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Abstract. Given integers 0 < a1 < ag < ... and bounded complex num-
bers by, ba, ..., we deal with the problem of the existence and uniqueness
of a uniformly—almost—even function f satisfying

flap) =0b,, forall mneN.

We give necessary and sufficient conditions that there exists at most or at
least one function f with this interpolation property.

1. Introduction

A function f : N — C is called r-even, if the equation f(ged(n,r)) =
= f(n) holds for all integers n; f is called even, abbreviated f € B, if there is
some r for which f is r-even. The closure of B with respect to the “uniform”
norm || f|l, =sup |f(n)| is the complex algebra B* of uniformly-almost-even

neN

functions. Starting with the complex vector-space D of all periodic functions
one obtains similarly the algebra D% of uniformly-almost-periodic functions
(see, for example, [7], IV.1).

In this note the following interpolation problem is dealt with: Let {a,}n
be a strictly increasing sequence of positive integers, and {b,}, a bounded
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sequence of complex numbers; when does a uniformly-almost-even function f
(resp. a uniformly-almost-periodic function) exist with values

(P) flap)=0b, for n=1,2,...7

When is there at most one such function? !

Under more restrictive conditions the problem of the existence of such
functions was already treated in [5] and [7], IV.5, Theorems 5.1 and 5.2. The
authors used the fact that the Banach algebra B" is isomorphic with the algebra
of functions continuous on the compact space Ag of maximal ideals, and this
space was explicitly given,

AB = H{laplaPQa"'apoo}a

p

where the factors are one-point compactifications of the discrete spaces
{1,p',p?%,...}, p € P. Later the second-named author tried to prove this result
without using Gelfand’s theory (see [6]). However, unfortunately there is a gap
in this paper: in the proof that {gk, }cen is a Cauchy-sequence, one case is
missing. Schwarz & Spilker [8] used the method of [6] to prove other existence
results under different assumptions.

In this paper we prove elementarily, without using Gelfand’s theory,
uniqueness results (Theorems 1 and 2, Section 2) and existence theorems
(Theorems 3 and 4, Section 3).

Notations. N = {1,2,...} is the set of positive integers, P = {2,3,5,...}
the set of primes. For n € N, p € P, we denote by o,(n) the order of p in the
factorization of n, so that p°r(™ | n, but por(™+1yn,

2. Sets of uniqueness

In this section we deal with the (much simpler) problem of uniqueness in
our interpolation problem (see equation (P)).

! Karl-Heinz Indlekofer investigated uniqueness sets for additive functions;
as far as the second-named author remembers correctly, Indlekofer gave a talk
on this subject already in Oberwolfach in the year 1978. He returned to this
subject in joint papers (see [1], [2]) with Fehér, Staché, and Timofeev.
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Definition. A subset A = {a, : n € N} of Nis called a set of uniqueness
for B*, if the condition

{f,9eB*, flan)=glay) forall neN}

implies f =g.
Sets of uniqueness for B* are characterized by the following theorem.
Theorem 1. The following properties of the set A = {a, :n € N} CN
are equivalent:
(1) A is a set of uniqueness for B*.
(2) For any integers d,k € N satisfying d | k! there exists an integer n € N
such that the greatest common divisor ged(an, k!) equals d.
Proof.

(1) = (2): Let {a, : n € N} be a set of uniqueness, and let d, k € N satisfy
d | k!. Define a k!-even function fi(n) for n | k! by

0, ifn|kl, n#d,

fi(n) =
1, ifn=d,

and, for n € N, by fi(n) = fi(ged(n, k!)). If there were no n € N satisfying
ged(an, k') = d, then there would be two different solutions f; and fo = 0 for
the interpolation problem f(a,) = 0, a contradiction to (1).

(2) = (1): Assume that there is a function f € B*, f # 0, satisfying
f(ay) =0 for any n € N. Fix an integer d such that f(d) # 0, and choose a
large k, k > d, and a kl-even function h satisfying || f—hll, < 3-|f(d)|. Because
of (2) there is an integer n so that ged(ay, k!) = d, and so h(a,) = h(d). This
gives the contradiction

[f(d)] < [f(d) = h(d)] + [P(an) = f(an)] < 2-[|f = hllu <[f(d)].

Examples. The set (P+ 1) U (P + 2), the union of two sets of shifted
primes, is a set of uniqueness for B*.

