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1 Introduction

It was shown by Linnik [10] that there is an absolute constant K such that every
sufficiently large even integer can be written as a sum of two primes and at most
K powers of two. This is a remarkably strong approximation to the Goldbach
Conjecture. It gives us a very explicit set K(x) of integers n ≤ x of cardinality
only O((log x)K), such that every sufficiently large even integer N ≤ x can be
written as N = p+p′+n, with p, p′ prime and n ∈ K(x). In contrast, if one tries
to arrange such a representation using an interval in place of the set K(x), all
known results would require K(x) to have cardinality at least a positive power
of x.

Linnik did not establish an explicit value for the number K of powers of 2
that would be necessary in his result. However, such a value has been computed
by Liu, Liu and Wang [12], who found that K = 54000 is acceptable. This result
was subsequently improved, firstly by Li [8] who obtained K = 25000, then by
Wang [18], who found that K = 2250 is acceptable, and finally by Li [9] who
gave the value K = 1906. One can do better if one assumes the Generalized
Riemann Hypothesis, and Liu, Liu and Wang [13] showed that K = 200 is then
admissible.

The object of this paper is to give a rather different approach to this problem,
which leads to dramatically improved bounds on the number of powers of 2 that
are required for Linnik’s theorem.

Theorem 1 Every sufficiently large even integer is a sum of two primes and
exactly 24 powers of 2.

Theorem 2 Assuming the Generalized Riemann Hypothesis, every sufficiently
large even integer is a sum of two primes and exactly 9 powers of 2.

In fact we shall sketch an argument, in the final section, which improves
Theorem 1 so as to allow 21 powers of 2. Indeed it seems likely that further
improvements are possible.

Previous workers have based their line of attack on a proof of Linnik’s the-
orem due to Gallagher [3]. Let $ be a small positive constant. Set

S(α) =
∑

$N<p≤N

e(αp), (1)
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where e(x) := exp(2πix), and

T (α) =
∑

1≤ν≤L

e(α2ν), L = [
logN/2K

log 2
].

Earlier proofs of Linnik’s Theorem have used estimates for meas(Aλ), where

Aλ = {α ∈ [0, 1] : |T (α)| ≥ λL}.

In contrast we shall investigate a high power moment

I(q) =

∫ 1

0

|T (α)|2qdα.

We write r(n, q,N) for the number of representations of an integer n as a sum
of q terms 2ν ≤ N/2K. Thus

T (α)q =
∑
n

r(n, q,N)e(αn),

and
I(q) =

∑
n

r(n, q,N)2.

We set
r(q) = max

n,N
r(n, q,N)

and note that ∑
n

r(n, q,N) = T (0)q = Lq,

whence
I(q) ≤ r(q)Lq. (2)

In §§7 and 8 we shall bound r(q) by a combinatorial argument, and prove the
following estimate.

Lemma 1 We have
r(q) ≤ (1.753)qq!

for all q ∈ N.

We shall use the resulting inequality for I(q) directly, without passing via an es-
timate for meas(Aλ). However it may be of interest to see what bound Lemma 1
implies. We have

meas(Aλ) ≤ (λL)−2qI(q)

≤ (λL)−2q(1.753)qLqq!

� (
1.753q

eLλ2
)q
√
q.

We minimize this by taking q = [Lλ2/1.753], whence

meas(Aλ) � exp(−Lλ2/1.753)
√
L

� N−λ
2/(1.753 log 2)

√
L

� N−0.822λ
2√

logN.
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It is easy to see that one cannot have a bound of the form O(N−cλ
2

) with c > 1,
so it is natural to ask whether

meas(Aλ)�ε N
−λ2+ε

for every fixed ε > 0. We expect that the constant 1.753 in Lemma 1 is essen-
tially optimal. However there is a potential loss, in our application, in deriving
(2). This arises because we take q to be a constant multiple of logN in §6,
whereas r(q) might be determined by values of N larger than this implies.

The best bound for meas(Aλ) in the literature is due to Liu, Liu and Wang
[11; Lemma 3], and states that meas(A1−η) � N−θ(logN)5/2 for η < (7e)−1,
with

θ = 1− F (
2 +
√

2

4
η)− F (1− 2 +

√
2

4
η)

and F (x) = x(log x)/(log 2). This is distinctly less elegant than our bound and
holds for a shorter range. None the less, for small values of η it is stronger than
is achieved by our method. It should be stressed however, that in the present
paper the critical size for |S(α)| corresponds to a value of η considerably larger
than (7η)−1.

The estimate provided by Lemma 1 will be injected into the circle method,
where it will be crucial in bounding the minor arc contribution. On the major
arcs we shall improve on Gallagher’s analysis so as to show that hypothetical
zeros close to σ = 1 play no rôle. Thus, in contrast to previous workers, we will
have no need for explicit numerical zero-free regions for L-functions. Naturally
this produces a considerable simplification in the computational aspects of our
work. Thus it is almost entirely the value of the constant 1.753 in Lemma 1
which determines the number of powers of 2 appearing in Theorems 1 and 2.

The paper naturally divides into two parts, one of which is analytic, in-
volving the circle method and zeros of L-functions, and the other of which is
combinatorial, devoted to the proof of Lemma 1. We begin with the former.

One remark about notation is in order. At various stages in the proof,
numerical upper bounds on $ will be required. Since we shall always take $ to
be sufficiently small, we shall assume that any such bound is satisfied. Moreover,
since $ is to be thought of as fixed, we will allow the implied constants in the
O(. . .) and � notations to depend on $.

2 The Major Arcs

We shall follow the method of Gallagher [3; §1] closely. We choose a parameter
P in the range 1 ≤ P ≤ N2/5 and define the major arcs M as the set of α ∈ [0, 1]
for which there exist a ∈ Z and q ∈ N such that q ≤ P and

|α− a

q
| ≤ P

qN
.

If χ is a character to modulus q, we write

cn(χ) =

q∑
a=1

χ(a)e(
an

q
)
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and

τ(χ) =

q∑
a=1

χ(a)e(
a

q
).

Moreover we put

A(χ, β) =
∑

$N<p≤N

χ(p)e(βp)

and

In,s(χ, χ
′) =

∫ P/sN

−P/sN
A(χ, β)A(χ′, β)e(−βn)dβ.

If χ is a character to a modulus r|q we also write χq for the induced character
modulo q, and if χ, χ′ are characters to moduli r and r′ respectively, we set

Jn(χ, χ′) =
∑
q≤P

[r,r′]|q

1

φ(q)2
cn(χqχ

′
q)τ(χq)τ(χ′q)In,q(χ, χ

′).

Then, by a trivial variant of the argument leading to Gallagher [3; (3)], we find
that ∫

M

S(α)2e(−αn)dα =
∑
χ,χ′

Jn(χ, χ′) +O(P 5/2), (3)

for any integer n, the sum being over primitive characters χ, χ′ to moduli r, r′

for which [r, r′] ≤ P . In what follows we shall take 1 ≤ n ≤ N .
To estimate the contribution from a particular pair of characters χ, χ′ we

put

Aq(χ) = {
∫ P/qN

−P/qN
|A(χ, β)|2dβ}1/2

and

Cn(χ, χ′) =
∑
q≤P

[r,r′]|q

1

φ(q)2
|cn(χqχ

′
q)τ(χq)τ(χ′q)|.

Note that what Gallagher calls ||A(χ)|| is our A1(χ). We have Aq(χ) ≤ Am(χ)
whenever m ≤ q. Then, as in Gallagher [3; (4)] we find

|Jn(χ, χ′)| ≤ Cn(χ, χ′)A[r,r′](χ)A[r,r′](χ
′). (4)

It is in bounding Cn(χ, χ′) that there is a loss in Gallagher’s argument. Let
r′′ be the conductor of χχ′, and write m = [r, r′]. moreover, for any positive
integers a and n we wite

an =
a

(a, n)
.

Then Gallagher shows that

Cn(χ, χ′) ≤ (rr′r′′)1/2
∑

q≤P,m|q

(φ(q)φ(qn))−1,
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where q/m is square-free and coprime to m. Moreover we have r′′|mn. It follows
that

Cn(χ, χ′) ≤ (rr′r′′)1/2

φ(m)φ(mn)

∑
(s,m)=1

µ2(s)/φ(s)φ(sn).

The sum on the right is∏
p |/mn

(1 +
1

(p− 1)2
)
∏

p|n,p |/m

(1 +
1

(p− 1)
)�

∏
p|n,p |/m

p

(p− 1)
,

and
m

φ(m)

∏
p|n,p |/m

p

(p− 1)
≤ n

φ(n)

mn

φ(mn)
.

We therefore deduce that

Cn(χ, χ′)� (rr′r′′)1/2

m

mn

φ2(mn)

n

φ(n)
.

Now if pe||r and pf ||r′, then p|e−f ||r′′, since r′′ is the conductor of χχ′. (Here
the notation pe||r means, as usual, that pe|r and pe+1 |/ r.) We therefore set

h = (r, r′) and r = hs, r′ = hs′, (5)

so that ss′|r′′ and m = hss′. Since

mn

φ2(mn)
� m$−1

n

we therefore have

(rr′r′′)1/2

m

mn

φ2(mn)
� (ss′)−1/2r′′

1/2
m$−1
n .

