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Normal growth of large groups

By

Thomas W. Müller and Jan-Christoph Schlage-Puchta

Abstract. For a finitely generated group �, denote by s�
n (�) the number of normal subgroups

of index n. A. Lubotzky proved that for the free group Fr of rank r , s�
n (Fr ) is of type nlog n. We

show that the same is true for a much larger class of groups. On the other hand we show that for
almost all n, the inequality s�

n (�) < nr−1+ε holds true for every r-generated group �.

Let � be a finitely generated group. Over the last 20 years, there has been a growing
interest in the function sn(�), counting the number of subgroups of index n in � and
variants thereof, most notably the functions mn(�), counting maximal subgroups, and
s�
n (�) counting normal subgroups. For an overview, see [4] and [6]. For large groups in the

sense of Pride [10], i.e., groups having a subgroup of finite index, which maps surjectively
onto a non-abelian free group, the first two functions appear to be closely related; in fact,
in all known instances almost all finite index subgroups of a large group are maximal; cf.
[8, Section 4.4] and [9, Proposition 8]. On the other hand, one might expect s�

n (�) to carry
more group-theoretical information than the functions sn(�) and mn(�). However, as it
turns out, the functions s�

n (�) behave similar for a substantial class of groups �, including
all large groups.

Note that as a function of n, s�
n (�) behaves quite irregular. For example, if � is a free

product of finite groups, and p is a prime dividing none of the orders of the free factors,
then s�

p (�) = 0, while, as we will see below, for other indices there might be as many as

nc log n normal subgroups of index n. Indeed, a comparison of Theorems 1 and 2 below
reveals an even greater amount of irregularity. These observations suggest that, instead of
s�
n (�) itself, it is more natural from an asymptotic point of view to consider the summatory

function S�
n (�) = ∑

ν�n

s�
ν (�). In [5], A. Lubotzky proved that S�

n (Fr) is of type nlog n.

Here, Fr denotes the free group of rank r � 2, and a function f (n) is called of type nlog n,
if there are positive constants c1, c2 such that for n sufficiently large we have

nc1log n � f (n) � nc2 log n.
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In this note, we will show that the latter behaviour is not characteristic for free groups, but
rather pertains to a substantial class of groups, including all large groups. More precisely,
we shall prove the following.

Theorem 1. Let � be a finitely generated group, possessing a finite index subgroup �

which maps surjectively onto a group G such that the pro-p completion Ĝp of G is a
non-abelian free pro-p group for some prime p. Then S�

n (�) is of type nlog n.

In the proof of Theorem 1 we exhibit a large number of normal subgroups of p-power index,
and one might wonder how the function s�

n (�) behaves for other indices n. Somewhat
surprisingly, as our next result shows, s�

n (�) is ‘generically’ of polynomial type.

Theorem 2. (i) Let � be an r-generated group. Then, for every ε > 0 and all but

o(x) numbers n � x, we have s�
n (�) � nr−1+ε.

(ii) We have s�
n (Fr) � nr−1 for all n � 1.

(iii) Suppose that � contains a subgroup of finite index projecting onto a free abelian
group of rank r � 2. Then there exists a set N � N of positive asymptotic density
and a constant c > 0, such that

s�
n (�) � cnr−1, n ∈ N .

The proof of Theorem 1 requires a slight sharpening of a result of A. Mann [7].

Theorem 3. Let F̂
p
r be the free pro-p group of rank r � 2. Then there is some constant

c > 0, such that for any fixed integer k, ε > 0, and n > n0(k, ε), there is a set {N1, . . . , Nt }
of normal subgroups of index pn in F̂

p
r , satisfying t > p(c−ε)n2

and (Ni : Ni ∩ Nj) > pk

for all i �= j .

Here and in the sequel, subgroups are understood to be closed. We first show how to deduce
Theorem 1 from Theorem 3.

P r o o f o f T h e o r e m 1. Let � be a subgroup of finite index d in �, which maps onto a
dense subgroup of a free pro-p group F̂

p
r for some r � 2. Let N�� be a normal subgroup.

Then the normalizer of N in � has index � d, hence, the index of the core of N in �

has index in N bounded by d!, which is independent of N . Call two normal subgroups
N1, N2�� of index n equivalent, if their intersection has index � d! in each of them. Then
we deduce that the number of inequivalent normal subgroups of � of index at most n is a
lower bound for the number of normal subgroups in � of index � dd!n. Indeed, the core of
N is normal in � of index � dd!n, and inequivalent normal subgroups have different core.
Using Theorem 3 to estimate the number of inequivalent normal subgroups, we obtain the
required lower bound. On the other hand, Lubotzky [5], refining a result of Pyber [11] for
finite groups, has shown that S�

n (�) � n3(d+1)log n holds for every d-generated group �. It
follows that S�

n (�) is indeed of type nlog n as claimed.

We now establish Theorem 3, building on arguments of Mann.
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P r o o f o f T h e o r e m 3. In [7] (see also [6, Chapter 3.4]), Mann obtained the following:

(1) ((F̂
p
r )′ ∩ �k(F̂

p
r ))�k+1(F̂

p
r )/�k+1(F̂

p
r ) is an elementary abelian p-group of rank

t � (7/6)k − r .
(2) If n > 14(2r + 1)2t , then for every subgroup U of

((F̂
p
r )′ ∩ �k(F̂

p
r ))�k+1(F̂

p
r )/�k+1(F̂

p
r ),

there exists a normal subgroup N of index pn in F̂
p
r with

N�k+1(F̂
p
r )/�k+1(F̂

p
r ) = U.