We verify condition (2). Let positive integers d,” € N, d | r be given. 2

a) If d is even, denote by m a prime 7 | . Then the integer

e =mo"(D 1, if 7| d, ny, =7+1, if wfd,

2 Tt would be sufficient to restrict ourselves to numbers r of the form r = k.
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satisfies
or(ngz) =0, ox(nz+1)=o0(d).

Any solution n € N of the system of congruences

oM+ for every m |7

n=n, modmw
satisfies
ged(n,r) =1, ged(n+1,r) =d.

By the prime number theorem for arithmetic progressions there exists a prime
p=n mod r, and for this prime we get ged(p + 1,r) = d.

b) If d is odd, we find a prime p satisfying ged(p + 2,7) = d, in a similar
manner.

The set (P+ 1) U (2P + 1) is also a set of uniqueness for B*.

The sets P + a, where a € Ny, the set of squares, the set of squarefree
numbers, the set of k-free numbers, the set of factorials and the set of powers
of an integer a € N are not sets of uniqueness for B*.

Without proof we give the corresponding result for D“.

Theorem 2. A set A = {a, : n € N} C N is a set of uniqueness for
D, if and only if for any d,r € N, d < r there exists an integer n so that
a, =dmodr.

Examples. Any strictly monotone sequence A of integers a,, which is
uniformly distributed modulo r for any r € N, is a set of uniqueness for D*. In
particular3

— every set A C N with density 1,

— the set {a,, a, = [P(n)]}, where P(z) is a polynomial in R[z], and P(z)—
—P(0) has at least one irrational coefficient,*

— the set a,, = [n¢], where ¢ >0, c¢ Z.°
The set (P+1)U(P+2) is not a set of uniqueness for D*, being disjoint to the

residue class 11 mod 30. Also, thesets |J (anP+05,), an €N, 3, € NU{0},
1<n<N

the set of B-numbers (a,, is a B-number, if it is representable as a sum of two
squares of integers)® are not sets of uniqueness for DU.

3 For the definition and simple properties of uniform distribution modulo 7,
see, for example, Kuipers & Niederreiter [4], Chapter 5, p. 305ff.

4 See [4], Theorem 1.4, p. 307.

5 See [4], Exercise 1.10, p. 318.

6 B-numbers are easily characterized by conditions concerning prime factors
p = 3mod 4.
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3. Existence theorems

Given finitely many integers ai,a9,...,ay and complex numbers
b1,b2,...,byn, then there is an even function f € B assuming the values
flay) = by, for 1 <n < N: write @ = ajaz---an, and define for all divisors
a | « and for n € N,

1, if (n,a) =a,
fa(n) =
0, if (n,a)#a.
Then f= Y. by- fa, is such a function. By the way (see [6]),
1<n<N
e(3) cr(a)
Ja(n) = . Cr\n),
=5 3 5 o)
where ¢,.(n) = > du (C> is the Ramanujan-sum. So, we are only concerned
d|(r,n)

with infinite subsets of N.

Theorem 3. For a strictly increasing sequence {an}nen of positive
integers and a bounded sequence {by}nen of complexr numbers the following
two conditions (3) and (4) are equivalent.

(3) There ezists a function f € B* with the values f(an) = b, (n € N).

(4) If {ng}ren is any strictly increasing sequence of positive integers such that
forany r € N the sequence {gcd (an,,r!) ren is eventually constant, then
the limat

lim b,, ewxists,
k—oo

and, in the case that, with some integer m [not depending on r],

klim ged (an,,, 1) = ged(am, r!)

for every r, its value is b,,.

Before proving Theorem 3 we reformulate the conditions concerning
Op(ank)'

Lemma. For any sequence {my}ren of positive integers the following
results are true.
(5) Properties (5a) and (5b) are equivalent.

(5a) For everyr € N the sequence {gcd(myg, r!) }ren is eventually constant.
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(5b) For every prime p the sequence {Op(mk)}keN is eventually constant
or tends to infinity.
(6) Properties (6a) and (6b) are equivalent.
(6a) For everyr € N the sequence {gcd(myg, r!) }ren is eventually constant,
and there exists an integer m € N so that for every r the relation
ged(m,r!) = lerr;O ged(my, r!) holds.

6b) For every prime p the sequence {0,(mg is eventually constant
P keN
and klim op(my) # 0 for at most finitely many primes p.
— 00

Proof.

(5a) = (5b): Let (5a) hold for the sequence {my}x, and let p be a prime.
For any j € N there is some k; € N so that min {o,(mz),0,((p?)!)} does not
depend on k, if k > k;; say, this minimum is e;.