Now, using the bounds r′′ ≤ mn and ss′ ≤ r′′, we find that

(rr′r′′)1/2

m

mn

φ2(mn)
� (ss′)−1/2r′′

1/2
r′′
$−1

= (ss′)−1/2r′′
$−1/2

� (ss′)$−1.

Alternatively, using only the fact that mn ≥ r′′, we have

(rr′r′′)1/2

m

mn

φ2(mn)
� (ss′)−1/2m1/2

n m$−1
n

� m$−1/2
n .

These estimates produce

Cn(χ, χ′)� min{(ss′)$−1 , m$−1/2
n } n

φ(n)
.

On combining this with the bounds (3) and (4) we deduce the following result.
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Lemma 2 Suppose that P ≤ N2/5−$. Then∫
M

S(α)2e(−αn)dα = Jn(1, 1) +O(
n

φ(n)
Sn) +O(N1−$),

where
Sn =

∑
χ,χ′

A[r,r′](χ)A[r,r′](χ
′) min{(ss′)$−1 , m−1/3n },

the sum being over primitive characters, not both principal, of moduli r, r′, with
[r, r′] ≤ P .

We have next to consider Am(χ). According to the argument of Montgomery
and Vaughan [15; §7] we have

Am(χ)� N1/2 max
$N<x≤N

max
0<h≤x

(h+mN/P )−1|
x+h∑
x

χ(p)|.

Note that we have firstly taken account of the restriction in (1) to primes
p > $N , and secondly replaced (h + N/P )−1 as it occurs in Montgomery
and Vaughan, by the smaller quantity (h+mN/P )−1. The argument of [15; §7]
clearly allows this.

By partial summation we have

x+h∑
x

χ(p)� (log x)−1 max
0<j≤h

x+j∑
x

χ(p) log p.

Moreover, a standard application of the ‘explicit formula’ for ψ(x, χ) produces
the estimate

x+j∑
x

χ(p) log p� N1/2+3$(logN)2 +
∑
ρ

| (x+ j)ρ

ρ
− xρ

ρ
|,

where the sum over ρ is for zeros of L(s, χ) in the region

β ≥ 1

2
+ 3$, |γ| ≤ N.

When χ is the trivial character we shall include the pole ρ = 1 amongst the
‘zeros’. Since j ≤ h and

(x+ j)ρ

ρ
− xρ

ρ
� min{jNβ−1 , Nβ |γ|−1},

we find that

Am(χ)� P

m
N4$ +

N1/2

logN
{ max
0<h≤N

(h+mN/P )−1
∑
ρ

Nβ−1 min{h , N |γ|−1}.

However we have

min{ h

h+H
,

A

h+H
} ≤ min{1 , A

H
}

whenever h,H,A > 0. Applying this with H = mN/P and A = N |γ|−1, we
deduce that

Am(χ)� P

m
N4$ +

N1/2

logN

∑
ρ

Nβ−1 min{1 , Pm−1|γ|−1}. (6)
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3 The Sum Sn

In order to investigate the sum Sn we decompose the available ranges for r, r′

and the corresponding zeros ρ, ρ′ into (overlapping) ranges{
R ≤ r ≤ RN$, R′ ≤ r′ ≤ R′N$,

T − 1 ≤ |γ| < TN$, T ′ − 1 ≤ |γ′| < T ′N$.
(7)

Clearly O(1) such ranges suffice to cover all possibilities, so it is enough to
consider the contribution from a fixed range of the above type. Throughout
this section we shall follow the convention that ρ = 1 is to included amongst
the ‘zeros’ corresponding to the trivial character.

Let N(σ, χ, T ) denote as usual, the number of zeros ρ of L(s, χ), in the region
β ≥ σ, |γ| ≤ T , and let N(σ, r, T ) be the sum of N(σ, χ, T ) for all characters χ
of conductor r. Since

Nβ−1 = N3$−1/2 +

∫ β

1/2+3$

Nσ−1(logN)dσ

for β ≥ 1/2 + 3$, we find that∑
ρ

Nβ−1 � N6$−1/2RT + I(r) logN, (8)

where the sum is over zeros of L(s, χ) for all χ of conductor r, subject to
T − 1 ≤ |γ| ≤ TN$, and were

I(r) =

∫ 1

1/2+3$

Nσ−1N(σ, r, TN$)dσ.

We now insert (8) into (6) so that, for given r, r′, the range (7) contributes
to ∑

χ (mod r)

Am(χ)

a total

� φ(r)
P

m
N4$ +

N1/2

logN
m(R, T )N6$−1/2RT +N1/2m(R, T )I(r)

� PN6$ +N1/2m(R, T )I(r). (9)

Similarly, for the double sum∑
χ (mod r)

∑
χ′ (mod r′)

Am(χ)Am(χ′)

the contribution is

� P 2N12$ + PN1/2+6$m(R, T )I(r)
+ PN1/2+6$m(R′, T ′)I(r′) +Nm(R, T )m(R′, T ′)I(r)I(r′).

(10)

We then sum over r, r′ using the following lemma.
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Lemma 3 Let

max
r≤R

N(σ, r, T ) = N1(R), max
r′≤R′

N(σ′, r′, T ′) = N1(R′),

and ∑
r≤R

N(σ, r, T ) = N2(R),
∑
r′≤R′

N(σ′, r′, T ′) = N2(R′).

In the notation of (5) we have∑
r≤R

∑
r′≤R′

N(σ, r, T )N(σ′, r′, T ′)(ss′)$−1 (11)

� {N1(R)N2(R)N1(R′)N2(R′)}1/2+2$,

for 1/2 ≤ σ, σ′ ≤ 1.
Moreover, if

P ≤ N45/154−4$,

then ∑
r,r′

m(R, T )m(R′, T ′)N(σ, r, TN$)N(σ′, r′, T ′N$)(ss′)$−1, (12)

� N (1−$)(1−σ)+(1−$)(1−σ′) (13)

for 1/2 + 3$ ≤ σ, σ′ ≤ 1, where the summation is for R ≤ r ≤ RN$ and
R′ ≤ r′ ≤ R′N$.

We shall prove this at the end of this section. Henceforth we shall assume
that P ≤ N45/154−4$.

For suitable values of η in the range

0 ≤ η ≤ log logN (14)

we shall define B(η) to be the set of characters χ of conductor r ≤ P , for which
the function L(s, χ) has at least one zero in the region

β > 1− η

logN
, |γ| ≤ N.

According to our earlier convention the trivial character is always in B(η). Now,
if we restrict attention to pairs χ, χ′ for which χ 6∈ B(η) we have∑

R≤r≤RN$

∑
R′≤r′≤R′N$

Nm(R, T )m(R′, T ′)I(r)I(r′)(ss′)$−1

�
∫ 1−η/ logN

1/2+3$

∫ 1

1/2+3$

N1−$(1−σ)−$(1−σ′)dσ′dσ

� N1−$η/ logN (logN)−2

= e−$ηN(logN)−2.

Terms for which χ ∈ B(η) but χ′ 6∈ B(η) may be handled similarly. This
concludes our discussion of the final term in (10) for the time being.
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To handle the third term in (10) we use the zero density estimate∑
r≤R

N(σ, r, T )� (R2T )κ(σ)(1−σ), (15)

where

κ(σ) =

{
3

2−σ +$, 1
2 ≤ σ ≤

3
4

12
5 +$, 3

4 ≤ σ ≤ 1.
(16)

This follows from results of Huxley [5], Jutila [7; Theorem 1] and Montgomery
[14; Theorem 12.2]. For each fixed value of r′ we have∑

r

(ss′)$−1 ≤
∑
h|r′

(r′/h)$−1
∑
s≤P/h

s$−1

�
∑
h|r′

(r′/h)$−1(P/h)$

� N$.

The contribution of the third term in (10) to Sn is therefore

� PN1/2+5$m(R′, T ′)
∑
r′

I(r′).

However the bound (15) shows that

m(R′, T ′)
∑
r′

N(σ, r′, TN$)� max{1 , P

R′T ′
}(R′2N2$T ′N$)κ(σ)(1−σ).

Since
0 ≤ κ(σ)(1− σ) ≤ 1

in the range 1/2 +$ ≤ σ ≤ 1, this is

� (P 2N3$)κ(σ)(1−σ).

Moreover, if P ≤ N45/154−4$, then

(P 2N3$)κ(σ)(1−σ)Nσ−1 ≤ Nf(σ)

with

f(σ) = (
45

77
κ(σ)− 1)(1− σ)

≤ (
45

77
{12

5
+$} − 1)(1− σ)

≤ (
31

77
+$)(1− σ)

≤ (
31

77
+$)

1

2

≤ 31

154
+$.

