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Abstract. Let νp(n) be the exponent of p in the prime decomposition of
n. We show that for different primes p, q satisfying some mild constraints
the integers νp(n!) and νq(n!) cannot both be of a rather special form.
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1. Introduction and results

For an integer n and a prime number p let νp(n) be the exponent of p in
the prime decomposition of n, i.e. νp(n) is the largest k with pk|n. The dis-
tribution of the sequences νp(n!) has received some attention, a large part
of which has been stimulated by the question whether for each finite set of
primes π there exist infinitely many n such that νp(n!) is even for all p ∈ π,
which was posed by Erdős and Graham[3, p. 77]. This question was answered
in the affirmative by Berend[2]. Shevelev[5] showed that for all primes p < q
such that p = 2 or q−1

p−1 is not a power of 2 there are only finitely many n

such that νp(n!) and νq(n!) are simultaneously powers of 2. In this note we
generalize this statement. We prove the following.

Theorem 1.1. Let p, q be distinct primes, d, α, β be integers with d ≥ 3. Sup-

pose that (q−1)α
(p−1)β is not a perfect d-th power. Then the system of equations

νp(n!) = αxd, νq(n!) = βyd has only finitely many solutions.

Note that this statement is in fact a generalization of Shevelev’s result.
To see this assume that q−1

p−1 is not a power of 2. Then there is some d, such

that (p−1)α
(q−1)β is not a d-th power whenever α, β are powers of 2. We then apply

Theorem 1.1 to all pairs (α, β) = (2a, 2b), where 1 ≤ a, b ≤ d. Since every
power of 2 can be written as 2axd, where 1 ≤ a ≤ d, we deduce Shevelev’s
result.
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This result is not effective, since it is based on the Thue-Siegel-Roth-
theorem. Using Baker’s method, we can prove the following.

Theorem 1.2. Let p, q be distinct primes, π1, π2 be finite sets of primes. Write
p−1
q−1 = a

b with a, b coprime. Assume that one of the following holds true.

1. a has a prime divisor which is not in π2, or b has a prime divisor which
is not in π1;

2. π1 ∩ π2 ⊆ {p}, or π1 ∩ π2 ⊆ {q}.
Then there is an effectively computable integer n0, such that all integers n for
which all prime divisors of νp(n!) are in π1, and all prime divisors of νq(n!)
are in π2, satisfy n < n0.

The constant n0 is too large to check all possible n, however, if π1 ∪ π2
consist of only two primes p1, p2, then we can discard all n which are not
close to a power of p1 and p2 immediately, and search the remaining space
using continued fractions. As an example, we prove the following.

Proposition 1.3. Let n be an integer, such that ν2(n!) is a power of 2, and
ν3(n!) contains only the prime divisors 2 and 3. Then n ∈ {1, 2, 3, 6, 7, 10, 11,
18, 19}.

The conditions of Theorem 1.2 are probably not optimal. In fact, if
neither of the two conditions of Theorem 1.2 is satisfied, we still obtain
sp(n) = sq(n) (see Lemma 2.6 below), and solutions of this equation are
probably quite rare. Together with the fact that n must be close to an inte-
ger, which has prime factors in a fixed finite set, we are led to believe that
Theorem 1.2 holds true under much weaker conditions, it may well be possible
that (1) and (2) can simply be deleted from the theorem.

2. Proof of Theorem 1.1 and 1.2

We begin by collecting some known results. For a prime p denote by sp(n)
the sum of digits of n written to base p. Our first two results are well known
and proved by simple counting arguments.

Lemma 2.1. We have νp(n!) =
n−sp(n)
p−1 .

Lemma 2.2. We have sp(n) ≤ (p− 1) + (p−1) logn
log p .

The following is the Thue-Siegel-Roth-theorem.

Theorem 2.3. Let α be an irrational algebraic number. Then for any ε > 0
there are only finitely many rational numbers p

q satisfying |α− p
q | <

1
q2+ε .

We use this theorem to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that νp(n!) = αxd, νq(n!) = βyd. Then from
Lemma 2.1 we obtain

(q − 1)αxd

(p− 1)βyd
=
n− sp(n)

n− sq(n)
= 1 +O(

log n

n
),
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and therefore ∣∣∣∣∣xy − d

√
(q − 1)α

(p− 1)β

∣∣∣∣∣� log n

n
� log y

yd
� 1

y2.5
.

Now Theorem 2.3 implies that either there are only finitely many choices for

y and therefore for n, or d

√
(q−1)α
(p−1)β is rational. However, the latter condition

is excluded by the assumptions of the theorem, and our claim follows. �

The following is a version of Baker’s estimate for linear forms in loga-
rithms, confer[1] for the size of the constants.

Theorem 2.4. Let α1, . . . , αk be algebraic numbers generating a number field
of degree ≤ d, such that αi is of height Ai, n1, . . . , nk be integers in [−B,B],
and assume that

Λ = n1 logα1 + · · ·+ nk logαk 6= 0.

