalent to

the condition [(k+ 1)/
√

2]− [k/
√

2] = 1. Replacing the square brackets by approx-
imating exponential polynomials, we see that the characteristic function f of the
set {k|∃a : [

√
2a] = k} is in A2 with specf = k/

√
2 mod 1, and the corresponding

statement is true for the set {k|∃a : [
√

3a] = k}. Now

r(n) =

1∫
0

e(−nθ)S√2(θ)S√3(θ)dθ

where S√2(θ) =
∑
a≤x/

√
2 e(θ[

√
2a]), and S√3 is defined similar. Since we are not

interested in an error term, we choose Q tending to infinity with x sufficiently

slowly. Now if we define M√2(x,Q) :=
⋃
|q|≤Q

[(
q√
2

mod 1
)
− Q

x ,
(
q√
2

mod 1
)

+ Q
x

]
,

and M√3 in the same way, we have for x sufficiently large M√2(x,Q)∩M√3(x,Q) =[
−Q
x , Qx

]
since

√
2 and

√
3 are linear independent over the rationals. This inter-

val contributes n√
6

+ o(n) to the whole integral, hence it suffices to estimate the

remaining arcs. We have

1−Qx∫
−Qx

|S√2(θ)S√3(θ) dθ ≤
∫

m√2(x,Q)

|S√2(θ)S√3(θ)dθ

+

∫
m√3(x,Q)

|S√2(θ)S√3(θ)dθ

≤

 ∫
m√2(n,Q)

|S√2(θ)|2 dθ ·
1∫

0

|S√3(θ)|2 dθ


1/2

+

 1∫
0

|S√2(θ)|2 dθ ·
∫

m√3(x,Q)

S√3(θ)|2 dθ


1/2

The second integral is < n, and the first integral is o(n), by the definition of α-
extremality. Hence the first summand is o(n), and the second summand can be
dealt with similary.

Thus, it suffices to prove theorem 5.
Assume that f ∈ A2, and let (αn) be an enumeration of spec(f). Choose ε >

0. Then there is some N , such that ‖f −
∑
ν≤Q〈f, eαν 〉eαν‖22 ≤ ε. Using the

orthogonality of e(αn) and Parsevals equation we get

1∫
0

∣∣∣∣∣∣
∑
n≤x

f(n)−
∑
ν≤Q

〈f, eαν 〉eαν

 e(θn)

∣∣∣∣∣∣
2

dθ = ‖f −
∑
ν≤N

〈f, eαν 〉eαν‖22x

≤ εx

Hence to prove that
∫

mα(x,Q)

|S(θ)|2dθ = o(x), it suffices to prove this with f replaced

by some sufficiently long partial sum of its Fourier-series. For if g =
∑
ν≤N aνeαν ,
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and G is the corresponding exponential sum, we have∫
mα(x,Q)

|S(θ)|2dθ ≤ 2

∫
mα(x,Q)

|S(θ)−G(θ)|2dθ +

∫
mα(x,Q)

|G(θ)|2dθ

The first integral is ≤
1∫
0

|S(θ) − G(θ)|2dθ =
∑
n≤x(f(n) − g(n))2 ≤ εx, thus it

suffices to show that the second integral is small, too. Now we have

∫
mα(x,Q)

∣∣∣∣∣∣
∑
ν≤N

aνeαν (n)

 e(θn)

∣∣∣∣∣∣
2

dθ ≤

∑
ν≤N

|aν |2


︸ ︷︷ ︸
≤1

·
∑
ν≤N

|aν |
∫

mα(x,Q)

∣∣∣∣∣∣
∑
n≤x

e((θ − ανn)

∣∣∣∣∣∣
2

dθ

≤ 2N

1−Q/x∫
Q/x

∣∣∣∣∣∣
∑
n≤x

e(θn)

∣∣∣∣∣∣
2

dθ

≤ 4Nx

Q

Thus for any given ε > 0 we find some N(ε), such that∫
mα(x,Q)

|S(θ)|2dθ ≤ εx+
N(ε)x

Q

With ε→ 0 and Q→∞, this becomes o(x), thus N is α-extremal.
Now assume that N is an α-extremal set of integers, and let ε > 0. By

the definition of α-extremal, we get
∫

m(x,Q)

|S(θ)|2dθ = o(x), where M(x,Q) =⋃
q≤Q

⋃
(a,q)=1

[
a
q −

ω(x)
x , aq + ω(x)

x

]
, m(x,Q) =

[
ω(x)
x , 1− ω(x)

x

]
, and ω(x)↗∞ will be

chosen later. Choose Q such that for all x > x0 we have
∫

mα(x,Q)

|Sx(θ)|2 dθ < εx.

Set aν = lim
x→∞

1
xS(αν). Note that this limit exists since all Fouriercoefficients of f

exist. Then define fQ(n) =
∑
q ≤ Q

∑
ν≤Q aνe(−ανn). Obviously, fQ is a trigono-

metric polynomial, thus it suffices to show that the sequence fQ approximates the
characteristic function of N . Using orthogonality of e(α), we have

∑
n≤x

|f(n)− fQ(n)|2 =

1∫
0

|
∑
n≤x

(f(n)− fQ(n))e(θn)|2dθ

≤
∫

Mα(x,Q)

|
∑
n≤x

(f(n)− fQ(n))e(θn)|2dθ

+

∫
mα(x,Q)

|
∑
n≤x

f(n)e(θn)|2dθ +

∫
mα(x,Q)

|
∑
n≤x

fQ(n)e(θn)|2dθ

=

∫
1

+

∫
2

+

∫
3
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The estimation of
∫
2

and
∫
3

is straightforward: By assumption,
∫
2
≤ εx, and the

inequality
∫
3
� x

ω(x) can be deduced as above. Thus it suffices to consider
∫
1
. Since

there are no more than Q2 major arcs, it suffices to show that the integral taken
over a single major arc is o(x). Hence we have to show that

αν+ω(x)/x∫
αν−ω(x)/x

|
∑
n≤x

(f(n)− fQ(n))e(θn)|2dθ = o(x)

Using partial summation the integral becomes

ω(x)/x∫
−ω(x)/x

∣∣∣∣∣∣
∑
n≤x

(f(n)− fQ(n))e(ανn)−
∑
n≤x

∑
k≤n

(f(k)− fQ(k))e(kαν)(e(θ(n+ 1))− e(θn))

∣∣∣∣∣∣
2

dθ

Since
∑
n≤x f(n)e(ανn) ∼ aνx and

∑
n≤x fQ(n)e(ανn) = aνx+O(1), there is some

function φ(x), tending monotonically to∞, such that
∑
n≤x(f(n)−fQ(n))e(ανn) <

x
φ(x) . Using this function, the integral can be estimated by

αν+ω(x)/x∫
αν−ω(x)/x

∣∣∣∣∣∣ x

φ(x)
+
∑
n≤x

n

φ(n)
θ

∣∣∣∣∣∣
2

dθ <
2xω(x)2

φ(x)2
+

2xω(x)3

φ(
√
x)2

+ ω3(x)

Putting the estimates for
∫
i

together, and summing over all the � Q2 major arcs,
we get ∑

n≤x

|f(n)− fQ(n)|2 < εx+ c
x

ω(x)
+

4xQ2ω(x)3

φ(
√
x)2

+ ω3(x)Q2

With ω(x) = min(φ(
√
x)1/2Q−2, x1/4Q−2), the right hand side becomes (ε+o(1))x,

since this is true for any ε > 0, it is o(x). Hence fQ → f with respect to the A2-
norm, i.e. f is A-almost periodic, and specf is contained in α.
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