It follows that the contribution of the third term in (10) to Sn is

� PN1/2+6$.N31/154+$ � N1−$.
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The second term may of course be handled similarly.
Finally we deal with the first term of (10) which produces a contribution to

Sn which is

� P 2N12$
∑
r,r′

(ss′)$−1

� P 2N12$
∑

ss′h≤P

(ss′)$−1

� P 2N12$
∑
ss′≤P

P (ss′)$−2

� P 3N12$

� N1−$,

for P ≤ N45/154−4$.
We summarize our conclusions thus far as follows.

Lemma 4 If P ≤ N45/154−4$ then

Sn ≤
∑

χ,χ′∈B(η)

Am(χ)Am(χ′)m−1/3n +O(e−$ηN(logN)−2).

To handle the characters in B(η) we use the zero-density estimate

N(σ, r, T )� (rT )κ(σ)(1−σ), (17)

with κ(σ) given by (16). This also follows from work of Huxley [5], Jutila [7;
Theorem 1] and Montgomery [14; Theorem 12.1]. Thus

m(R, T )N(σ, r, TN$) � max{1 , P

RT
}(rTN$)κ(σ)(1−σ)

� (PN2$)κ(σ)(1−σ)

� (PN2$)(12/5+$)(1−σ)

� N (1−$)(1−σ)

for P ≤ N45/154−4$. We deduce that

m(R, T )I(r)� (logN)−1.

It follows from (9) that

Am(χ)� N1/2(logN)−1.

We also note that

#B(η)�
∑
r

N(1− η

logN
, r,N)� (P 2N)3η/ logN � e6η,

by (15), since κ(σ) ≤ 3 for all σ. We therefore have the following facts.

Lemma 5 If χ ∈ B(η), we have Am(χ) � N1/2(logN)−1. Moreover, we have
#B(η)� e6η.
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We end this section by establishing Lemma 3. We shall suppose, as we may
by the symmetry, that

N2(R)N1(R′) ≤ N2(R′)N1(R). (18)

Let U ≥ 1 be a parameter whose value will be assigned in due course, see (19).
For those terms of the sum (11) in which ss′ ≥ U we plainly have a total

≤
∑
r≤R

∑
r′≤R′

N(σ, r, T )N(σ′, r′, T ′)U$−1 � N2(R)N2(R′)U$−1.

On the other hand, when ss′ < U we observe that, for fixed s, s′ we have∑
h

N(σ, hs, T )N(σ′, hs′, T ′) �
∑
h

N(σ, hs, T )N1(R′)

�
∑
r

N(σ, r, T )N1(R′)

� N2(R)N1(R′).

On summing over s and s′ we therefore obtain a total

� N2(R)N1(R′)
∑
ss′≤U

(ss′)$−1 � N2(R)N1(R′)U2$.

It follows that the sum (11) is

� N2(R){N2(R′)U2$−1 +N1(R′)U2$}.

We therefore choose
U = N2(R′)/N1(R′), (19)

whence the sum (11) is

� N2(R)N1(R′)U2$

� N2(R)N1(R′){N1(R)N2(R)N1(R′)N2(R′)}2$

� {N2(R)N1(R′)N2(R′)N1(R)}1/2{N1(R)N2(R)N1(R′)N2(R′)}2$

in view of (18). This produces the required bound.
To establish (13) we shall bound N1(R) and N1(R′) using (17). Moreover

to handle N2(R) and N2(R′) we shall use the estimate

∑
r≤R

N(σ, r, T )�
{

(R2T )κ(σ)(1−σ), 1
2 +$ ≤ σ ≤ 23

38

(R2T 6/5)λ(1−σ), 23
38 < σ ≤ 1,

where

λ =
20

9
+$.

This follows from (15) along with Heath-Brown [4; Theorem 2] and Jutila [7;
Theorem 1].
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We now see that the sum (12) may be estimated as

� m(R, T )RaT c.m(R′, T ′)R′
b
T ′
d
.Ne, (20)

say, where

a =

{
3κ(σ)(1− σ)( 1

2 + 2$), 1
2 + 3$ ≤ σ ≤ 23

38
{κ(σ) + 2λ}(1− σ)( 1

2 + 2$), 23
38 < σ ≤ 1,

and

c =

{
2κ(σ)(1− σ)( 1

2 + 2$), 1
2 + 3$ ≤ σ ≤ 23

38
{κ(σ) + 6λ/5}(1− σ)( 1

2 + 2$), 23
38 < σ ≤ 1,

and similarly for b and d. Moreover we may take

e = 6$(1− σ) + 6$(1− σ′).

It therefore follows that 0 ≤ c, d < 1, whence (20) is maximal for T = P/R
and T ′ = P/R′. Similarly we have a ≥ c and b ≥ d. Thus, after substituting
T = P/R and T ′ = P/R′ in (20), the resulting expression is increasing with
respect to R and R′, and hence is maximal when R = R′ = P . We therefore see
that (20) is

� P a+bNe.

Finally one can check that

(
45

154
− 4$)a ≤ (1− 7$)(1− σ),

and similarly for b. This suffices to establish the bound (13) for P ≤ N45/154−4$.

4 Summation Over Powers of 2

In this section we consider the major arc integral∫
M

S(α)2T (α)Ke(−αN)dα,

where we now assume N to be even. According to Lemmas 2 and 4 we have∫
M

S(α)2T (α)Ke(−αN)dα = Σ0 +O(e−$ηN(logN)−2Σ1)

+O(N(logN)−2Σ2), (21)

where
Σ0 =

∑
n

Jn(1, 1),

Σ1 =
∑
n

n

φ(n)

and
Σ2 =

∑
χ,χ′∈B(η)

∑
n

n

φ(n)
m−1/3n .
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In each case the sum over n is for values

n = N −
K∑
j=1

2νj . (22)

We begin by considering the main term Σ0. We put

T (β) =
∑

$N<m≤N

e(βm)

logm

and
R(β) = S(β)− T (β).

We also set

||R|| =
∫ P/N

−P/N
|R(β)|2dβ

and
J(n) =

∑
$<m1,m2<N

m1+m2=n

(logm1)−1(logm2)−1.

Then, as in Gallagher [3; (11)], we have

Jn(1, 1) = J(n)S(n) +O(N(logN)−2
n

φ(n)
d(n)

logP

P
)

+O(
n

φ(n)
{N1/2(logN)−1||R||+ ||R||2}), (23)

where

S(n) =
∏
p|n

(
p

p− 1
)
∏
p |/ n

(1− 1

(p− 1)2
).

In analogy to (6) we have

||R|| � PN4$ +
N1/2

logN

∑
ρ

Nβ−1 min{1 , P |γ|−1},

where the sum over ρ is for zeros of ζ(s) in the region

β ≥ 1

2
+ 3$, |γ| ≤ N.

We split the range for |γ| into O(1) overlapping intervals

T − 1 ≤ |γ| ≤ TN$,

and find, as in (8) that each range contributes

� PN4$ +N1/2 min{1 , P
T
}{N6$−1/2T +

∫ 1

1/2+3$

Nσ−1N(σ, 1, TN$)dσ}

to ||R||. Using the case R = 1 of (15), together with Vinogradov’s zero-free
region

σ ≥ 1− c0
(log T )3/4(log log T )3/4

13



(see Titchmarsh [16; (6.15.1)]), we find that this gives

||R|| � N1/2(logN)−10,

say, for P ≤ N45/154−4$. The error terms in (21) are therefore O(N(logN)−9).
We also note that

J(n) = (logN)−2#{m1,m2 : $N < m1,m2 ≤ N, m1 +m2 = n}
+O(N(logN)−3)

= (logN)−2R(n) +O(N(logN)−3),

where

R(n) =

 2N − n, (1 +$)N ≤ n ≤ 2N,
n− 2$N, 2$N ≤ n ≤ (1 +$)N,

0, otherwise.

In particular, we have R(N −m) = (1 − 2$)N(logN)−2 + O(m(logN)−2) for
1 ≤ m ≤ N . Since

S(n)� n

φ(n)
� log logN,

we find, on taking n of the form (22), that∑
n

J(n)S(n) = (1− 2$)N(logN)−2
∑
n

S(n) +O(N(logN)K−5/2)

for K ≥ 2, whence

Σ0 = (1− 2$)N(logN)−2
∑
n

S(n) +O(N(logN)K−5/2).

Since the numbers n are all even, we have

S(n) = 2C0

∏
p|n,p 6=2

p− 1

p− 2
= 2C0

∑
d|n

k(d),

where

C0 =
∏
p 6=2

(1− 1

(p− 1)2
) (24)

and k(d) is the multiplicative function defined by taking

k(pe) =

{
0, p = 2 or e ≥ 2,

(p− 2)−1, otherwise.
(25)

For any odd integer d we shall define ε(d) to be the order of 2 in the multiplicative
group modulo d, and we shall set

H(d;N,K) = #{(ν1, . . . , νK) : 1 ≤ νi ≤ ε(d), d|N −
∑

2νi}.

