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Abstract. Given integers 0 < a1 < a2 < . . . and bounded complex num-

bers b1, b2, . . . , we deal with the problem of the existence and uniqueness

of a uniformly–almost–even function f satisfying

f(an) = bn, for all n ∈ N.

We give necessary and sufficient conditions that there exists at most or at

least one function f with this interpolation property.

1. Introduction

A function f : N → C is called r-even, if the equation f
(
gcd(n, r)

)
=

= f(n) holds for all integers n; f is called even, abbreviated f ∈ B, if there is
some r for which f is r-even. The closure of B with respect to the “uniform”
norm ‖f‖u =sup

n∈N
|f(n)| is the complex algebra Bu of uniformly-almost-even

functions. Starting with the complex vector-space D of all periodic functions
one obtains similarly the algebra Du of uniformly-almost-periodic functions
(see, for example, [7], IV.1).

In this note the following interpolation problem is dealt with: Let {an}n

be a strictly increasing sequence of positive integers, and {bn}n a bounded
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sequence of complex numbers; when does a uniformly-almost-even function f
(resp. a uniformly-almost-periodic function) exist with values

(P ) f(an) = bn for n = 1, 2, . . . ?

When is there at most one such function? 1

Under more restrictive conditions the problem of the existence of such
functions was already treated in [5] and [7], IV.5, Theorems 5.1 and 5.2. The
authors used the fact that the Banach algebra Bu is isomorphic with the algebra
of functions continuous on the compact space ∆B of maximal ideals, and this
space was explicitly given,

∆B =
∏
p

{1, p1, p2, . . . , p∞},

where the factors are one-point compactifications of the discrete spaces
{1, p1, p2, . . .}, p ∈ P. Later the second-named author tried to prove this result
without using Gelfand’s theory (see [6]). However, unfortunately there is a gap
in this paper: in the proof that {gKc}c∈N is a Cauchy-sequence, one case is
missing. Schwarz & Spilker [8] used the method of [6] to prove other existence
results under different assumptions.

In this paper we prove elementarily, without using Gelfand’s theory,
uniqueness results (Theorems 1 and 2, Section 2) and existence theorems
(Theorems 3 and 4, Section 3).

Notations. N = {1, 2, . . .} is the set of positive integers, P = {2, 3, 5, . . .}
the set of primes. For n ∈ N, p ∈ P, we denote by op(n) the order of p in the
factorization of n, so that pop(n) | n, but pop(n)+1|/n.

2. Sets of uniqueness

In this section we deal with the (much simpler) problem of uniqueness in
our interpolation problem (see equation (P)).

1 Karl-Heinz Indlekofer investigated uniqueness sets for additive functions;
as far as the second-named author remembers correctly, Indlekofer gave a talk
on this subject already in Oberwolfach in the year 1978. He returned to this
subject in joint papers (see [1], [2]) with Fehér, Stachó, and Timofeev.
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Definition. A subset A = {an : n ∈ N} of N is called a set of uniqueness
for Bu, if the condition

{
f, g ∈ Bu, f(an) = g(an) for all n ∈ N}

implies f = g.
Sets of uniqueness for Bu are characterized by the following theorem.

Theorem 1. The following properties of the set A = {an : n ∈ N} ⊆ N
are equivalent:
(1) A is a set of uniqueness for Bu.
(2) For any integers d, k ∈ N satisfying d | k! there exists an integer n ∈ N

such that the greatest common divisor gcd(an, k!) equals d.

Proof.
(1) ⇒ (2): Let {an : n ∈ N} be a set of uniqueness, and let d, k ∈ N satisfy

d | k!. Define a k !-even function f1(n) for n | k! by

f1(n) =





0, if n | k!, n 6= d,

1, if n = d,

and, for n ∈ N, by f1(n) = f1

(
gcd(n, k!)

)
. If there were no n ∈ N satisfying

gcd(an, k !) = d, then there would be two different solutions f1 and f2 = 0 for
the interpolation problem f(an) = 0, a contradiction to (1).