If e; < 0p(p’!) for some j € N, then the sequence {op(mk)}k is eventually
constant.

If e; = 0,(p!) for every j € N, then the sequence {op(mk)}k tends to oo.

(5b) = (5a): Fix r € N. By (5b) there is some integer ko with the
property, that the sequence {o,my }r>k, is constant for all primes p < r, or
there is some prime p < r such that o,(mg) > o,(r!) for every k > ko. Thus
min{o,mg, op(r!)} is independent of k > k¢ [there is no prime p > r dividing
rl], and therefore the sequence {ged(my, r!) }isk, is constant.

(6a) = (6b): Assume that condition (6a) is true for the sequence {my }.
By (6a) there is an integer m so that for any prime p

min{o,(m),o0,(r!)} = khj& min{o,(mg), op(r!)}.

According to (5), the sequence {o,(my)}x is eventually constant or its limit

[for k — oc] is co. Put r = pJ, where j > o,(m); then o,(m) > o,(my), if

k is large; therefore the case klim op(my) = oo is impossible. If p > m, then
— 00

op(m) =0, and so klin;o op(my) = 0.

(6b) = (6a). Assume that for the sequence {my} condition (6b) is true.
Given r € N, the sequence {ged(my,r!)}x is eventually constant, by (5b) =
= (ba). Write e, = klim ged(my, r!). The number m = [ p°» is well-defined
by (6b), and, for every r € N,

k—o0 k—o00

ged(m,r!) = Hpmin{e’”’o"(r!)} = lim Hpmi“{op(m’“)’op(”)} = lim ged(mg,7!).
P P
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Thus the Lemma is proved.

Proof of Theorem 3.

(3) = (4). Let a strictly increasing sequence {a,} of positive integers,
a bounded sequence {b,} of complex numbers, and a function f € B* be
given satisfying the interpolation-property f(a,) = by; take a strictly monotone
sequence {ny}r in N, so that

for every r € N the sequence {gcd(an,,r!)}ren is eventually constant.

f € B implies that for any given € > 0 there is some s € N and an (s)-even
function h approximating f, so that || f — hll, < je.

a) There is some kg € N, ko = ko(¢) so that for all k,¢ > k¢ the relation
ged(an,, s!) = ged(ap,, s!) holds, and so h(an, ) = h(an,). Therefore we obtain
for every k, ¢ > kq:

by (3
b = b | "X [ F(ang) — Flan,)| <

< |f(ank) = h(ank)| + | fan,) = hlan, )| < 2-[|f = hllu < %5,

and so {b,; }x is a Cauchy-sequence, and thus convergent.

b) Now, we take for granted that in addition (with some integer m)

ged(am, r!) = klim ged(any,r!), for every r € N.

Note that f(am) = b, and that the sequence {gcd(any, r!) }ren is eventually
constant; thus there is some ¢y > kg [p = ¢o(s), and so ¢y depends on £] with
the property that for any ¢ > ¢,

ged(am, s!) = ged(an,, s!), and so, in particular, h(an,) = h(an,).

Therefore we obtain, with some £ > £,

by — M byg| < b — by | + | Hm by — by, |,
k—o0 k—oo

and by the inequalities in a) this is

< () = F(an )|+ 52 < [Fam) = am)] + [ fan,) = blan)| + 3¢ <

1
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and so lim b, = by,.
k—o0
Now we come to the more difficult part, the proof of the implication.

(4) = (3). Given sequences {a,} and {b,,} as in the theorem; without loss
of generality we may assume that the b, are non-negative real numbers. We
have to find a function f € B, so that f(a,) = b, for every n.

Define for any positive integers n and k satisfying n | k! the set
M(n,k):={meN: ged(am, k!) =n} =

am, k!
=<meN: a,=0modn, and ged| —,— | =1,.
n'n

The set M(n, k) is empty if and only if ged(a,, k!) = n is impossible for any
m; in particular, if n does not divide any a,,, then M (n, k) = (. We define two
k!-even functions f,j and f, , first for integers n | k!, by

sup{bm: meM(n,k)}, if M(n,k) # 0,
fi(n) =
0, if M(n, k) = (),

and similarly f, (n), replacing “sup” with “inf”, and then obtain k!-even
functions by the definition

f,;t(n) = f,;t (gcd(n, k')) for any n € N.
So,
ff(n) =sup{by, : me M((n,k!),k)}, if M((n,k)) # 0, otherwise = 0.
It is sufficient to show the equation
7) T [LfE ~ fi =0,

The reasons are:

(a) For any k,n € N the inequalities
fr (0) < fir(n) < fif(n) < fif (n)

hold. [This implies that ||f;” — f; || is decreasing.]
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Without loss of generality n | (k + 1)!. On behalf of [gcd(ay,, (k+ 1)!) =
= n implies ged(am, k!) = ged(n, k!) | we obtain
M(n,k+1) C M(ged(n, k!), k),

and this gives the first and last inequality.