Here, �(G) denotes the Frattini subgroup of G, and �k(G) is the k-th iterate of this
operator. Obviously, normal subgroups N1, N2 in F̂

p
r such that the intersection of U1 =

N1�
k+1(F̂

p
r )/�k+1(F̂

p
r ) with U2 = N2�

k+1(F̂
p
r )/�k+1(F̂

p
r ) has index at least pk in

both of these groups (we abbreviate this condition by saying that U1 and U2 are inequiv-
alent), satisfy (Ni : N1 ∩ N2) � pk . A subgroup U of Ct

p of rank �t/2� is equivalent

to at most p2kt subgroups of Ct
p of the same rank, for U has at most pkt subgroups of

index � k, and each such subgroup is contained in at most pkt other subgroups of rank
�t/2�. Hence, there is a set consisting of pt2/4−2kt subgroups of Ct

p of rank �t/2�, such that
the intersection of any two of them has index > pk in each of them. Passing from U to F̂

p
r ,

we see that the latter group has at least pt2/4−2kt normal subgroups of index � p14(2r+1)2t ,
such that any two of them have an intersection of index > pk in each of them. Putting
c = (56(2r + 1)2)−1, the theorem follows.

Finally, we turn to the proof of Theorem 2.

P r o o f o f T h e o r e m 2. (i) The proof relies on the fact that, for almost all n (in the
above probabilistic sense), all groups of order n are subject to a severe structural restriction.
Erdős and Pálfy [1] showed that, for every ε > 0, almost all odd n have a divisor d with
d � (logn)1+ε, n/d squarefree and prime to d , such that every group of order n contains
a cyclic direct factor of index d . The same proof strategy gives the existence of a cyclic
normal subgroup of index d for almost all even n. In fact, by Sylow’s Theorem, the product
of all prime divisors p of n such that p2 � n, and such that there is no divisor t of n with
t > 1 and t ≡ 1 (p) may serve as n/d; the problem to determine the normal size of d is
then treated using methods from analytic number theory. Let N be the set consisting of
those integers n such that every group of order n has the structure described above. For
n ∈ N we want to bound the number f (n) of groups G of order n. Let N be the cyclic
normal subgroup of G of index d . Since (n/d, d) = 1, the extension

0 −→ N −→ G −→ H −→ 0

splits by the Schur-Zassenhaus Theorem. Hence, G is determined up to isomorphism by
the isomorphism type of H and the action of H on N , and we obtain for n ∈ N

f (n) =
∑

H
|H |=d

|Hom(H, Aut(N))| � f (d) · max|H |=d
|Hom(H, Aut(N))|

� nε · max|H |=d
|Hom(H/[H, H ], Aut(N))|,
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where we have used the bound f (d) � dclog d due to Pyber [11] and the fact that Aut(N)

is abelian. Aut(N) is isomorphic to the group of units
(
Z

/
n
d Z

)∗ ∼=
∏
p>2
p| n

d

Cp−1,

since n/d is squarefree; cf. for instance [3, Section 2.5]. Decomposing H/[H, H ] as a
direct product of cyclic groups of prime power order, we find that

|Hom(H/[H, H ], Aut(N))| �
∏
p| n

d

(d, p − 1).

Taking into account all possible choices for d, we deduce that
∑
n∈N
n�x

log( max|H |=d
|Hom(H, Aut(N))|) �

∑
d�log1+εx

∑
p

∑
n∈N
n�x
pd|n

log(d, p − 1)

� 2 log log x
∑

d�log1+εx

∑
p�x

x

pd
� x logεx.

We conclude that, with the exception of at most x√
logx

integers n � x of N , we have

f (n) � nε. Moreover, for n ∈ N we have |Aut(G)| � n1−ε, since we can lift each of the
ϕ(n/d) automorphisms of N to G due to the fact that Aut(N) is abelian. Putting the last
two estimates together, we conclude that, for almost all n,

s�
n (�) =

∑
|G|=n

|Epi(�, G)| · |Aut(G)|−1 � nr−1+2ε

as claimed.
(ii) This follows from the facts that Fr projects onto the free abelian group Cr∞ of

rank r , and that

sn(C
r∞) = 1 ∗ n ∗ n2 ∗ · · · ∗ nr−1 � nr−1;

cf. [2, Proposition 1.1].
(iii) As in the proof of Theorem 1, it suffices to produce a large set of finite index

subgroups of �̄ = Cr∞ having pairwise intersections of large index. Let d and n be
integers, U a subgroup of index n in �̄. We bound the number of subgroups V of index
n satisfying (U : U ∩ V ) = d as follows. Since U ∼= �̄, there are sd(�̄) possibilities for
U ∩V . Fixing a subgroup H of index nd in �̄, the number of index n subgroups containing
H equals

sn(�̄/H) = sd(�̄/H) � sd(�̄)

by duality. Hence, there exists a set {U1, U2, . . . , Ut } of index n subgroups in �̄ such that
t > cnr−1 for some positive constant c, and such that (Ui : Ui ∩ Uj) > d for all i �= j .
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Let � be a finite index subgroup of � projecting onto �̄. The core of the preimage of Ui

in � has index bounded above in terms of (� : �) alone. It follows that, for each n, there
exists ν � C, such that s�

nν(�) � cnr−1, whence our claim.

R e m a r k. In Theorem 2 (ii), the occurrance of both the free group Fr and of the free
abelian group Cr∞ is somewhat arbitrary. As it stands, the proof of (ii) works for every
group projecting onto Cr∞. Also, other groups with known normal growth may be used for
comparison.
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