14



Then for any fixed D we have∑
n

S(n) = 2C0

∑
d

k(d)#{n : d|n}

≥ 2C0

∑
d≤D

k(d)#{n : d|n}

≥ 2C0

∑
d≤D

k(d)H(d;N,K)[L/ε(d)]K

≥ {1 +O((logN)−1)}2C0L
K
∑
d≤D

k(d)H(d;N,K)ε(d)−K .

We shall take D = 5. We trivially have ε(1) = 1 and H(1;N,K) = 1 for all N
and K. When d = 3 or d = 5 the powers of 2 run over all non-zero residues
modulo d, and it is an easy exercise to check that

H(d;N,K) =

{
1
d{(d− 1)K − (−1)K}, d |/N

1
d{(d− 1)K + (−1)K(d− 1)}, d|N.

Thus if K ≥ 9 we have

H(3;N,K)ε(3)−K ≥ 1

3
(1− 2−8)

and

H(5;N,K)ε(5)−K ≥ 1

5
(1− 4−8),

whence
2
∑
d≤D

k(d)H(d;N,K)ε(d)−K ≥ 2.7973

for any choice of N . We therefore conclude that

Σ0 ≥ 2.7973(1− 2$)C0N(logN)−2LK +O(N(logN)K−5/2), (26)

providing that K ≥ 9.
To bound Σ1 we note that

n

φ(n)
�

∏
p|n, p 6=2

(1 +
1

p
) =

∑
q|n, 2 |/ q

µ2(q)

q
.

We deduce that

Σ1 �
∑

q≤N, 2 |/ q

µ2(q)

q
#{n : q|n}.

However, if q is odd, then

#{ν : 0 ≤ ν ≤ L, 2ν ≡ m (mod q)} � 1 +
L

ε(q)
.

It follows that
#{n : q|n} � LK−1 + LK/ε(q),

whence

Σ1 � (logN)K + (logN)K
∑

q≤N, 2 |/ q

µ2(q)

qε(q)
.

To bound the final sum we call on the following simple result of Gallagher [3;
Lemma 4]

15



Lemma 6 We have ∑
ε(q)≤x

µ2(q)

φ2(q)
q � log x.

From this we deduce that ∑
x/2<ε(q)≤x

µ2(q)

qε(q)
� log x

x
. (27)

We take x to run over powers of 2 and sum the resulting bounds to deduce that∑
q≤N, 2 |/ q

µ2(q)

qε(q)
� 1,

and hence that
Σ1 � (logN)K . (28)

Turning now to Σ2, we fix a particular pair of characters χ, χ′ ∈ B(η), and
investigate ∑

n

n

φ(n)
m−1/3n = Σ2(χ, χ′),

say. Let m = [r, r′] as usual, and write m = 2µf , with f odd. Put g = (f, n) so
that

mn ≥ fn = f/g, (29)

and consider ∑
g|n

n

φ(n)
.

As before we have
n

φ(n)
�

∑
q|n, 2 |/ q

µ2(q)

q
.

Terms q with q ≥ d(n) can contribute at most 1 in total, so that in fact

n

φ(n)
�

∑
q|n, 2 |/ q,q≤d(n)

µ2(q)

q
.

Thus, if
D = max

1≤n≤N
d(n),

we deduce as before that∑
g|n

n

φ(n)
�

∑
q≤D, 2 |/ q

µ2(q)

q
#{n : [g, q]|n}

�
∑

q≤D, 2 |/ q

µ2(q)

q
{(logN)K−1 +

(logN)K

ε([g, q])
}.

Here we note that ∑
q≤D

q−1 � logD � logN

log logN
.
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To deal with the remaining terms let ξ be a positive parameter. Then∑
ε(q)>ξ

µ2(q)

qε([g, q])
≤

∑
ε(q)>ξ

µ2(q)

qε(q)

� log ξ

ξ
,

by (27). If ε(q) ≤ ξ we note that

q ≤ 2ε(q) − 1, for q > 1, (30)

so that q ≤ 2ξ. Thus ∑
ε(q)≤ξ

µ2(q)

qε([g, q])
≤

∑
q≤2ξ

µ2(q)

qε(g)

≤ ξ

ε(g)
.

On choosing ξ =
√
ε(g) we therefore conclude that∑

2 |/ q

µ2(q)

qε([g, q])
� log ε(g)√

ε(g)
,

and hence that∑
g|n

n

φ(n)
� (logN)K{(log logN)−1 + ε(g)−1/3}.

It follows from (30) that ε(g)� log g, and we now conclude that∑
g|n

n

φ(n)
� (logN)K{(log logN)−1 + (log g)−1/3}.

We now observe from (29) that

Σ2(χ, χ′) ≤
∑
n

n

φ(n)
(

f

(f, n)
)−1/3.

Let τ ≥ 1 be a parameter to be fixed in due course. Then terms in which
(f, n) ≤ f/τ contribute

≤ τ−1/3
∑
n

n

φ(n)
= τ−1/3Σ1 � τ−1/3(logN)K ,

by (28). The remaining terms contribute

≤
∑

g|f, g≥f/τ

(f/g)−1/3
∑
g|n

n

φ(n)

�
∑

g|f, g≥f/τ

(f/g)−1/3(logN)K{(log logN)−1 + (log g)−1/3}

�
∑

g|f, g≥f/τ

(logN)K{(log logN)−1 + (log f)−1/3}

�
∑

j|f, j≤τ

(logN)K{(log logN)−1 + (log f)−1/3}

� τ(logN)K{(log logN)−1 + (log f)−1/3}.
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We deduce that

Σ2(χ, χ′)� τ−1/3(logN)K + τ(logN)K{(log logN)−1 + (log f)−1/3}.

We therefore choose

τ = {(log logN)−1 + (log f)−1/3}−3/4,

whence
Σ2(χ, χ′)� (logN)K{(log logN)−1/4 + (log f)−1/12}. (31)

In order to bound f from below we note that, since χ, χ′ are not both trivial,
we may suppose that χ, say, is non-trivial. We then use a result of Iwaniec
[6; Theorem 2]. This shows that if L(β + iγ, χ) = 0, with |γ| ≤ N , and χ of
conductor r ≤ N , then either χ is real, or

1− β � {log d+ (logN log logN)3/4}−1,

where d is the product of the distinct prime factors of r. In our application we
clearly have f ≥ d/2, so that if χ, say, is in B(η) we must have

η

logN
� {log f + (logN log logN)3/4}−1

if χ is not real. Thus, if we insist that η ≤ (logN)1/5 it follows that either

log f � η−1 logN � (logN)4/5,

or χ is real. Of course if χ is real we will have 16 |/ r, whence f � r. Moreover
we will also have

(logN)4/5 � η

logN
� 1− β � r$−1/2,

so that f � r � (logN)3/2. Thus in either case we find that log f � log logN ,
so that (31) yields

Σ2(χ, χ′)� (logN)K(log logN)−1/12.

In view of the bound for #B(η) given in Lemma 5, we conclude that

Σ2 � e12η(logN)K(log logN)−1/12. (32)

We may now insert the bounds (26), (28) and (32) into (21) to deduce that∫
M

S(α)2T (α)Ke(−αN)dα ≥ 2.7973(1− 2$)C0N(logN)−2LK

+O(N(logN)K−5/2)

+O(e−$ηN(logN)K−2)

+O(e12ηN(logN)K−2(log logN)−1/12).

We therefore define η by taking

eη = (log logN)1/145,

so that η satisfies the condition (14), and conclude as follows.

Lemma 7 If p ≤ N45/154−4$ and K ≥ 9 we have∫
M

S(α)2T (α)Ke(−αN)dα ≥ 2.7973(1− 3$)C0N(log 2)−2LK−2

for large enough N .
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5 A Mean Square Estimate

In this section we shall estimate the mean square

J(m) =

∫
m

|S(α)T (α)|2dα,

where m = [0, 1] \M is the set of minor arcs. Instead of this integral, previous
researchers have worked with the larger integral

J =

∫ 1

0

|S(α)T (α)|2dα.

Thus it was shown by Li [9; Lemma 6], building on work of Liu, Liu and Wang
[13; Lemma 4] that

J ≤ (24.95 + o(1))
C0

log2 2
N,

In this section we shall improve on this bound, and give a lower bound for the
corresponding major arc integral

J(M) =

∫
M

|S(α)T (α)|2dα.

By subtraction we shall then obtain our bound for J(m).
We begin by observing that

J =
∑
µ,ν≤L

r(2µ − 2ν),

where
r(n) = #{$N < p1, p2 ≤ N : n = p1 − p2}.

Moreover, by Theorem 3 of Chen [2] we have

r(n) ≤ C0C1h(n)
N

(logN)2
,

for n 6= 0 and N sufficiently large, where C0 is given by (24),

C1 = 7.8342, (33)

and

h(n) =
∏

p|n, p>2

(
p− 1

p− 2
).