(2) ⇒ (1): Assume that there is a function f ∈ Bu, f 6= 0, satisfying
f(an) = 0 for any n ∈ N. Fix an integer d such that f(d) 6= 0, and choose a
large k, k ≥ d, and a k!-even function h satisfying ‖f−h‖u < 1

2 ·|f(d)|. Because
of (2) there is an integer n so that gcd(an, k !) = d, and so h(an) = h(d). This
gives the contradiction

|f(d)| ≤ |f(d)− h(d)|+ |h(an)− f(an)| ≤ 2 · ‖f − h‖u < |f(d)|.

Examples. The set (P + 1) ∪ (P + 2), the union of two sets of shifted
primes, is a set of uniqueness for Bu.

We verify condition (2). Let positive integers d, r ∈ N, d | r be given. 2

a) If d is even, denote by π a prime π | r. Then the integer

nπ = πoπ(d) − 1, if π | d, nπ = π + 1, if π|/d,

2 It would be sufficient to restrict ourselves to numbers r of the form r = k !.
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satisfies
oπ(nπ) = 0, oπ(nπ + 1) = oπ(d).

Any solution n ∈ N of the system of congruences

n ≡ nπ mod πoπ(r)+1 for every π | r

satisfies
gcd(n, r) = 1, gcd(n + 1, r) = d.

By the prime number theorem for arithmetic progressions there exists a prime
p ≡ n mod r, and for this prime we get gcd(p + 1, r) = d.

b) If d is odd, we find a prime p satisfying gcd(p + 2, r) = d, in a similar
manner.

The set (P+ 1) ∪ (2P+ 1) is also a set of uniqueness for Bu.

The sets P + a, where a ∈ N0, the set of squares, the set of squarefree
numbers, the set of k-free numbers, the set of factorials and the set of powers
of an integer a ∈ N are not sets of uniqueness for Bu.

Without proof we give the corresponding result for Du.

Theorem 2. A set A = {an : n ∈ N} ⊆ N is a set of uniqueness for
Du, if and only if for any d, r ∈ N, d ≤ r there exists an integer n so that
an ≡ d mod r.

Examples. Any strictly monotone sequence A of integers an, which is
uniformly distributed modulo r for any r ∈ N, is a set of uniqueness for Du. In
particular3

– every set A ⊆ N with density 1,
– the set {an, an = [P (n)]}, where P (x) is a polynomial in R[x], and P (x)−
−P (0) has at least one irrational coefficient,4

– the set an = [nc], where c > 0, c 6∈ Z.5

The set (P+1)∪(P+2) is not a set of uniqueness forDu, being disjoint to the
residue class 11 mod 30. Also, the sets

⋃
1≤n≤N

(αnP+βn), αn ∈ N, βn ∈ N∪{0},
the set of B-numbers (an is a B-number, if it is representable as a sum of two
squares of integers)6 are not sets of uniqueness for Du.

3 For the definition and simple properties of uniform distribution modulo r,
see, for example, Kuipers & Niederreiter [4], Chapter 5, p. 305ff.

4 See [4], Theorem 1.4, p. 307.
5 See [4], Exercise 1.10, p. 318.
6 B-numbers are easily characterized by conditions concerning prime factors

p ≡ 3mod 4.
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3. Existence theorems

Given finitely many integers a1, a2, . . . , aN and complex numbers
b1, b2, . . . , bN , then there is an even function f ∈ B assuming the values
f(an) = bn for 1 ≤ n ≤ N : write α = a1a2 · · · aN , and define for all divisors
a | α and for n ∈ N,

fa(n) =





1, if (n, α) = a,

0, if (n, α) 6= a.

Then f =
∑

1≤n≤N

bn · fan is such a function. By the way (see [6]),

fa(n) =
ϕ(α

a )
α

∑

r|α

cr(a)
ϕ(r)

cr(n),

where cr(n) =
∑

d|(r,n)

dµ
( r

d

)
is the Ramanujan-sum. So, we are only concerned

with infinite subsets of N.

