
COMPLETENESS AND COMPACTNESS CRITERIA FOR R-TREES
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Abstract. We establish (geometric) criteria for an R-tree to be complete, compact,
or locally compact. As a byproduct, we obtain a generalization of a result of Wilkens
concerning bounded group actions on R-trees.

1. Introduction

Given a simplicial tree there is an integer-valued metric, the so-called path metric, on
the set of vertices (the distance between two vertices being the number of edges in
a shortest path joining them). An R-tree is a metric space whose metric has certain
properties in common with the path metric. More generally, one can define Λ-trees,
where Λ is an arbitrary ordered abelian group (in this case the metric takes values in
Λ); the standard references for this theory are [1] and [2]. See [6] and [7] for a very
readable overview.

Part of the original definition by Tits [8] of an R-tree was that it was a complete metric
space. However, for many purposes, this assumption is unnecessary, and today com-
pleteness is no longer assumed as part of the definition. In fact, the metric completion
of an R-tree is also an R-tree, an observation first made by Imrich [5]. There are several
ways of defining an R-tree, discussed in Chapter 2, §2 of [2]. Without the assumption
of completeness, Tits’ definition is that it is a geodesic metric space having no subspace
homeomorphic to a circle (see Proposition 2.3(3), Chapter 2 in [2]). Imrich in effect
used the criterion that an R-tree is a 0-hyperbolic geodesic metric space (see Lemmas
1.6 and 4.3, with Λ = R, in Chapter 2 of [2]). However, he used an equivalent version
of 0-hyperbolic (the 4-point condition); see the discussion after Lemma 2.6, Chapter 1
in [2].

The first purpose of the present note is to give a more explicit description of the com-
pletion of an R-tree, resulting in a criterion for an R-tree to be complete (Theorem 1
below). This result is perhaps well-known to those working on R-trees, but we know of
no proof in the literature, and it is not a triviality. An action by isometries of a group
G on a metric space (X, d) is said to be bounded if for some point x0 ∈ X, there is a
positive constant K such that d(x0, gx0) ≤ K for all g ∈ G. (If this is true for some
point x0, it is true for all points in X by a simple application of the triangle inequality.)
Wilkens [9] showed that if a group has a bounded action on a complete R-tree, then it
has a fixed point; cf. also Lemma 2.5 in [2, Chapter 4]. It follows from our results that,
if a group has a bounded action on an R-tree, then either there is a fixed point or there
is a fixed open end whose rays are bounded. (This last idea will be explained later.)

In Section 3, building on Theorem 1, we provide a criterion for an R-tree to be compact
(Theorem 2), which, when coupled with Theorem 1, is expressed entirely in terms of
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the geometry of the tree. We finish with a geometric criterion for an R-tree to be locally
compact.

2. Complete R-trees

Let (X, d) be an R-metric space, and let C = C(X) denote the set of Cauchy sequences
in X. Define a binary relation on C via

(xi)i∈N ∼ (yi)i∈N ⇐⇒ lim
i→∞

d(xi, yi) = 0.

This is an equivalence relation on C, and we recall that, as a set, the completion X̂ of
X is just C/ ∼, the set of equivalence classes. When there is no ambiguity, we shall
write simply (xi) instead of (xi)i∈N, and we shall denote the equivalence class of (xi) by

〈xi〉. We also recall that the metric d̂ on X̂ is given by

d̂(〈xi〉, 〈yi〉) = lim
i→∞

d(xi, yi), (xi), (yi) ∈ C.

As in [2], we use [x, y] to denote the segment joining points x, y in a Λ-tree.

Definition 1. Let Λ be a totally ordered abelian group, and let (X, d) be a Λ-tree with
base point x0. A sequence (yi) in X is called monotone increasing (with respect to x0),
if i < j implies yi ∈ [x0, yj].

The crucial fact needed to describe the completion of an R-tree and to characterise
complete R-trees is the following.

Proposition 1. Let (X, d) be an R-tree, let x0 be a base point in X, and suppose that
(yi) is a Cauchy sequence in X. Then there is a monotone increasing Cauchy sequence
(zi) in X with respect to x0, such that (zi) ∼ (yi).