Observe that our notation for the constants that occur differs from that used
by Liu, Liu and Wang, and by Li. Since h(2µ − 2ν) = h(2µ−ν − 1) for µ > ν we
conclude, as in Liu, Liu and Wang [13; §3] and Li [9; §4] that∑

µ6=ν≤L

r(2µ − 2ν) ≤ 2C0C1
N

(logN)2

∑
1≤l≤L

(L− l)h(2l − 1), (34)

while the contribution for µ = ν is Lπ(N)−Lπ($N) ≤ LN(logN)−1, for large
N . Now

h(n) =
∑
d|n

k(d),
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where k(d) is the multiplicative function defined in (25). Thus

∑
1≤j≤J

h(2j − 1) =

∞∑
d=1

k(d)#{j ≤ J : d|2j − 1}

=

∞∑
d=1

k(d)[
J

ε(d)
].

However [θ] = θ +O(θ1/2) for any real θ > 0, whence∑
1≤j≤J

h(2j − 1) = C2J +O(J1/2) (35)

with

C2 =

∞∑
d=1

k(d)

ε(d)
. (36)

Here we use the observation that the sum

∞∑
d=1

k(d)

ε(d)1/2

is convergent, since Lemma 6 implies that∑
x/2<ε(d)≤x

k(d)

ε(d)1/2
� x−1/2

∑
x/2<ε(d)≤x

µ2(d)d

φ2(d)
� log x

x1/2
(37)

for any x ≥ 2.
We may now use partial summation in conjunction with (35) to deduce that∑

1≤l≤L

(L− l)h(2l − 1) = C2
L2

2
+O(L3/2),

Thus, using (34) we reach the following result.

Lemma 8 We have

J ≤ {C0C1C2

log2 2
+

1

log 2
+ o(1)}N,

with the constants given by (24), (33) and(36).

We now turn to the integral J(M). According to Lemma 3.1 of Vaughan
[17], if

|α− a

q
| ≤ log x

x
, (a, q) = 1,

and q ≤ 2 log x, we have∑
p≤x

e(αp) log p =
µ(q)

φ(q)
v(α− a

q
) +O(x(log x)−3),

with
v(β) =

∑
m≤x

e(βm).
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It follows by partial summation that

S(α) =
µ(q)

φ(q)
w(α− a

q
) +O(N(logN)−4),

with

w(β) =
∑

$N<m≤N

e(βm)

logm
,

providing that

|α− a

q
| ≤ logN

N
, (a, q) = 1 (38)

and q ≤ logN . Then if a denotes the set of α ∈ [0, 1] for which such a, q exist,
we easily compute that

J(M) ≥ J(a)

=

∫
a

|µ(q)

φ(q)
w(α− a

q
)T (α)|2dα+O(N(logN)−1),

where, for each α ∈ a, we have taken a/q to be the unique rational satisfying
(38). By partial summation we have

w(β)� (||β|| logN)−1,

whence∫ (logN)/N

−(logN)/N

|w(β)T (
a

q
+ β)|2dβ =

∫ 1/2

−1/2
|w(β)T (

a

q
+ β)|2dβ +O(N(logN)−1).

It follows that

J(a) =
∑

q≤logN

∑
(a,q)=1

µ2(q)

φ2(q)

∫ 1

0

|w(β)T (
a

q
+ β)|2dβ +O(N(logN)−1 log logN).

The integral on the right is∑
0≤µ,ν≤L

e(a(2µ − 2ν)/q)S(2µ − 2ν),

where

S(n) =
∑

$N<m1,m2≤N

m1−m2=n

(logm1)−1(logm2)−1

= (logN)−2#{m1,m2 : $N < m1,m2 ≤ N, m1 −m2 = n}
+O(N(logN)−3)

= (logN)−2 max{N(1−$)− |n| , 0}+O(N(logN)−3).

Thus

S(n) = (1−$)N(logN)−2 +O(|n|(logN)−2) +O(N(logN)−3) (39)
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for n� N . On summing over a we now obtain

J(a) =
∑

0≤µ,ν≤L

∑
q≤logN

µ2(q)

φ2(q)
cq(2

µ − 2ν)S(2µ − 2ν) +O(N(logN)−1 log logN),

where cq(n) is the Ramanujan sum. When q is square-free we have cq(n) =
µ(q)µ((q, n))φ((q, n)). Thus the error terms in (39) make a total contribution
O(N(logN)−1 log logN) to J(a). Moreover

µ2(q)cq(n) = µ(q)
∑
d|(q,n)

µ(d)d,

whence∑
0≤µ,ν≤L

µ2(q)cq(n) = µ(q)
∑
d|q

µ(d)d#{µ, ν : 1 ≤ µ, ν ≤ L, d|2µ − 2ν}.

If d is odd we have

#{µ, ν : 1 ≤ µ, ν ≤ L, d|2µ − 2ν} = L2ε(d)−1 +O(L),

while if d is even, of the form 2e with e odd, we have

#{µ, ν : 1 ≤ µ, ν ≤ L, d|2µ − 2ν} = L2ε(e)−1 +O(L).

The error terms contribute O(N(logN)−1 log logN) to J(a), by (39), so that

J(a) =
(1−$)N

(logN)2
L2

∑
q≤logN

µ(q)

φ2(q)

∑
d|q

µ(d)dε(d)−1 +O(N(logN)−1 log logN),

where ε(d) is to be interpreted as ε(e) when d = 2e. Now∑
q≤logN

µ(q)

φ2(q)

∑
d|q

µ(d)d

ε(d)
=

∑
d≤logN

µ(d)d

ε(d)

∑
q≤logN

d|q

µ(q)

φ2(q)

=
∑

d≤logN

µ(d)d

ε(d)

∑
j≤(logN)/d

µ(jd)

φ2(jd)

=
∑

d≤logN

µ2(d)d

ε(d)φ2(d)

∑
j≤(logN)/d

(j,d)=1

µ(j)

φ2(j)

=
∑

d≤logN

µ2(d)d

ε(d)φ2(d)
{

∞∑
j=1

(j,d)=1

µ(j)

φ2(j)
+O(

d

logN
)}

=
∑

d≤logN

µ2(d)d

ε(d)φ2(d)

∏
p |/ d

{1− (p− 1)−2}

+O((logN)−1
∑

d≤logN

µ2(d)d2

ε(d)φ2(d)
). (40)
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If d = 2e with e odd, we have

µ2(d)d

ε(d)φ2(d)

∏
p |/ d

{1− (p− 1)−2} = 2C0k(e)/ε(d),

while if d is odd we have ∏
p |/ d

{1− (p− 1)−2} = 0,

since the factor with p = 2 vanishes. Moreover∑
d�logN

k(d)

ε(d)
� logN

log logN

by Lemma 6, applied as in (37). The leading term in (40) is therefore 2C0C2 +
o(1), with C0 and C2 as in (24) and (36).

To bound the error term we use Lemma 6, which shows that∑
X<d≤2X

x<ε(d)≤2x

µ2(d)d2

ε(d)φ2(d)
� X log x

x
.

According to (30) we must have x � logX, so on summing as x runs over
powers of 2 we obtain ∑

X<d≤2X

µ2(d)d2

ε(d)φ2(d)
� X log logX

logX
.

Now, summing as X runs over powers of 2 we conclude that∑
d≤logN

µ2(d)d2

ε(d)φ2(d)
� (logN)(log log logN)

log logN
.

We may therefore summarize our results as follows.

Lemma 9 We have

J(M) ≥ {2(1−$)C0C2

log2 2
+ o(1)}N,

and hence

J(m) ≤ {C0(C1 − 2 + 2$)C2

log2 2
+

1

log 2
+ o(1)}N,

by Lemma 8.

It remains to compute the constants. We readily find∏
2<p≤200000

(1− (p− 1)−2) = 0.6601...
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Since ∏
p>K

(1− (p− 1)−2) ≥
∞∏
n=K

(1− n−2) = 1−K−1,

we deduce that
C0 ≥ 0.999995× 0.6601 ≥ 0.66. (41)

However the estimation of C2 is more difficult. We set

m =
∏
e≤x

(2e − 1)

and
s(x) =

∑
ε(d)≤x

k(d),

whence

s(x) ≤
∑
d|m

k(d)

= h(m)

=
∏

p|m, p>2

(
p− 1

p− 2
)

≤
∏
p>2

(
(p− 1)2

p(p− 2)
)
∏
p|m

(
p

p− 1
)

= C−10

m

φ(m)
.

Moreover we have m/φ(m) ≤ eγ log x for x ≥ 9, as shown by Liu, Liu and Wang
[13; (3.9)]. It then follows that

C2 =

∫ ∞
1

s(x)
dx

x2

=

∫ M

1

s(x)
dx

x2
+

∫ ∞
M

s(x)
dx

x2

≤
∑

ε(d)≤M

∫ M

ε(d)

k(d)
dx

x2
+ C−10 eγ

∫ ∞
M

log x
dx

x2

≤
∑

ε(d)<M

k(d)(
1

ε(d)
− 1

M
) + 2.744(

1 + logM

M
)

for any integer M ≥ 9.
We now set ∑

ε(d)=e

k(d) = κ(e)

so that ∑
e|d

κ(e) =
∑
ε(e)|d

k(e).
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However ε(e)|d if and only if e|2d − 1. Thus∑
e|d

κ(e) =
∑
e|2d−1

k(e) = h(2d − 1).