(B) The sequence (f;)ren is a Cauchy-sequence in BY, because of (see ()

”f;:— _fliue”u < Hf/j_ - fk_”u for any k,¢ € N.
The space (B, ]| - ||.) is complete, therefore

f = lim f;" exists and is in BY.
k—o0 k

(7) The function f defined in () does interpolate the prescribed values b,,:
If k > a,, then n € M(ay, k), therefore f, (a,) < b, < fi(as) [by the
definition of f,, fi], and so

flan) @ tim £ (an) = b,

[by (7) and the inequalities f, (a,) < b, < fi (an)].
So it remains to proof equation (7), || £ — fi || — 0, as k — oc.

Assume that (7) is wrong. Since the sequence {||fJ — f];Hu}kGN is

decreasing [see ()], there is some ¢ > 0 so that ||f;7 — fo ||u > c for all k € N.
Therefore, for every k € N there is some integer v = wv(k) for which

W) = fyw)>ec
By the definition of f,;t, for every k there exist integers nﬁ and n, in
M(gcd(u, k), k) with the properties
(a) gcd(an:,k!) = gcd(an;,k!) [= ged(v, k) |,
and
(b) bn;: — bn; > c.

7

The sequence {b,},, is bounded; therefore there is” a constant b such that

for some increasing subsequence {k(j)}; the inequalities

1 1
b - <b—-c<b+-c<b +
"k(4) 3 3 "k(4)

" For b, one may take, for example, a point of accumulation of the sequence
{3 (onf +oni) ),
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hold for every j € N. It follows that

2
b+ —b >§c for any ¢,j5 € N.

kG RG)
So we got a sequence k(1) < k(2) < ... of integers and integers nz'(j), an(j)
satisfying

(a)  ged(a,e () = ged(ang,, (k).

k()
and
() b+ —b, - >2c Vi,j € N.
() ey 3
Now we consider the set

M = {(d,k(j)) e Nx N, d | k(j)!}

of pairs of integers, together with a relation “<7” defined for (d, k(j)),
(d*,k(57)) € M by

(d, k(7)) < (d",k(j7)) == j < j* and ged(d",k(j)!) = d.

This relation induces a partial ordering < on M.

We say that a pair (d, k(j)) € M is “evil”, if there are indices n',j(j), Ny
so that (a) and (b') are true.

For any j € N the pair (d, k(j)) is “evil”, if d = (an+< ,k(j)!). So we have

k()
shown that for every j there exists an “evil” pair (d, k(j)). And, if (d, k(j)) <
< (d*,k(j + 1)), and (d*,k(j + 1)) is “evil”, then (d, k(j)) is “evil”, too0.®

In the tree of “evil” pairs there is an infinite [totally ordered] branch
(dk(j)7k(j))j€N. The reason is: for every pair (dj(;y,k(j)) having infinitely
many “evil” successors, there is an “evil” pair (dj(j41), k(7 +1)) = (di(), k(5)),
which has infinitely many “evil” successors, too (see also the Lemma of D.
Konig, [3], p. 381).

As described some lines before, to every pair (dy(;y, k(j)) from this infinite
branch of “evil” pairs, there are indices ng(j), n;(j), so that for all r satisfying
r < k(j) we have

ged(a,+ ,r!) =ged(a

|
o).
k() ny, (3)° )

8 For every a € N the relation ged(a, (k(j +1)!) = d* implies ged(a, k(5)!) =
= ged(d*, k(5)!). Since (d,k(j)) < (d*, k(5 + 1)), the last ged-equation gives

ged(a, k(5)!) = d. Then take n:(j) = n;r(jﬂ), and ny =m0
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In the special case k(1) = 1, k(2) = 2,... the tree (M, <) looks like this:
k=5
k=4 (14) (34) (24) (44) (84) (64) (124) (24,4)
l | N/ NS
k=3 (13  (33) (2,3) (6,3)
\ // \ /
k=2 (1,2) (2,2)
k=1 (1,1)

Figure 1. The tree (M, <) [in a special case]

We now distinguish three possible cases and obtain a contradiction in every

of these cases.