Proof. Given points x, y ∈ X, denote by x ∧ y the unique point z such that

[x0, x] ∩ [x0, y] = [x0, z],

so that d(x0, z) = (x · y)x0 , where

(x · y)x0 =
1

2

{
d(x, x0) + d(y, x0)− d(x, y)

}
;

see Lemma 1.2 in [2, Chapter 2] and the discussion following it. Set ‖x‖ := d(x, x0).
Then

‖x ∧ y‖ = (x · y)x0 ≤ min
{
‖x‖, ‖y‖

}
.

We have

d(yi, yj) = ‖yi‖+ ‖yj‖ − 2(yi, yj)x0

= ‖yi‖+ ‖yj‖ − 2‖yi ∧ yj‖

≥ ‖yi‖+ ‖yj‖ − 2 min(‖yi‖, ‖yj‖)

=
∣∣‖yi‖ − ‖yj‖

∣∣,
hence (‖yi‖) is a Cauchy sequence in R, so ‖yi‖ → α with α ∈ R, since R with the
usual metric is complete.
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If α = 0, we take zi = x0 for all i. Then (zi) is clearly a a monotone increasing Cauchy
sequence with (zi) ∼ (yi). Otherwise, α > 0, and we can choose a sequence (αi) in
R, which is monotone increasing, converges to α, and satisfies 0 ≤ αi < α for all i.
Fix an index i, and define zij to be the unique point in X satisfying zij ∈ [x0, yj] and
‖zij‖ = min{αi, ‖yj‖}. By choice of the sequence (αi) and the fact that ‖yj‖ → α,
we have ‖yj‖ ≥ αi for j sufficiently large, so there exists j0 depending only on i,
such that ‖zij‖ = αi for j ≥ j0. Let j1, j2 ≥ j0 be indices such that zij1 6= zij2 ,
and set w = zij1 ∧ zij2 . We have zij1 6= w 6= zij2 , because ‖zij1‖ = ‖zij2‖. Also,
w ∈ [x0, zij1 ] ⊆ [x0, yj1 ], so zij1 ∈ [w, yj1 ], hence [yj1 , zij1 ] ∩ [zij1 , w] = {zij1}. Similarly,
[yj2 , zij2 ] ∩ [zij2 , w] = {zij2}. Also, [zij1 , w] ∩ [w, zij2 ] = {w} (see Lemma 1.2(1) in [2,
Chapter 2]). It follows from Lemma 1.5 in [2, Chapter 2] that

[yj1 , yj2 ] = [yj1 , zij1 , w, zij2 , yj2 ]

in the notation established after Corollary 1.3 in [2, Chapter 2]. The situation is
illustrated in the following diagram.

s
sx0 w

zij1

zij2

yj1

yj2

s s
s

s
By Lemma 1.4 in [2, Chapter 2],

d(yj1 , yj2) = d(yj1 , zij1) + d(zij1 , w) + d(zij2 , w) + d(yj2 , zij2)

≥ d(yj1 , zij1) + d(yj2 , zij2)

= (‖yj1‖ − αi) + (‖yj2‖ − αi).

Since αi < α, we can choose an element εi ∈ R, such that 0 < 2εi ≤ α − αi. Since
‖yj‖ → α, there exists j′0 = j′0(i) such that |α− ‖yj‖| < εi for j ≥ j′0. Then, for j ≥ j′0,

‖yj‖ − αi = (‖yj‖ − α) + (α− αi) > −εi + 2εi = εi.

Hence,
d(yj1 , yj2) > 2εi for j1, j2 ≥ max{j0, j

′
0}.

Since the sequence (yj)j∈N has the Cauchy property, the last estimate implies that there
exists some j′′0 such that at least one of j1, j2 is less than j′′0 . Hence, the sequence (zij)j∈N
is ultimately constant, and we define zi to be equal to this constant, so that ‖zi‖ = αi.