Theorem 3. For a strictly increasing sequence {an}n∈N of positive
integers and a bounded sequence {bn}n∈N of complex numbers the following
two conditions (3) and (4) are equivalent.
(3) There exists a function f ∈ Bu with the values f(an) = bn (n ∈ N).
(4) If {nk}k∈N is any strictly increasing sequence of positive integers such that

for any r ∈ N the sequence {gcd (ank
, r !)}k∈N is eventually constant, then

the limit
lim

k→∞
bnk

exists,

and, in the case that, with some integer m [not depending on r],

lim
k→∞

gcd (ank
, r !) = gcd(am, r !)

for every r, its value is bm.

Before proving Theorem 3 we reformulate the conditions concerning
op(ank

).

Lemma. For any sequence {mk}k∈N of positive integers the following
results are true.
(5) Properties (5a) and (5b) are equivalent.

(5a) For every r ∈ N the sequence {gcd(mk, r !)}k∈N is eventually constant.
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(5b) For every prime p the sequence
{
op(mk)

}
k∈N is eventually constant

or tends to infinity.
(6) Properties (6a) and (6b) are equivalent.

(6a) For every r ∈ N the sequence {gcd(mk, r!)}k∈N is eventually constant,
and there exists an integer m ∈ N so that for every r the relation
gcd(m, r!) = lim

k→∞
gcd(mk, r!) holds.

(6b) For every prime p the sequence
{
op(mk)

}
k∈N is eventually constant

and lim
k→∞

op(mk) 6= 0 for at most finitely many primes p.

Proof.
(5a) ⇒ (5b): Let (5a) hold for the sequence {mk}k, and let p be a prime.

For any j ∈ N there is some kj ∈ N so that min
{
op

(
mk

)
, op

(
(pj) !

)}
does not

depend on k, if k > kj ; say, this minimum is ej .

If ej < op(pj !) for some j ∈ N, then the sequence
{
op(mk)

}
k

is eventually
constant.

If ej = op(pj !) for every j ∈ N, then the sequence
{
op(mk)

}
k

tends to ∞.

(5b) ⇒ (5a): Fix r ∈ N. By (5b) there is some integer k0 with the
property, that the sequence {opmk}k>k0 is constant for all primes p ≤ r, or
there is some prime p ≤ r such that op(mk) > op(r!) for every k > k0. Thus
min{opmk, op(r!)} is independent of k > k0 [there is no prime p > r dividing
r!], and therefore the sequence {gcd(mk, r!)}k>k0 is constant.

(6a) ⇒ (6b): Assume that condition (6a) is true for the sequence {mk}k.
By (6a) there is an integer m so that for any prime p

min{op(m), op(r!)} = lim
k→∞

min{op(mk), op(r!)}.

According to (5), the sequence {op(mk)}k is eventually constant or its limit
[for k → ∞] is ∞. Put r = pj , where j > op(m); then op(m) ≥ op(mk), if
k is large; therefore the case lim

k→∞
op(mk) = ∞ is impossible. If p > m, then

op(m) = 0, and so lim
k→∞

op(mk) = 0.

(6b) ⇒ (6a). Assume that for the sequence {mk}k condition (6b) is true.
Given r ∈ N, the sequence {gcd(mk, r!)}k is eventually constant, by (5b) ⇒
⇒ (5a). Write ep = lim

k→∞
gcd(mk, r!). The number m =

∏
p

pep is well-defined

by (6b), and, for every r ∈ N,

gcd(m, r!) =
∏
p

pmin{ep,op(r!)} = lim
k→∞

∏
p

pmin{op(mk),op(r!)} = lim
k→∞

gcd(mk, r!).
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Thus the Lemma is proved.

Proof of Theorem 3.