We therefore deduce that

κ(e) =
∑
d|e

µ(e/d)h(2d − 1).

This enables us to compute∑
ε(d)<M

k(d)(
1

ε(d)
− 1

M
) =

∑
m<M

κ(m)(
1

m
− 1

M
)

by using information on the prime factorization of 2d − 1 for d < M . In partic-
ular, taking M = 20 we find that∑

m<20

κ(m)(
1

m
− 1

20
) = 1.6659 . . . ,

and hence that

C2 ≤
∑
m<20

κ(m)(
1

m
− 1

20
) + 2.744(

1 + log 20

20
) = 2.2141 . . . (42)

For comparison with this upper bound for C2 we note that

C2 ≥
∑

d≤10000

k(d)/ε(d) = 1.9326 . . .

This latter figure is probably closer to the true value, but the discrepancy is
small enough for our purposes.

From (33), (41) and (42) we calculate that

(C1 − 2)C2 + C−10 log 2 ≤ 13.967,

so that Lemma 9 yields the following bound.

Lemma 10 We have

J(m) ≤ {13.968 + o(1)}C0
N

log2 2
.

6 Completion of the Proof

Let R(N) denote the number of representations of N as a sum of two primes
and K powers of 2 in the ranges under consideration, so that

R(N) =

∫ 1

0

S(α)2T (α)Ke(−αN)dα.
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We estimate the minor arc contribution to R(N) by using Hölder’s inequality
as follows. We have

|
∫
m

S(α)2T (α)Ke(−αN)dα|

≤
∫
m

|S(α)2T (α)K |dα

≤ (sup
α∈m
|S(α)|)2µ(

∫
m

|T (α)|2qdα)µ(

∫
m

|S(α)T (α)|2dα)ν

≤ (sup
α∈m
|S(α)|)2µI(q)µJ(m)ν , (43)

where

µ =
K − 2

2q − 2
, ν =

2q −K
2q − 2

.

We shall apply this bound with

q = [ξ−1 logN ]

for a suitably chosen positive constant ξ, see (44).
According to Theorem 3.1 of Vaughan [17] we have∑

p≤x

e(αp) log p� (log x)4{xq−1/2 + x4/5 + x1/2q1/2}

if |α − a/q| ≤ q−2 with (a, q) = 1. Thus if α ∈ m we may take P � q � N/P
to deduce that

S(α)� (logN)3{N4/5 +NP−1/2}.

Taking P = N45/154−4$, we obtain

S(α)� N263/308+3$.

If one assumes the Generalized Riemann Hypothesis, we may apply Lemma
12 of Baker and Harman [1], which implies that∑
n≤x

Λ(n)e((
a

q
+ β)n)� (log x)2{q−1 min(x, |β|−1) + x1/2q1/2 + x(q|β|)1/2}

when |β| ≤ x−1/2. It follows by partial summation that

S(
a

q
+ β)� (logN){q−1 min(N, |β|−1) +N1/2q1/2 +N(q|β|)1/2}

for |β| ≤ N−1/2. According to Dirichlet’s Approximation Theorem, we can find
a and q with

|α− a

q
| ≤ 1

qN1/2
, q ≤ N1/2.

Thus
S(α)� (logN)N3/4

unless q ≤ N1/4 and |α−a/q| ≤ q−1N−3/4. Since α ∈ m and P = N45/154−4$ ≥
N1/4, these latter conditions cannot hold.
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We therefore conclude that

S(α)� Nθ+o(1)

for α ∈ m, where we take θ = 263/308 in general, and θ = 3/4 under the
Generalized Riemann Hypothesis. Thus

(sup
α∈m
|S(α)|)2µ ≤ (1 + o(1)) exp(θ(K − 2)ξ).

From (2) and Lemma 1 we see that

I(q)µ ≤ (1 + o(1)){(q
e

)q(1.753)qLq}µ

= (1 + o(1)){q
e

(1.753)L}qµ

= (1 + o(1)){q
e

(1.753)L}(K−2)/2

= (1 + o(1)){1.753 log 2

ξe
}(K−2)/2LK−2.

Moreover Lemma 10 yields

J(m)ν ≤ (1 + o(1))13.968
C0

log2 2
Nν

= (1 + o(1))13.968
C0

log2 2
N exp(−ξ(K − 2)/2).

On combining these estimates we see from (43) that

|
∫
m

S(α)2T (α)Ke(−αN)dα| ≤ (1 + o(1))13.968
C0

log2 2
NLK−2λ(K−2)/2,

where

λ = e(2θ−1)ξ
1.753 log 2

ξe
.

We minimize λ by choosing

ξ = (2θ − 1)−1, (44)

so that
λ = (2θ − 1)1.753 log 2

and

|
∫
m

S(α)2T (α)Ke(−αN)dα|

≤ (1 + o(1))13.968
C0

log2 2
NLK−2{(2θ − 1)1.753 log 2}(K−2)/2.

Finally we compare this with the estimate for the major arc integral, given
by Lemma 7, and conclude that∫ 1

0

S(α)2T (α)Ke(−αN)dα > 0

providing that N is large enough, $ is small enough, and

13.968{(2θ − 1)1.753 log 2}(K−2)/2 < 2.7973. (45)

When θ = 263/308 this is satisfied for K > 23.4, so that K = 24 is admissible.
Similarly, when θ = 3/4 one can take any K > 8.5, so that K = 9 is admissible.
This completes the proof of our theorems, subject to Lemma 1.
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7 The Proof of Lemma 1 — First Steps

We begin by recalling that r(n, q,N) is the number of representations of an
integer n as a sum of q terms 2ν ≤ N/2K, and that

r(q) = max
n,N

r(n, q,N).

It might seem that the above maximum should be attained for an integer n
which is a sum of q distinct powers of 2, and that one should therefore have
r(q) = q!. Unfortunately this simple conjecture is false, since for q = 4 one has

36 = 32 + 2 + 1 + 1 = 16 + 8 + 8 + 4 = 16 + 16 + 2 + 2,

whence r(36, 4, 32) = 30, after allowing for re-orderings of the above represen-
tations.

In fact the behaviour of r(q) is determined by the properties of a slightly
simpler counting function, R(q), defined as the number of representations of
the number 1 as a sum of q negative powers of 2. We adopt the convention
that R(0) = 0. Numerical computation shows that R(1) = 1, R(2) = 1, R(3) =
3, R(4) = 13, . . ., and it is not hard to see that R(q) is always finite.

The following result expresses the connection between the two functions.

Lemma 11 We have

r(q) = max
h≤q

∑
q1+...+qh=q

R(q1) . . . R(qh)

(
q

q1 . . . qh

)
,

where (
q

q1 . . . qh

)
=

q!

q1! . . . qh!
.

To prove Lemma 11 we first suppose that the maximum on the right is
attained at a particular value for h, and that all the relevant negative powers of
2 which occur in the corresponding counting functions R(qi) take the form 2−ν

with ν < d, say. We now consider the integer

n = 2d + 22d + . . .+ 2hd. (46)

For each set of values q1, . . . , qh for which q1 + . . .+ qh = q, there are(
q

q1 . . . qh

)
ways to split the integers 1, . . . , q into sets S1, . . . , Sh of cardinalities q1, . . . , qh.
Moreover each power 2jd may be decomposed into qj non-negative powers of 2
in R(qj) ways. If

2jd =
∑

1≤i≤qj

2νij (47)

is such a representation, we may define the sequence µ1, . . . , µq by taking µk =
νij when k ∈ Sj and k is the i-th largest element of Sj . We then have

n =
∑

2µk . (48)
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Moreover different representations (47) will lead to different solutions of (48).
It therefore follows that

r(q) ≥ max
h≤q

∑
q1+...+qh=q

R(q1) . . . R(qh)

(
q

q1 . . . qh

)
.

To prove the reverse inequality we use the following fact.

Lemma 12 Let

n = 2a + 2b + . . .+ 2c (a > b > . . . > c ≥ 0)

be the binary representation of a positive integer n, and let

n =
∑
ν∈S

2ν

for some finite set of non-negative integers S. Then there is a subset T of S
such that

2a =
∑
ν∈T

2ν .

We shall prove this later in this section. Now suppose that r(n, q,N) = r(q),
and let

n = 2a1 + . . .+ 2ah

be the binary representation of n. It then follows via repeated applications of
Lemma 12 that, given any expression

n = 2ν1 + . . .+ 2νq ,

we may partition the integers ν1, . . . , νq into sets T1, . . . , Th such that

2aj =
∑
i∈Tj

2i. (49)

If we set qj = #Tj we see that each such relation contributes a solution to R(qj).
It is thus easy to see that

r(q) = r(n, q,N) ≤
∑

q1+...+qh=q

R(q1) . . . R(qh)

(
q

q1 . . . qh

)
.

This completes the proof of Lemma 11, subject to Lemma 12.
We remark that there is potentially some loss in our argument in employing

Lemma 11. In order to achieve equality in the lemma we have considered an
integer (46) for which the exponents are well-spaced. In general we might expect
a certain amount of overlap between the representations (49) with nearby values
of aj .