Given natural numbers i1, i2 with i1 < i2, we have αi1 ≤ αi2 (since the sequence (αi)i∈N
is monotone increasing), and, by our construction, there exists j ∈ N such that zi1 = zi1j

and zi2 = zi2j, and we have ‖zi1‖ = αi1 , ‖zi2‖ = αi2 . Consequently, zi1 and zi2 both
lie on the segment [x0, yj], and we have ‖zi1‖ ≤ ‖zi2‖, so zi1 ∈ [x0, zi2 ]; that is, the
sequence (zi)i∈N is monotone increasing with respect to x0. Moreover, we have

d(zi, zj) = |αi − αj| → 0 as i, j →∞,

hence (zi) is a Cauchy sequence in X.
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Let ε ∈ R be a given positive element, and choose k = k(ε) such that i ≥ k implies
α − αi < ε/3 and i, j ≥ k implies d(yi, yj) < ε/3. Moreover, given i, there exists
` = `(ε, i) such that j ≥ ` implies ‖yj‖−α < ε/3 as well as zij = zi, so that zi ∈ [x0, yj].
Now, for i ≥ k(ε) and j ≥ max{k(ε), `(ε, i)},

d(zi, yi) ≤ d(zi, yj) + d(yi, yj)

= (‖yj‖ − ‖zi‖) + d(yi, yj)

= (‖yj‖ − α) + (α− αi) + d(yi, yj)

< ε/3 + ε/3 + ε/3

= ε.

Thus i ≥ k implies d(zi, yi) < ε, so lim
i→∞

d(zi, yi) = 0, that is, (yi) ∼ (zi). �

If (X, d) is a metric space, recall that X embeds isometrically in X̂ by mapping x ∈ X
to the equivalence class x̂ = 〈x〉 of the constant sequence xi = x. This equivalence class
is the set of all Cauchy sequences in X which converge to x. We shall identify x with
x̂.

We shall later use the ideas of degree of a point, branch point and endpoint; see the
definition after Lemma 1.7, Ch.2 in [2]. The definition of end, ray and the notation
[x, ε〉, where x is a point and ε is an end of a Λ-tree are explained in §3 of [2, Chapter 2].
It is shown in [2, Ch.2, Lemma 3.4] that rays are closed subtrees, meaning they are
convex closed. In an R-tree, closed subtrees are in fact closed in the metric topology.
For suppose A is a closed subtree, and b 6∈ A. Let a be the projection of b onto A (see
the discussion after Lemma 1.9 in [2, Chapter 2]). Then d(x, b) ≥ d(a, b) > 0 for all
x ∈ A, so no sequence in A can converge to b.

If ε is an end of an R-tree (X, d) and x, y ∈ X, then the rays [x, ε〉 and [y, ε〉 intersect
in a ray [z, ε〉, and [x, ε〉 = [x, z] ∪ [z, ε〉, [y, ε〉 = [y, z] ∪ [z, ε〉 (see the remarks after
Lemma 3.5 in [2, Chapter 2]). Hence [x, ε〉 is bounded if, and only if, [y, ε〉 is (i.e. if,
and only if, [z, ε〉 is bounded). In this situation, we say that ε has bounded rays.

Definition 2. Let (X, d) be an R-tree. We denote by BO(X) the set of all open ends
of X with bounded rays. (This set may be empty.)

Let (X, d) be an R-tree. We extend the identity map on X to a map ϕ : X̂ → X∪BO(X)

as follows. An element y of X̂ \ X is an equivalence class of Cauchy sequences which
do not converge in X. Choose a base point x0 ∈ X. Then by Proposition 1, there is a
monotone increasing sequence (zi) in the equivalence class y, and it does not converge.
Let αi = d(x0, zi). Then (αi) is a bounded increasing sequence in R, and so converges,
to sup{αi} = α, say. Let

L =
⋃
i∈N

[x0, zi].