(3) ⇒ (4). Let a strictly increasing sequence {an} of positive integers,
a bounded sequence {bn} of complex numbers, and a function f ∈ Bu be
given satisfying the interpolation-property f(an) = bn; take a strictly monotone
sequence {nk}k in N, so that

for every r ∈ N the sequence {gcd(ank
, r!)}k∈N is eventually constant.

f ∈ Bu implies that for any given ε > 0 there is some s ∈ N and an (s)-even
function h approximating f , so that ‖f − h‖u < 1

4ε.
a) There is some k0 ∈ N, k0 = k0(ε) so that for all k, ` > k0 the relation

gcd(ank
, s!) = gcd(an`

, s!) holds, and so h(ank
) = h(an`

). Therefore we obtain
for every k, ` > k0:

|bnk − bn`
| by (3)

= |f(ank)− f(an`
)| ≤

≤ |f(ank)− h(ank)|+ |f(an`
)− h(an`

)| ≤ 2 · ‖f − h‖u <
1
2
ε,

and so {bnk}k is a Cauchy-sequence, and thus convergent.

b) Now, we take for granted that in addition (with some integer m)

gcd(am, r!) = lim
k→∞

gcd
(
ank, r!

)
, for every r ∈ N.

Note that f(am) = bm, and that the sequence {gcd(ank, r!)}k∈N is eventually
constant; thus there is some `0 > k0 [`0 = `0(s), and so `0 depends on ε] with
the property that for any ` > `0

gcd(am, s!) = gcd(an`
, s!), and so, in particular, h(am) = h(an`

).

Therefore we obtain, with some ` > `0,

|bm − lim
k→∞

bnk| ≤ |bm − bn`
|+

∣∣∣∣ lim
k→∞

bnk − bn`

∣∣∣∣ ,

and by the inequalities in a) this is

≤ |f(am)− f(an`
)|+ 1

2
ε ≤ |f(am)− h(am)|+ |f(an`

)− h(an`
)|+ 1

2
ε ≤

≤ 2 · ‖f − h‖u +
1
2
ε < ε,
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and so lim
k→∞

bnk = bm.

Now we come to the more difficult part, the proof of the implication.

(4) ⇒ (3). Given sequences {an} and {bn} as in the theorem; without loss
of generality we may assume that the bn are non-negative real numbers. We
have to find a function f ∈ Bu, so that f(an) = bn for every n.

Define for any positive integers n and k satisfying n | k! the set

M(n, k) : = {m ∈ N : gcd(am, k!) = n} =

=
{

m ∈ N : am ≡ 0 mod n, and gcd
(

am

n
,
k!
n

)
= 1

}
.

The set M(n, k) is empty if and only if gcd(am, k!) = n is impossible for any
m; in particular, if n does not divide any am, then M(n, k) = ∅. We define two
k!-even functions f+

k and f−k , first for integers n | k! , by

f+
k (n) =





sup
{
bm : m ∈ M

(
n, k

)}
, if M

(
n, k

) 6= ∅,

0, if M
(
n, k

)
= ∅,

and similarly f−k (n), replacing “sup” with “inf”, and then obtain k!-even
functions by the definition

f±k (n) = f±k
(
gcd(n, k!)

)
for any n ∈ N.

So,

f+
k (n) = sup

{
bm : m ∈ M

(
(n, k!), k

)}
, if M

(
(n, k)

) 6= ∅, otherwise = 0.

It is sufficient to show the equation

(7) lim
k→∞

‖f+
k − f−k ‖u = 0.

The reasons are:

(α) For any k, n ∈ N the inequalities

f−k (n) ≤ f−k+1(n) ≤ f+
k+1(n) ≤ f+

k (n)

hold. [This implies that ‖f+
k − f−k ‖u is decreasing.]
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Without loss of generality n | (k + 1)!. On behalf of
[
gcd(am, (k + 1)!) =

= n implies gcd(am, k!) = gcd(n, k!)
]

we obtain

M(n, k + 1) ⊆ M
(
gcd(n, k!), k

)
,

and this gives the first and last inequality.

(β) The sequence (f+
k )k∈N is a Cauchy-sequence in Bu, because of (see (α))

‖f+
k − f+

k+`‖u ≤ ‖f+
k − f−k ‖u for any k, ` ∈ N.