Then

|Λ| ≥ exp
(
−(16nd2)2(n+2) logA1 logA2 . . . logAk logB

)
One consequence of Baker’s theorem is the following.

Lemma 2.5. Let p, q be distinct primes, m an integer. Then there exists a
constant c = c(p, q) such that there are at most finitely many n such that

sp(n) and sq(n) are both ≤ c log logn
log log logn .

Proof. Suppose that sp(n), sq(n) ≤ m. Write n =
∑
pei =

∑
qfi with e1 ≥

e2 ≥ . . . ek, f1 ≥ f2 ≥ . . . f`. Suppose there exists an integer x, such that
x > n2/3 and [x1−δ, x] contains none of the powers pei , qfi , where δ > 0.

Let i0 be the largest index with pei0 > x, j0 the largest index with
qfj0 > x. Put a = pe1−ei0 +· · ·+pei0−1−ei0 +1, b = qf1−fi0 +· · ·+qfi0−1−fi0 +1.
Then we have

|apei0 − bqfj0 | ≤ m(pei0+1 + qfj0+1) ≤ 2mx1−δ. (2.1)

If apei0 − bqfj0 = 0, then a is divisible by qfj0 , since p and q are distinct.
But a ≤ pe1/x ≤ x1/2, and qfj0 ≥ x, and we obtain a contradiction. Hence,
Λ = ei0 log p − fj0 log q + log a/b does not vanish. From Baker’s theorem we
obtain

|Λ| > exp

(
−(48)10 log p log q log

log n

log 2
max(log a, log b)

)
> exp (−C(p, q) log n/x log log n) .

Without loss we may assume that apei0 − bqfj0 is positive. Using (2.1) we
obtain

Λ ≤ apei0 − bqfj0
bqfj0

≤ 2mx1−δ

n− 2mx1−δ
≤ 2m exp

(
− log

n

x
− δ log x

)
,

and we obtain a contradiction provided that δ log x > C log n
x log log n.
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If we define the sequence xi by

x1 = n/p, log
xi
xi+1

= C log
n

xi
log log n

we conclude that as long as xi > n2/3 we have that the interval [xi−1, xi]
contains at least one of the powers pei , qfj . Hence, after at most 2m steps
this sequence drops below n2/3. If we put yi = n/xi, the recursion becomes

yi+1 = y1+C log logn
i , and we obtain yi = p(1+C log logn)i . Hence yi < n1/3 for

i < c log logn
log log logn , and our claim follows. �

For the proof of Theorem 1.2 we use Baker’s theorem also to prove the
following.

Lemma 2.6. Let p, q be distinct primes, π1, π2 be finite sets of primes. Then
there exists an effectively computable n0, such that for n > n0 we have that
if all prime divisors of νp(n!) are in π1, and all prime divisors of νq(n!) are
in π2, then

p− 1

q − 1
· νp(n!)

νq(n!)
= 1 and sp(n) = sq(n). (2.2)

Proof. Suppose that νp(n!) and νq(n!) have prime divisors in π1 and π2,
respectively. Then we obtain for certain non-negative integers ei, fi

p− 1

q − 1

∏
pi∈π1

peii
∏
pi∈π2

p−fii =
n− sp(n)

n− sq(n)
= 1 +O(

log n

n
). (2.3)

Assume first that the left hand side is not equal to 1. Define Λ to be the
logarithm of the left hand side. Then Λ is a non-vanishing linear combination
of logarithms of algebraic numbers, hence we can apply Theorem 2.4. Note

that peii and pfii are bounded above by n, hence all coefficients are ≤ logn
log 2 .

Putting π = π1 ∪ π2 and assuming p < q we now obtain

|Λ| ≥ exp

(
−(16|π|+ 16)2|π|+4

∏
pi∈π

log pi log
log n

log 2
log(q − 1)

)
≥ (log n)−C(p,q,π)

On the other hand we have Λ� logn
n . Comparing these estimates we obtain

an effective upper bound for n.
Now assume that the left hand side equals 1. Then both fractions in

(2.3) equal 1, and we see that the conditions (2.2) hold. �

We now deduce Theorem 1.2. In each case it suffices to consider the case
that (2.2) holds. Obviously

a

b
· νp(n!)

νq(n!)
=
p− 1

q − 1
· νp(n!)

νq(n!)
= 1

implies that every prime divisor of a also divides νq(n!), and therefore all
prime divisors of a are in π2. Similarly we find that all prime divisors of b are
in π1. Hence the first condition of Theorem 1.2 suffices to imply our claim.
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In the second case we may assume that π1 ∩ π2 = {p}, since we can
add p to both π1 and π2, if necessary. Write νp(n!) = xpu, νq(n!) = ypv,
where p - xy. Then we have axpu = bypv. Since x and y are coprime, and not
divisible by p, we deduce x|b, y|a. Hence, there are only finitely many choices
for x and y, and it suffices that for fixed values x0, y0 there are only finitely
many n.