This set is the union of an increasing sequence of segments with x0 as an endpoint; it
follows easily that it is a linear subtree of X with x0 as an endpoint. Also, L is bounded
as d(x0, y) ≤ α for all y ∈ L.
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If L is not a ray, or if it is a ray corresponding to a closed end of X, then L ⊆ [x0, y]
for some y ∈ X, and d(x0, zi) ≤ d(x0, y) for all i. Hence d(x0, y) ≥ αi for all i, so
d(x0, y) ≥ α. Therefore, there is a point z ∈ [x0, y] such that d(x0, z) = α. But then
d(zi, z) = α−αi → 0 as i →∞, so (zi) converges to z, a contradiction. Thus, L defines
an open end ε of X with bounded rays, and we set ϕ(y) = ε.

Lemma 1. The mapping ϕ : X̂ → X ∪ BO(X) is a well-defined bijection, and is
independent of the choice of the base point x0.

Proof. Suppose that (zi), (z′i) are monotone increasing sequences, with respect to base
points x0, x′0, respectively, which do not converge in X. These sequences define open
ends ε, ε′ as explained above, with [x0, ε〉 =

⋃
i∈N[x0, zi] and [x′0, ε

′〉 =
⋃

i∈N[x′0, z
′
i].

Assuming (zi) ∼ (z′i), we show that ε = ε′. This will demonstrate that the map ϕ is
well-defined and independent of the choice of a base point.

First, we have [x0, ε〉 ∩ [x′0, ε
′〉 6= ∅, for otherwise d(zi, z

′
i) ≥ d([x0, ε〉, [x′0, ε′〉) > 0 for

all i, contradicting the fact that (zi) ∼ (z′i). (The definition of d(A, B), where A, B
are closed subtrees, is given after Lemma 1.9 in Chapter 2 of [2].) Choose a point y
in this intersection, and suppose for a contradiction that ε 6= ε′. By Lemma 3.7 in [2,
Chapter 2], the intersection [y, ε〉 ∩ [y, ε′〉 contains a point x such that [x, ε〉 ∩ [x, ε′〉 =
{x}. Now x ∈ [x0, ε〉, so x ∈ [x0, zk] for some k, and since (zi) is monotone increasing
with respect to x0, zi ∈ [x, ε〉 for i ≥ k. Further, since (zi) does not converge, we can
choose k such that zk 6= x. Similarly we can find k′ such that, for i ≥ k′, z′i ∈ [x, ε′〉
and z′k′ 6= x. Then, for i ≥ max{k, k′},

d(zi, z
′
i) = d(zi, x) + d(x, z′i) ≥ d(zk, x) + d(x, z′k′) > 0

because (zi) and (z′i) are monotone increasing and [x, ε〉∩ [x, ε′〉 = {x}. This contradicts
our assumption that (zi) ∼ (z′i).

For the rest of the proof we can fix a base point x0. We show that ϕ is injective.
Suppose that (zi), (z′i) are monotone increasing sequences with respect to x0, which do
not converge in X and define the same open end ε in the way explained above, so that⋃

i∈N

[x0, zi] = [x0, ε〉 =
⋃
i∈N

[x0, z
′
i].

As in the proof of Proposition 1, we have ‖zi‖ → α and ‖z′i‖ → β as i →∞, for some
real numbers α, β. We claim that α = β. Suppose not, so, without loss of generality,
we can assume that α < β. Since (zi) is monotone increasing, ‖zi‖ ≤ α for all i ∈ N,
and since [x0, ε〉 =

⋃
i∈N[x0, zi], we have ‖x‖ ≤ α for all x ∈ [x0, ε〉. Furthermore, since

(z′i) is monotone increasing, we can find z′i such that α < ‖z′i‖ ≤ β. But z′i ∈ [x0, ε〉, so
this is a contradiction, implying that α = β. Therefore,

d(zi, z
′
i) =

∣∣‖zi‖ − ‖z′i‖
∣∣ → |α− α| = 0

as i →∞, hence (zi) ∼ (z′i). Thus, ϕ is injective.