The space (Bu, ‖ · ‖u) is complete, therefore

f = lim
k→∞

f+
k exists and is in Bu.

(γ) The function f defined in (β) does interpolate the prescribed values bn:
If k ≥ an, then n ∈ M(an, k), therefore f−k (an) ≤ bn ≤ f+

k (an) [by the
definition of f−k , f+

k ], and so

f(an)
(β)
= lim

k→∞
f+

k (an) = bn,

[by (7) and the inequalities f−k (an) ≤ bn ≤ f+
k (an)].

So it remains to proof equation (7), ‖f+
k − f−k ‖ → 0, as k →∞.

Assume that (7) is wrong. Since the sequence
{‖f+

k − f−k ‖u

}
k∈N is

decreasing [see (α)], there is some c > 0 so that ‖f+
k − f−k ‖u > c for all k ∈ N.

Therefore, for every k ∈ N there is some integer ν = ν(k) for which
f+

k (ν)− f−k (ν) > c.

By the definition of f±k , for every k there exist integers n+
k and n−k in

M
(
gcd(ν, k!), k

)
with the properties

(a) gcd(an+
k
, k!) = gcd(an−

k
, k!)

[
= gcd(ν, k!)

]
,

and

(b) bn+
k
− bn−

k
> c.

The sequence {bn}n is bounded; therefore there is7 a constant b such that
for some increasing subsequence {k(j)}j the inequalities

bn−
k(j)

< b− 1
3
c < b +

1
3
c < bn+

k(j)

7 For b, one may take, for example, a point of accumulation of the sequence{
1
2

(
bn+

k + bn−k
)}

k
.



326 J.-C. Schlage-Puchta, W. Schwarz and J. Spilker

hold for every j ∈ N. It follows that

bn+
k(j)

− bn−
k(i)

>
2
3
c for any i, j ∈ N.

So we got a sequence k(1) < k(2) < . . . of integers and integers n+
k(j), n−k(j)

satisfying

(a) gcd(an+
k(j)

, (k(j))!) = gcd(an−k(j), (k(j))!),

and

(b′) bn+
k(j)

− bn−
k(i)

>
2
3
c ∀i, j ∈ N.

Now we consider the set

M =
{
(d, k(j)) ∈ N× N, d | k(j)!

}

of pairs of integers, together with a relation “≺ ” defined for (d, k(j)),
(d∗, k(j∗)) ∈M by

(d, k(j)) ≺ (d∗, k(j∗)) ⇐⇒ j ≤ j∗ and gcd
(
d∗, k(j)!

)
= d.

This relation induces a partial ordering ≺ on M.
We say that a pair (d, k(j)) ∈M is “evil”, if there are indices n+

k(j), n−k(j),
so that (a) and (b′) are true.

For any j ∈ N the pair (d, k(j)) is “evil”, if d =
(
an+

k(j)
, k(j)!

)
. So we have

shown that for every j there exists an “evil” pair (d, k(j)). And, if (d, k(j)) ≺
≺ (d∗, k(j + 1)), and (d∗, k(j + 1)) is “evil”, then (d, k(j)) is “evil”, too.8

In the tree of “evil” pairs there is an infinite [totally ordered] branch(
dk(j), k(j)

)
j∈N. The reason is: for every pair (dk(j), k(j)) having infinitely

many “evil” successors, there is an “evil” pair (dk(j+1), k(j+1)) Â (dk(j), k(j)),
which has infinitely many “evil” successors, too (see also the Lemma of D.
König, [3], p. 381).

As described some lines before, to every pair (dk(j), k(j)) from this infinite
branch of “evil” pairs, there are indices n+

k(j), n
−
k(j), so that for all r satisfying

r ≤ k(j) we have
gcd(an+

k(j)
, r!) = gcd(an−

k
(j), r!).

