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Normal growth of large groups

By

THOMAS W. MULLER and JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. For a finitely generated group T, denote by s, (I") the number of normal subgroups
of index n. A. Lubotzky proved that for the free group Fy of rank r, 5,2 (Fy) is of type nlogn we
show that the same is true for a much larger class of groups. On the other hand we show that for
almost all n, the inequality s,f‘ () <n” —14¢ holds true for every r-generated group I'.

Let T" be a finitely generated group. Over the last 20 years, there has been a growing
interest in the function s, (I"), counting the number of subgroups of index n in I' and
variants thereof, most notably the functions m, (I"), counting maximal subgroups, and
5;7(I") counting normal subgroups. For an overview, see [4] and [6]. For large groups in the
sense of Pride [10], i.e., groups having a subgroup of finite index, which maps surjectively
onto a non-abelian free group, the first two functions appear to be closely related; in fact,
in all known instances almost all finite index subgroups of a large group are maximal; cf.
[8, Section 4.4] and [9, Proposition 8]. On the other hand, one might expect s,;'(I") to carry
more group-theoretical information than the functions s, (I") and m,(I"). However, as it
turns out, the functions s, (I") behave similar for a substantial class of groups I', including
all large groups.

Note that as a function of n, s,;'(I") behaves quite irregular. For example, if I' is a free
product of finite groups, and p is a prime dividing none of the orders of the free factors,
then s;‘ (I') = 0, while, as we will see below, for other indices there might be as many as
nclo2” normal subgroups of index n. Indeed, a comparison of Theorems 1 and 2 below
reveals an even greater amount of irregularity. These observations suggest that, instead of
s;(T) itself, it is more natural from an asymptotic point of view to consider the summatory
function S;'(T") = Y s;("). In [5], A. Lubotzky proved that S;'(F;) is of type plogn,

v<n
Here, F, denotes the free group of rank » = 2, and a function f (n) is called of type n
if there are positive constants cy, ¢ such that for n sufficiently large we have

nqlogn § f(l’l) § nczlogn'

logn

Mathematics Subject Classification (2000): 20E07, 11N64.



610 THOMAS W. MULLER and JAN-CHRISTOPH SCHLAGE-PUCHTA ARCH. MATH.

In this note, we will show that the latter behaviour is not characteristic for free groups, but
rather pertains to a substantial class of groups, including all large groups. More precisely,
we shall prove the following.

Theorem 1. Let I" be a finitely generated group, possessing a finite index subgroup A
which maps surjectively onto a group G such that the pro-p completion G? of G is a
non-abelian free pro-p group for some prime p. Then S, (T') is of type nlogn,

In the proof of Theorem 1 we exhibit a large number of normal subgroups of p-power index,
and one might wonder how the function s, (I") behaves for other indices n. Somewhat
surprisingly, as our next result shows, s, (T") is ‘generically’ of polynomial type.

Theorem 2. (i) Let " be an r-generated group. Then, for every ¢ > 0 and all but
o(x) numbersn < x, we have s;/(I') < n e,

(ii) We have s '(F,) = n"! foralln > 1.

(iii) Suppose that T contains a subgroup of finite index projecting onto a free abelian
group of rank r = 2. Then there exists a set N' S N of positive asymptotic density

and a constant ¢ > 0, such that
s (T) Zcen™ ', neN.

The proof of Theorem 1 requires a slight sharpening of a result of A. Mann [7].

Theorem 3. Let I/’\,p be the free pro-p group of rankr 2 2. Then there is some constant
¢ > 0, such that for any fixed integerk, e > 0, andn > no(k, €), thereisaset {N1, ..., N;}
of normal subgroups of index p" in E, satisfying t > p(':_s)"2 and (N; : N, Nj) > pk
foralli # j.

Here and in the sequel, subgroups are understood to be closed. We first show how to deduce
Theorem 1 from Theorem 3.

Proof of Theorem 1. Let A be a subgroup of finite index d in I, which maps onto a
dense subgroup of a free pro-p group E? forsome r = 2. Let NaA be a normal subgroup.
Then the normalizer of N in I" has index < d, hence, the index of the core of N in I’
has index in N bounded by d!, which is independent of N. Call two normal subgroups
N1, N2<A of index n equivalent, if their intersection has index < d! in each of them. Then
we deduce that the number of inequivalent normal subgroups of A of index at most n is a
lower bound for the number of normal subgroups in I' of index < dd!n. Indeed, the core of
N is normal in T of index < dd!n, and inequivalent normal subgroups have different core.
Using Theorem 3 to estimate the number of inequivalent normal subgroups, we obtain the
required lower bound. On the other hand, Lubotzky [5], refining a result of Pyber [11] for
finite groups, has shown that S;'(I") < n3@+Dlogn holds for every d-generated group . Tt
follows that S;(T") is indeed of type n'°2” as claimed.

We now establish Theorem 3, building on arguments of Mann.
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Proofof Theorem 3. In[7](seealso[6, Chapter 3.4]), Mann obtained the following:

(1) (FPY n @k (EP)) k1 (EP)/ dF+1(FP) is an elementary abelian p-group of rank
t > (7/6)F —r.
(2) If n > 14(2r + 1)%¢, then for every subgroup U of

(EDY 0 @ (E NS ED) & (FD),
there exists a normal subgroup N of index p” in E with
NCI)k+1 (EP)/q)k-Fl(F}p) =U.