To show that ϕ is surjective, suppose ε is an open end of X with bounded rays. Then
there is an isomorphism of metric spaces µ : [0, α)R → [x0, ε〉, for some positive real
number α, with µ(0) = x0. Let (αi) be an increasing sequence in [0, α)R converging to
α and let zi = µ(αi). Then ‖zi‖ = αi and d(zi, zj) = |αi − αj|, so (zi) is a monotone
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increasing Cauchy sequence in X; suppose it converges in X, to z, say. Now [x0, ε〉 is a
closed subtree, so z ∈ [x0, ε〉. Also,

d(x0, z) = lim
i→∞

d(x0, zi) = lim
i→∞

αi = α.

But all points of [x0, ε〉 are at distance less than α from x0, so this is a contradiction.
Hence (zi) does not converge. Clearly [x0, ε〉 =

⋃
i∈N[x0, zi], so ε = ϕ(〈zi〉) and ϕ is

surjective. �

We can now state our criterion for completeness of R-trees.

Theorem 1. Let (X, d) be an R-tree. Then the following assertions are equivalent.

(i) (X, d) is complete.
(ii) Every monotone increasing Cauchy sequence with respect to some base point

converges.
(iii) (X, d) has no open ends with bounded rays.

Proof. Obviously (i) ⇒ (ii). If (zi) ∼ (yi) and (zi) converges, then (yi) converges to the
same point; thus, the implication (ii) ⇒ (i) follows from Proposition 1. Since (X, d) is

complete if, and only if, X = X̂, equivalence of (i) and (iii) follows by Lemma 1. �

Suppose a group G acts by isometries on an R-tree (X, d). There is an induced action

by isometries on the completion X̂, given by g〈xi〉 = 〈gxi〉 for g ∈ G. There is also an
induced action on the set of ends of X; if L is a ray defining an end ε, then gε is the
end defined by the ray gL, for g ∈ G. This clearly restricts to an action on BO(X).

Lemma 2. If a group G acts by isometries on an R-tree (X, d), then, with the induced

actions, the mapping ϕ : X̂ → X ∪ BO(X) is G-equivariant.

Proof. Let (zi) be a monotone increasing Cauchy sequence with respect to a base point
x0 which does not converge, and let ϕ(〈zi〉) = ε, so that

⋃
i∈N[x0, zi] = [x0, ε〉. Let

g ∈ G. Then (gzi) is a monotone increasing Cauchy sequence with respect to gx0

which does not converge. The ray g[x0, ε〉 defines gε and equals
⋃

i∈N[gx0, gzi]. Hence
gε = ϕ(〈gzi〉) (using the fact that the definition of ϕ does not depend on the choice of
base point). That is, gϕ(〈zi〉) = ϕ(g〈zi〉), as required. �

Wilkens [9] has shown that if a group G has a bounded action by isometries on a
complete R-tree, then there is a fixed point. Now, if G has a bounded action on an
R-tree, then the induced action on the completion is easily seen to be bounded as well.
Lemmas 1 and 2 therefore give the following.

Proposition 2. If a group has a bounded action by isometries on an R-tree, then either
there is a fixed point, or there is a fixed open end with bounded rays. �

Let (X, d) be an R-tree with base point x0. The completion of X is obtained by
adding a point for every open end ε with bounded rays. The new point is of the
form z = 〈zi〉 where z is a monotone increasing Cauchy sequence with respect to x0

which does not converge in X, ϕ(z) = ε, and [x0, ε〉 =
⋃

i≥1[x0, zi]. If m ≥ n, then
d(x0, zm) = d(x0, zn) + d(zn, zm), and letting m →∞, d(x0, z) = d(x0, zn) + d(zn, z), so



COMPLETENESS AND CCOMPACTNESS CCRITERIA FOR R-TREES 7

zn ∈ [x0, z] in X̂. Hence [x0, ε〉 ⊆ [x0, z]. In fact, since d(zn, z) → 0 as n →∞, we have

that [x0, z] = [x0, ε〉 ∪ {z}. It follows from the next lemma that z is an endpoint of X̂.

Thus X̂ is obtained by adding an endpoint to the corresponding ray, for each open end
of X with bounded rays. This next lemma will also be useful later.

Lemma 3. Let (X, d) be an R-tree and let Y be a dense subset of X. Choose a base
point x0 ∈ X. Then

(i) If x ∈ X and x is not an endpoint of X, then x ∈ [x0, y] for some y ∈ Y .
(ii) If Y is a subtree of X, then every point of X \ Y is an endpoint of X.