1. Both of the sequences {n:'(j)}j and {n;(j)}j contain infinitely many
different elements.

Choose from every sequence a strictly increasing subsequence, form the
union of these subsequences, and order this union to a strictly increasing
sequence {ni}ren. According to the definition of “evil”, there are arbi-
trarily large indices ng, n, with the property bpy — b, > %c; in particular,
{bny }ren is not a Cauchy-sequence.

On the other hand, the sequence {gcd(any, !)}ren is eventually constant
for any integer r. According to (4a) the sequence {b,;} is convergent —
a contradiction.

. One of the two sequences, say {nz'(j)}j has infinitely many elements,
the other only finitely many. Choose from {n:(j)}j a strictly increasing

subsequence {nk}r, and choose from {n;(j)}j one value m, which occurs
infinitely often. Thus, for any r € N and for infinitely many k, say for
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k1, k2, ..., the relation ged(an, ,7!) = ged(am,r!)  holds fori=1,2,...;
according to (4), “in the case that ...” we obtain

lim by, = by
1— 00

This is a contradiction to the inequality b, — b, > %c, which is valid for
sufficiently large k.

3. If both of the sequences {”Z(j)}j and {n,;(j)}j contain only finitely many

elements, then choose from every sequence one value which occurs infinitely
often, say n* and n~. Then

ged(an+, k(5)!) = ged(a,-, k(5)!) for every j €N,

therefore a,+ = a,,- and n™ = n~, contradicting b,+ — b, > %c.
Thus we arrived at a contradiction in any of these three cases, and Theorem

3 is proved.

Corollary. Let {b,}, be a convergent sequence of complex numbers and
{an}n a strictly monotone sequence of positive integers, satisfying at least one
of the following three properties:

a) ay > 1, and the least prime factor pmin(an) of a, tends to oo (see [7], p.
155);
B) for all m < n the relation a,fa, is true (see [8], Satz 1.2);
v) for every m < n the relation a, | a, holds.
Then there is a function f € BY with values f(ay) = by for alln € N.
Proof. For any of these three examples we have to check condition (4).
Let {ng}x be a strictly increasing sequence of indices, for which the sequence
{gcd(an,, )} ., becomes eventually constant for every r € N. The sequence
{bni }k, being a subsequence of a convergent sequence, is convergent.

We are going to show that the assumption in (4) , “in the case that ...”
does not occur for any of these three examples.

Assume that m is an index so that ged(am,r!) = klingo ged(any,r!) for
every r € N.
«) Since, for any fixed r, klglgo ged(any,r!) = 1 on behalf of the condition
Pmin(an) — 00, we conclude that ged(aq,,r!) = 1 for any r, and so a,, = 1;
but this is impossible.

() In the second case, for any p | a,,, we choose an integer j > HllaX op(@m,)
plam

and a large k with the property

ged(am, (pP))) = ged(ang, (p7)!) for these primes p dividing a,,.
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Then, for every p | a,,, we obtain

0p(am) = min{o,(am), 0, (p1)} = min{o,(anx), 0, (')} < 0p(ans)-

Therefore a,, divides any, and so ni < m [by (8)]. For large k this is a
contradiction.

v) In the third case the relation any | an,., holds for any k, and so the
sequence {0p(an;)}i is increasing for any prime p. Since a,, — oo as
k — oo, the sequence {op(an)}r is not bounded for at least one prime p.
For this prime p we obtain a contradiction to the inequality

lim min {o,(an),0,(p’1)} < 0,(am), for any j € N.

k—oo

Finally, without proof, we state an existence theorem for D“.

Theorem 4. Let {a,}tnen be a strictly increasing sequence of positive
integers and {bp}nen a bounded sequence of complex numbers. Then the
following two properties are equivalent:

(8) There is a function f € D* with values f(an) = by, for alln € N.

(9) If {ni}r is a strictly increasing sequence of positive integers, with the
property, that for any q € N there exists an integer k; € N, so that
U, = Gp,, mod q for all k,k" > kg, then

a) the corresponding sequence {by, }1r is convergent;

b) the limit klingo by, equals by, , if for all ¢ € N there is are integers kg, m € N

satisfying an, = a, mod g for all k > k.

The proof of this Theorem is similar to the proof of Theorem 3.
Example. If f is in D%, then the interpolation-problem a,, = n, b, =
= f(ay) has the solution f in D*. Choosing a function f not in B%, then this

problem does have a solution in D*, but no solution in B.
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