Here, ®(G) denotes the Frattini subgroup of G, and ®K(G) is the k-th iterate of this
operator. Obviously, normal subgroups Ny, N> in }’;rp such that the intersection of U; =
N OFHUEP) /0K (EP) with Uy = Ny ®FHI(EP)/®%T1(EP) has index at least p* in
both of these groups (we abbreviate this condition by saying that Uy and U, are inequiv-
alent), satisfy (N; : N; N Np) > p*. A subgroup U of C;, of rank [7/2] is equivalent

2kt

to at most p~*' subgroups of C;, of the same rank, for U has at most p*’ subgroups of

index < k, and each such subgroup is contained in at most pX’ other subgroups of rank
|2/2]. Hence, there is a set consisting of p’ 2/4=2kt subgroups of C/, of rank [#/2], such that
the intersection of any two of them has index > p in each of them. Passing from U to }’;rp ,
we see that the latter group has at least p’ 2/4=2kt normal subgroups of index < p14(2’+1)2’ ,

such that any two of them have an intersection of index > p* in each of them. Putting
¢ = (56(2r + 1)*)™!, the theorem follows.

Finally, we turn to the proof of Theorem 2.

Proofof Theorem?2. (i) The proof relies on the fact that, for almost all n (in the
above probabilistic sense), all groups of order n are subject to a severe structural restriction.
Erdo6s and Palfy [1] showed that, for every ¢ > 0, almost all odd » have a divisor d with
d < (logn)'*%, n/d squarefree and prime to d, such that every group of order n contains
a cyclic direct factor of index d. The same proof strategy gives the existence of a cyclic
normal subgroup of index d for almost all even n. In fact, by Sylow’s Theorem, the product
of all prime divisors p of n such that p? { n, and such that there is no divisor ¢ of n with
t > 1 and r = 1 (p) may serve as n/d; the problem to determine the normal size of d is
then treated using methods from analytic number theory. Let A/ be the set consisting of
those integers n such that every group of order n has the structure described above. For
n € N we want to bound the number f (n) of groups G of order n. Let N be the cyclic
normal subgroup of G of index d. Since (n/d, d) = 1, the extension

0—N-—>G—H—0

splits by the Schur-Zassenhaus Theorem. Hence, G is determined up to isomorphism by
the isomorphism type of H and the action of H on N, and we obtain for n € N’
f) = > [Hom(H, Aut(N))| < f(d) - max [Hom(H, Aut(N))|
— =

|H|=d

< nf- max, |Hom(H /[H, H], Aut(N))],
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where we have used the bound f(d) < dgd due to Pyber [11] and the fact that Aut(N)
is abelian. Aut(/N) is isomorphic to the group of units

(Z/%Z)* = 1_[ Cp-1.
p>2

plG

since n/d is squarefree; cf. for instance [3, Section 2.5]. Decomposing H/[H, H] as a
direct product of cyclic groups of prime power order, we find that

[Hom(H/[H. H], Au(N)| < []d. p—1).
Pl

Taking into account all possible choices for d, we deduce that

D log(max [Hom(H, Aw(N)) < 37 373 log(d, p— 1)

N 1+ N
asloghty P 1N

pd|n
< 2loglogx Z Z %

d<log'*¢x p=x

A

xlog®x.

We conclude that, with the exception of at most Jf_ integers n < x of N, we have
ogx

f(n) < n®. Moreover, for n € N we have |Aut(G)| = n'~, since we can lift each of the
¢(n/d) automorphisms of N to G due to the fact that Aut(N) is abelian. Putting the last
two estimates together, we conclude that, for almost all n,

5Ty = > [Epi(T, G)| - |Aut(G)| ™" < o/~ 1H2
|Gl=n

as claimed.
(ii) This follows from the facts that F, projects onto the free abelian group C., of
rank r, and that

sn(Cl) =1 snknsk-xn L =l
cf. [2, Proposition 1.1].

(iii) As in the proof of Theorem 1, it suffices to produce a large set of finite index
subgroups of A = C’, having pairwise intersections of large index. Let d and n be
integers, U a subgroup of index n in A. We bound the number of subgroups V of index
n satisfying (U : U N V) = d as follows. Since U = A, there are s4(A) possibilities for
U NV. Fixing a subgroup H of index nd in A, the number of index n subgroups containing
H equals

sp(A/H) = sq(A/H) < s4(A)

by duality. Hence, there exists a set {U;, Ua, ..., U;} of index n subgroups in A such that
t > cn”~! for some positive constant ¢, and such that (U; : U; NU;) > d foralli # j.
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Let A be a finite index subgroup of I' projecting onto A. The core of the preimage of U;
in I" has index bounded above in terms of (I" : A) alone. It follows that, for each n, there
exists v < C, such that s;7 (I") = cn”~!, whence our claim.

Remark. In Theorem 2 (ii), the occurrance of both the free group F, and of the free
abelian group C., is somewhat arbitrary. As it stands, the proof of (ii) works for every
group projecting onto C[ . Also, other groups with known normal growth may be used for
comparison.
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