We now establish Lemma 12. Since n < 2a+1 we have ν ≤ a for all ν ∈ S.
Choose T ⊆ S so that

∑
ν∈T 2ν = Σ, say, is minimal, subject to having Σ ≥ 2a.

Then if µ is a minimal element of T we will have Σ− 2µ < 2a ≤ Σ. Thus∑
ν∈T

2ν−µ − 1 < 2a−µ ≤
∑
ν∈T

2ν−µ.
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However the expressions above are all integers, so that we must have 2a−µ =∑
ν∈T 2ν−µ. The lemma then follows.
Our next result shows how information on the size of R(q) leads to a bound

for r(q).

Lemma 13 Suppose that ρ is a positive real root of the equation

∞∑
q=1

R(q)

q!
x−q = 1. (50)

Then r(q) ≤ ρqq! for all q ∈ N.

For the proof it will be convenient to write

f(q) =
R(q)

q!
.

From Lemma 11 we have

r(q) ≤
∑

1≤h≤q

∑
q1+...+qh=q

R(q1) . . . R(qh)

(
q

q1 . . . qh

)
,

whence r(q) ≤ r0(q)q!, where

r0(q) =
∑

1≤h≤q

∑
q1+...+qh=q

f(q1) . . . f(qh).

We may rewrite this as

r0(q) =
∑

1≤h≤q

∑
qh

f(qh)
∑

q1+...+qh−1=q−qh

f(q1) . . . f(qh−1)

= f(q) +

q−1∑
m=1

f(m)r0(q −m).

Here the term f(q) arises from the case h = 1. If we define r0(0) = 1 we
therefore have a recurrence relation

r0(q) =

q∑
m=1

f(m)r0(q −m), (51)

valid for all q ≥ 1.
We may now prove that r0(q) ≤ ρq, using induction on q. This will suffice

for Lemma 13. The claim is trivial for q = 0. Assuming that r0(n) ≤ ρn for
0 ≤ n < q we deduce from (51) that

r0(q) ≤
q∑

m=1

f(m)ρq−m

≤ ρq
∞∑
m=1

f(m)ρ−m

= ρq,

by definition of ρ. This completes the induction, and with it, the proof of Lemma
13.
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8 Proof of Lemma 1 — Bounds for f(m)

It is clear from Lemma 13 that our remaining task is to estimate from above
the positive root of the equation (50). This will require upper bounds for the
numbers f(m). We will consider two different ranges for m. For m ≤ 20, we
shall compute f(m) precisely, and for m ≥ 21 we shall use a recursive estimate
to bound f(m).

Our primary tool in studying the function R(q) will be the use of “splitting
sequences”. Suppose that we have an ordered representation

1 = 2−e1 + . . .+ 2−eq .

From this we produce the corresponding un-ordered representation

1 = 2−f1 + . . .+ 2−fq , f1 ≤ . . . ≤ fq. (52)

We introduce the notation (a0, a1, . . . , ak) for this un-ordered representation,
where

ai = #{j : fj = i}

and k = fq. Clearly we have q =
∑
ai. Moreover we have ak ≥ 2 except for the

trivial representation 1 = 2−0 given by the sequence (1). (There should be no
confusion between this notation for a sequence, and references to equation (1) in
§1.) From any decomposition (a0, . . . , ak) with q ≥ 2 we can produce a “derived”
representation (a0, . . . , ak−2, ak−1+1, ak−2) (if ak > 2) or (a0, . . . , ak−2, ak−1+
1) (if ak = 2). Set gq−1 = 1 in the first case and gq−1 = 0 in the second. We
now repeat the process with the derived representation, and set gq−2 = 1 or 0
accordingly. We continue this process until we reach the trivial representation
(1). The sequence [g1, . . . , gq−1] will be called the “splitting sequence” of the
un-ordered decomposition (52).

As an example we may start with

1

4
+

1

4
+

1

4
+

1

16
+

1

16
+

1

16
+

1

16
; (0, 0, 3, 0, 4). (53)

The derived representation is

1

4
+

1

4
+

1

4
+

1

8
+

1

16
+

1

16
; (0, 0, 3, 1, 2),

whence g6 = 1. The next derived representation is

1

4
+

1

4
+

1

4
+

1

8
+

1

8
; (0, 0, 3, 2),

whence g5 = 0. This is followed by

1

4
+

1

4
+

1

4
+

1

4
; (0, 0, 4),

with g4 = 0. We then have

1

2
+

1

4
+

1

4
; (0, 1, 2),
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where g3 = 1. Next is
1

2
+

1

2
; (0, 2),

giving g2 = 0. Finally we come down to

1

1
; (1),

so that g1 = 0. Thus the splitting sequence is [0, 0, 1, 0, 0, 1].
A key fact is that this process may be reversed, knowing the splitting se-

quence, since the value of gi tells us whether to split the final term or a term
of penultimate size. Thus in our example, given that g3 = 1, the sequence from
which

1

2
+

1

4
+

1

4
; (0, 1, 2)

was derived must be the result of splitting 1/2 into 1/4 + 1/4. It follows that
un-ordered decompositions are uniquely determined by their splitting sequences.
However not every sequence of 0’s and 1’s is a splitting sequence. Clearly we
must have g1 = g2 = 0, but there are other necessary conditions. Thus, for
example, [0, 0, 1, 1] is not a splitting sequence.

We are now ready to explain our procedure for computing R(q) explicitly.
We shall define R(q, a, b) as the number of ordered representations for which
the corresponding un-ordered decomposition takes the form (a0, a1, . . . , ak) with
ak−1 = a and ak = b. When q ≥ 2 and b = 2 the derived sequence will contribute
to R(q − 1, c, a + 1) for some c. Since we are counting ordered representations
we must allow for q(q − 1)/2 possible locations for the two powers 2−ak , and
also q − 1 locations for the newly created term 2−ak−1 . Finally, this new term
is one of a+ 1 such terms in the representation counted by R(q− 1, c, a+ 1). It
therefore follows that

R(q, a, 2) =
q(q − 1)

2

a+ 1

q − 1

q−a−2∑
c=0

R(q − 1, c, a+ 1)

=
q(a+ 1)

2

q−a−2∑
c=0

R(q − 1, c, a+ 1). (54)

We may analyse R(q, a, b) when b > 2 in a similar way, to derive the recurrence
formula

R(q, a, b) =
q(q − 1)

2

2

b(b− 1)

a+ 1

q − 1
R(q − 1, a+ 1, b− 2)

=
q(a+ 1)

b(b− 1)
R(q − 1, a+ 1, b− 2), (b > 2). (55)

Finally we note that R(q) is the sum of R(q, a, b) for all available a and b.
Using these recursion formulae we may calculate R(q, a, b) for all a, b, and

for all q ≤ 20. Summing the resulting values we obtain the following table.
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Table 1

f(1) = 1.000 . . . , f(2) = 0.500 . . . , f(3) = 0.500 . . . ,
f(4) = 0.541 . . . , f(5) = 0.625 . . . , f(6) = 0.729 . . . ,
f(7) = 0.862 . . . , f(8) = 1.022 . . . , f(9) = 1.217 . . . ,
f(10) = 1.449 . . . , f(11) = 1.727 . . . , f(12) = 2.059 . . . ,
f(13) = 2.455 . . . , f(14) = 2.928 . . . , f(15) = 3.492 . . . ,
f(16) = 4.165 . . . , f(17) = 4.968 . . . , f(18) = 5.924 . . . ,
f(19) = 7.066 . . . , f(20) = 8.428 . . . .

We turn next to the large values of q. Let [g1, . . . , gq−1] be the splitting
sequence of the un-ordered decomposition (52), and suppose that the sequence
contains exactly l elements for which gi = 0, namely

gi1 = . . . = gil = 0, i1 < . . . < il.

We shall write hj = ij+1−ij−1 for 1 ≤ j ≤ l−1, and hl = q−1−il. Thus in our
example (53) we have the splitting sequence [0, 0, 1, 0, 0, 1], whence h1 = 0, h2 =
1, h3 = 0 and h4 = 1. It is then apparent that for an un-ordered decomposition
(a0, a1, . . . , ak) we have k = l. Moreover we have aj = 2hj − hj+1 + 1 for
1 ≤ j ≤ l − 1, and al = 2hl + 2. We note in particular that any splitting
sequence must satisfy h1 = 0 and hj+1 ≤ 2hj + 1 for 1 ≤ j ≤ l − 1, since we
must have aj ≥ 0.

The un-ordered decomposition (a0, a1, . . . , ak) produces

q!

a0! . . . ak!

ordered representations, so that the unordered decompositions with splitting
sequence [g1, . . . , gq−1] will contribute exactly

1

(2hk + 2)!

k−1∏
j=1

1

(2hj − hj+1 + 1)!

to f(q). When q ≥ 3 we shall write S(q) for the total contribution from all
splitting sequences in which hk = 0, so that

S(q) =
1

2

q−1∑
k=2

∑
h1+...+hk−1=q−1−k

k−1∏
j=1

1

(2hj − hj+1 + 1)!
.