We estimate sp(n). We have νp(n!) = x0p
u, thus n = (p−1)x0p

u+sp(n).
Since the sum of digits is subadditive, we conclude sp(n) ≤ sp((p − 1)x0) +
sp(sp(n)). Lemma 2.2 now implies that sp(n) is bounded by some constant.
On the other hand from (2.2) we deduce that sp(n) = sq(n), thus sq(n) is
bounded as well. But then Lemma 2.5 implies that n is bounded, and the
second case of Theorem 1.2 is proven as well.

3. Explicit computations

We now prove the Proposition. By direct inspection we check that our claim
holds true for n ≤ 1000.

We first have to make the Landau symbol in (2.3) explicit. We have

n− s2(n)

n− s3(n)
≥
n− logn

log 2 − 1

n
= 1− log 2n

n log 2
,

and
n− s2(n)

n− s3(n)
≤ n

n− 2 logn
log 3 − 2

≤ 1 + 1.9
log n

n
,

provided that n > 1000. Looking at the proof of Lemma 2.6 we here have
that all prime factors of p − 1 and q − 1 are already contained in π1 ∪ π2,
that is, the linear form Λ actually has the form Λ = a log 2 + b log 3. For
linear forms in two logarithm we have far better bounds then for the general
case. We use the following, which is a special case of a result due to Laurent,
Mignotte and Nesterenko[4].

Theorem 3.1. Let α1, α2 be multiplicatively independent positive integers,
b1, b2 ∈ Z with b1, b2 6= 0, and put Λ = b1 logα1 + b2 logα2. Then

log |Λ| ≥ −24.34 max(log b′ + 0.14, 21)2 logα1 logα2,

where b′ = b1
logα2

+ b2
logα1

.

In the notation of the proof of Lemma 2.6 we have Λ = (e1 − f1 −
1) log 2 + f2 log 3, and 2e1 ≤ n, 2f1+13f2 ≤ n, thus b′ ≤ 2 logn

log 2 log 3 ≤ 2.63 log n.

We conclude that either Λ = 0, that is, (2.2) holds true, or

exp
(
−18.54 max(log log n+ 1.11, 21)2

)
≤ 1.9

log n

n
,

which implies n < e8187, that is, f2 ≤ 7452. We could cover this range by
an exhaustive search, however, in the case that |π1 ∪ π2| = 2 it is better

to use continued fractions. If Λ is very small, then e1−f1−1
f2

is a very good
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approximation to log 3
log 2 . Since the continued fraction algorithm yields the best

approximations we easily check that | log 3
log 2 −

p
q | >

0.04
q2 holds true for all

q ≤ 20000. More precisely we have that Λ ≤ 1.9 logn
n implies

1

25f22
<

∣∣∣∣e1 − f1 − 1

f2
− log 3

log 2

∣∣∣∣ ≤ 1.9
log n

nf2 log 2
≤ 3.02

n
≤ 1.51 · 2−f13−f2 .

We first neglect the factor 2−f1 on the right and find that this inequality
implies f2 ≤ 7. In this range we can replace 0.04 by 0.32 and obtain n ≤
471. We conclude that if n is an integer satisfying the assumptions of the
Proposition, then either n is contained in the list given in that proposition,
or n satisfies (2.2). If ν2(n!) is a power of 2, and n > 3, then n is of the form
2k + 2, 2k + 3, thus s2(n) = 2, 3.

Hence we have to consider the solutions of the equations 2k+2 = 3x+3y

and 2k+3 = 3x+3y+3z. In the second case the left hand side is not divisible
by 3, hence z = 0, and we are led to case 1. Suppose that x ≥ y. Then the
right hand side is divisible by 3y, which implies that 3y−1|k − 1. Hence for

a solution we have
∣∣∣kx − log 3

log 2

∣∣∣ ≤ k−2
x·2k , and we have seen before that this

inequality has no solutions with x > 5. We conclude that (2.2) does not lead
to further solutions ≤ 1000, and our proof is complete.

If one would try to obtain similar results for larger sets π1, π2 one would
have to use numerically weaker bounds for linear forms in more than two
logarithms. This would greatly increase the initial range for n. For example,
if we would add the prime number 5 to the set π1 in the example, the upper

bound for n would increase to e6.54·10
19

, thus e1 ≤ 9.44 · 1019, e2 ≤ 4.07 ·
1019. This range could still efficiently be searched using continued fractions,
however, since we are now looking for linear combination of more than 2
real numbers, we would have to use algorithms based on the LLL-algorithm,
which are much more complicated.
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[4] M. Laurent, M. Mignotte, Y. Nesterenko, Formes linéaires en deux logarithmes
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