8 For every a ∈ N the relation gcd(a, (k(j +1)!) = d∗ implies gcd(a, k(j)!) =
= gcd(d∗, k(j)!). Since (d, k(j)) ≺ (d∗, k(j + 1)), the last gcd-equation gives
gcd(a, k(j)!) = d. Then take n+

k(j) = n+
k(j+1), and n−k(j) = n−k(j+1).
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k1, k2, . . ., the relation gcd(anki
, r!) = gcd(am, r!) holds for i = 1, 2, . . . ;

according to (4), “in the case that . . . ” we obtain

lim
i→∞

bnki
= bm.

This is a contradiction to the inequality bnk − bm > 1
3c, which is valid for

sufficiently large k.
3. If both of the sequences {n+

k(j)}j and {n−k(j)}j contain only finitely many
elements, then choose from every sequence one value which occurs infinitely
often, say n+ and n−. Then

gcd(an+ , k(j)!) = gcd(an− , k(j)!) for every j ∈ N,

therefore an+ = an− and n+ = n−, contradicting bn+ − bn− > 1
3c.

Thus we arrived at a contradiction in any of these three cases, and Theorem
3 is proved.

Corollary. Let {bn}n be a convergent sequence of complex numbers and
{an}n a strictly monotone sequence of positive integers, satisfying at least one
of the following three properties:
α) a1 > 1, and the least prime factor pmin(an) of an tends to ∞ (see [7], p.

155);
β) for all m < n the relation am|/an is true (see [8], Satz 1.2);
γ) for every m < n the relation am | an holds.

Then there is a function f ∈ Bu with values f(an) = bn for all n ∈ N.

Proof. For any of these three examples we have to check condition (4).
Let {nk}k be a strictly increasing sequence of indices, for which the sequence{
gcd(ank

, r!)
}

k
becomes eventually constant for every r ∈ N. The sequence

{bnk}k, being a subsequence of a convergent sequence, is convergent.
We are going to show that the assumption in (4) , “ in the case that . . . ”

does not occur for any of these three examples.
Assume that m is an index so that gcd(am, r!) = lim

k→∞
gcd(ank, r!) for

every r ∈ N.
α) Since, for any fixed r, lim

k→∞
gcd(ank, r!) = 1 on behalf of the condition

pmin(an) →∞, we conclude that gcd(am, r!) = 1 for any r, and so am = 1;
but this is impossible.

β) In the second case, for any p | am, we choose an integer j ≥ max
p|am

op(am)

and a large k with the property

gcd(am, (pj)!) = gcd(ank, (pj)!) for these primes p dividing am.
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Then, for every p | am, we obtain

op(am) = min{op(am), op(pj !)} = min{op(ank), op(pj !)} ≤ op(ank).

Therefore am divides ank, and so nk ≤ m [by (β)]. For large k this is a
contradiction.

γ) In the third case the relation ank | ank+1 holds for any k, and so the
sequence {op(ank)}k is increasing for any prime p. Since ank → ∞ as
k →∞, the sequence {op(ank)}k is not bounded for at least one prime p.
For this prime p we obtain a contradiction to the inequality

lim
k→∞

min
{
op(ank), op(pj !)

} ≤ op(am), for any j ∈ N.

Finally, without proof, we state an existence theorem for Du.

Theorem 4. Let {an}n∈N be a strictly increasing sequence of positive
integers and {bn}n∈N a bounded sequence of complex numbers. Then the
following two properties are equivalent:
(8) There is a function f ∈ Du with values f(an) = bn for all n ∈ N.
(9) If {nk}k is a strictly increasing sequence of positive integers, with the

property, that for any q ∈ N there exists an integer kq ∈ N, so that
ank

≡ ank′ mod q for all k, k′ > kq, then
a) the corresponding sequence {bnk

}k is convergent;
b) the limit lim

k→∞
bnk

equals bm, if for all q ∈ N there is are integers kq, m ∈ N
satisfying ank

≡ am mod q for all k > kq.
The proof of this Theorem is similar to the proof of Theorem 3.

Example. If f is in Du, then the interpolation-problem an = n, bn =
= f(an) has the solution f in Du. Choosing a function f not in Bu, then this
problem does have a solution in Du, but no solution in Bu.
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