Here we adopt the natural convention that 1/m! = 0 if m is a negative integer.
Moreover we take h1 = hk = 0 and hj ≥ 0 for 2 ≤ j ≤ k − 1. Alternatively
we may write S(q) in terms of the function R(q, a, b) defined in the previous
section. This produces

S(q) =
1

q!

∑
a≥0

R(q, a, 2). (56)

Similarly, when q ≥ 3 we shall write T (q) for the contribution to f(q) corre-
sponding to splitting sequences for which hk > 0, so that

f(q) = S(q) + T (q). (57)
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The definition of T (q) gives us the formula

T (q) =

q−1∑
k=2

∑
hk>0

1

(2hk + 2)!

∑
h1+...+hk=q−1−k

k−1∏
j=1

1

(2hj − hj+1 + 1)!
.

Here we take h1 = 0. We now assume that r ≥ 4 and put k = l−1 and q = r−1
in the above expression, whence

T (r − 1) =

r−1∑
l=3

∑
h1+...+hl−1=r−1−l

hl−1>0

1

(2hl−1 + 2)!

l−2∏
j=1

1

(2hj − hj+1 + 1)!
.

Since 2hl−1 + 2 ≥ 4 for hl−1 ≥ 1 it follows that

T (r − 1) ≤ 1

4

r−1∑
l=3

∑
h1+...+hl−1=r−1−l

hl−1>0

1

(2hl−1 + 1)!

l−2∏
j=1

1

(2hj − hj+1 + 1)!

≤ 1

4

r−1∑
l=2

∑
h1+...+hl−1=r−1−l

1

(2hl−1 + 1)!

l−2∏
j=1

1

(2hj − hj+1 + 1)!

=
1

4

r−1∑
l=2

∑
h1+...+hl−1=r−1−l

l−1∏
j=1

1

(2hj − hj+1 + 1)!

where we now assume that h1 = hl = 0. It therefore follows that

T (r − 1) ≤ 1

2
S(r), r ≥ 4. (58)

We shall now estimate R(q, a, 2) from above, so that f(q) can be bounded
using (57), (58) and (56). We begin by noting that R(q, a, b) = 0 unless b and
a+ b/2 are even. Now (54) becomes

R(q, 2h+ 1, 2) = q(h+ 1)

q−2h−3∑
c=0

R(q − 1, c, 2h+ 2),

while repeated application of (55) yields

R(q − 1, c, 2h+ 2) =
(q − 1)!

(q − 1− h)!

(c+ h)!

c!

2!

(2h+ 2)!
R(q − 1− h, c+ h, 2).

If we now set

s(q, h) =
(2h+ 1)!

q!
R(q, 2h+ 1, 2) (59)

we deduce that

s(q, h) =
∑

2|c+h−1

1

c!
s(q − 1− h, c+ h− 1

2
)

=
∑
l≥0

1

(2l − h+ 1)!
s(q − 1− h, l), (60)
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with the usual convention that 1/m! = 0 for m < 0.
We proceed to prove an estimate of the form

s(q, h) ≤ Cµqνh, (0 ≤ h ≤ q), (61)

for all q ≥ 20, using induction on q. We note at once that R(q, a, b) = 0 unless
a + b ≤ q, so that s(q, h) = 0 unless h ≤ (q − 3)/2. Now suppose that k ≥ 39,
and that (61) holds for 20 ≤ q < k. We shall prove (61) for s(k, h), and it clearly
suffices to suppose that h ≤ (k−3)/2, whence k−1−h ≥ (k+1)/2 ≥ 20. Thus,
by our induction assumption, the recursion formula (60) yields

s(k, h) ≤
∑
l≥0

1

(2l − h+ 1)!
Cµk−1−hνl

= Cµkνh
∑
l≥0

µ−1−hνl−h

(2l − h+ 1)!
.

To estimate the final sum we consider separately the cases h = 2t and h = 2t+1.
When h = 2t we have

µ−1−2tνl−2t

(2l − 2t+ 1)!
= 0

unless l ≥ t, and putting l = t+ j we obtain∑
l≥0

µ−1−2tνl−2t

(2l − 2t+ 1)!
= µ−1−2tν−t

∑
j≥0

νj

(2j + 1)!
= µ−1−2tν−tν−1/2 sinh ν1/2.

Thus (61) holds for s(k, 2t) providing that

ν−1/2 sinh ν1/2 ≤ µ and µ2ν ≥ 1.

Similarly for h = 2t + 1 we find that only terms with l ≥ t can contribute,
whence ∑

l≥0

µ−1−hνl−h

(2l − h+ 1)!
= µ−2−2tν−t−1 cosh ν1/2.

Thus (61) holds for s(k, 2t+ 1) providing that

ν−1 cosh ν1/2 ≤ µ2 and µ2ν ≥ 1.

We now choose ν so that

cosh ν1/2 = (sinh ν1/2)2,

by taking ν = 1.126304 . . .. This then allows us to use

µ =
sinh ν1/2

ν1/2
= 1.198576 . . .

We may now conclude as follows, using (56) and (59).

Lemma 14 Let µ = 1.198576 . . . and ν = 1.126304 . . .. Suppose that (61) holds
for 20 ≤ q ≤ 38. Then (61) holds for all q ≥ 20, and

S(q) ≤ Cν−1/2(sinh ν1/2)µq = Cµq+1

for q ≥ 20.
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We therefore compute s(q, h) for h ≤ q and 20 ≤ q ≤ 38, using the recursion
(60). In this range we discover that

C = 0.172345

is admissible in (61).
It now follows from Lemma 14 taken in conjunction with (57) and (58) that

f(q) ≤ C(µ+
µ2

2
)µq ≤ C ′µq, C ′ = 0.330363,

for q ≥ 20. We shall use this upper bound for q > 20, together with the
numerical values in Table 1. We then find that the value of ρ, as given by
Lemma 13, satisfies ρ > µ and

1 ≤
20∑
q=1

f(q)ρ−q + C ′
∞∑
q=21

(µρ−1)q =

20∑
q=1

f(q)ρ−q + C ′
µ21

ρ20(ρ− µ)
.

However the polynomial

X20(X − µ)−
20∑
q=1

f(q)X20−q − C ′µ21

has X = 1.752 . . . as its only root greater than µ. We therefore conclude that

ρ ≤ 1.753

which suffices for Lemma 1. Finally we remark that there is little to be gained
from pushing the precise evaluation of f(q) further than q = 20, since a lower
bound for ρ is given by the positive root of the polynomial

X20 −
21∑
q=1

f(q)X20−q,

which one can compute as 1.7519 . . ..

9 An Improvement to Theorem 1

In this section we sketch a variant of our argument which leads to a sharpened
version of Theorem 1. The same variant may be used under the Generalized
Riemann Hypothesis, but leads to a result involving 10 powers of 2.

We replace the bound (43) by

|
∫
m

S(α)2T (α)Ke(−αN)dα| ≤ (sup
α∈m
|S(α)|)2µI(q)µJ∗(m)ν ,

where

J∗(m) =

∫
m

|S(α)|2|T (α)|4dα)

and

µ =
K − 4

2q − 4
, ν =

2q −K
2q − 4

.
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The argument of §5 must then be adapted so as to give an upper bound for
J∗(m). In analogy to our previous work we first consider

J∗ =

∫ 1

0

|S(α)|2|T (α)|4dα) =
∑

a,b,c,d≤L

r(2a + 2b − 2c − 2d).

When 2a + 2b 6= 2c + 2d the analysis depends upon the behaviour of the sum∑
a,b,c,d≤J

2a+2b 6=2c+2d

h(|2a + 2b − 2c − 2d|),

for which one may establish an asymptotic formula (C3 + o(1))J4. Here

C3 =

∞∑
d=1

k(d)N(d)ε(d)−3 ≤ 1.683,

where

N(d) = #{(a, b, c) : 1 ≤ a, b, c ≤ ε(d), 2a + 2b ≡ 2c + 1 (mod d)}.

However the key point is that terms for which 2a+2b = 2c+2d make a negligible
contribution to J∗. In this way we find that

J∗ ≤ {C0C1C3

log2 2
+ o(1)}NL2.

The corresponding calculation of a lower bound for

J∗(M) =

∫
M

|S(α)|2|T (α)|4dα

proceeds much as in §5 and produces

J∗(M) ≥ {2(1−$)C0C3

log2 2
+ o(1)}NL2,

and hence

J∗(m) ≤ {C0(C1 − 2 + 2$)C3

log2 2
+ o(1)}NL2 ≤ {9.819 + o(1)}C0

N

log2 2
L2.

If this estimate is injected into the method one then finds that one requires

9.819{(2θ − 1)1.753 log 2}(K−4)/2 < 2.7973,

which one should compare with (45). Since the above inequality certainly holds
with θ = 31/36 and K ≥ 21, we are lead to the improved version of Theorem 1.
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