Proof. (i) We may assume x0 6= x, otherwise any point y in Y will do. Then [x, x0]
defines a direction at x, and there is at least one more, defined by [x, z] say, where
z ∈ X. Then x ∈ [x0, z]. The open ball B(z, d(z, x)) contains a point of Y , say y. The
projection p of y onto [x0, z] lies in [x, z] and is not equal to x, otherwise

d(y, z) = d(y, p) + d(p, x) + d(x, z) ≥ d(x, z)

contradicting the fact that y ∈ B(z, d(z, x)). By [2, Ch.2, Lemma 1.5], [x0, y] =
[x0, x, p, y], so x ∈ [x0, y].

(ii) We can choose x0 ∈ Y . Then any point x ∈ X which is not an endpoint is in [x0, y]
for some y ∈ Y , and [x0, y] ⊆ Y whence (ii). �

3. Compact R-trees

For the following two definitions, let (X, d) be an R-tree, and let r > 0 be a real number.

Definition 1. Let x ∈ X be a point.

(a) The direction at x has length ≥ r, if it is represented by a segment of length
d(x, y) ≥ r.

(b) The R-tree X is r-locally finite at x, if the set of all directions at x of length
≥ r is finite. It is r-locally finite if it is r-locally finite at x for all x ∈ X.

Definition 2. (a) A segment [x, y] has r-finite branching if the set of points p ∈
[x, y] such that there exists z ∈ X with p being the projection of z onto [x, y]
and d(z, p) = d(z, [x, y]) ≥ r, is finite.

(b) The R-tree X itself has r-finite branching, if every segment in X has r-finite
branching.

Theorem 2. An R-tree X is compact if, and only if,

(i) it is bounded,
(ii) it is complete,
(iii) it is r-locally finite for every r > 0,
(iv) it has r-finite branching for every r > 0.

Proof. Since X is a metric space, it is enough to show that conditions (i)–(iv) are
equivalent to sequential compactness. Further, it is well known that a compact metric
space is complete and bounded. Suppose there exists x0 ∈ X and r > 0 such that the
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set of directions at x0 of length ≥ r is infinite. Then there exists a sequence of points
(xi)i≥1 in X such that d(x0, xi) = r and [x0, xi] ∩ [x0, xj] = {x0} for all i, j ≥ 1 and
i 6= j. Then d(xi, xj) = 2r whenever i 6= j, thus no subsequence of (xi)i≥1 can converge.
Hence, condition (iii) is also necessary for compactness. Suppose condition (iv) fails,
so there is a segment [x, y], a real number r > 0 and infinitely many distinct points
pn, n ≥ 1 in [x, y] which are the projections onto [x, y] of points yn with d(yn, pn) ≥ r.
Then d(yi, yj) = d(yi, pi) + d(pi, pj) + d(yj, pj) ≥ 2r whenever i 6= j, so no subsequence
of (yi) can converge. Hence, condition (iv) is also necessary for compactness.

Conversely, assume conditions (i)–(iv), and let (yi) be a sequence in X. We have to
show that (yi) has a convergent subsequence. We can assume (yi) has no constant
subsequence, so replacing (yi) by a subsequence, we can assume that

yi 6= yj for i 6= j. (1)

Suppose there is a point x ∈ X such that the set of directions defined by the segments
[x, yn], n ≥ 1 is infinite. Then by condition (iii) we can find a subsequence of (yi)
converging to x. Thus we can assume that

for any x ∈ X, the set of directions defined by
{
[x, yn] | n ≥ 1, yn 6= x

}
is finite.

(2)
Suppose x, y ∈ X and let qn be the projection of yn onto [x, y]. If the set {qn | n ≥ 1}
is infinite, there is a subsequence (qij) of distinct points converging to a point q ∈ [x, y],
since [x, y] is compact. Using condition (iv), the subsequence (yij) of (yi) also converges
to q. We can therefore assume that

for any x, y ∈ X, the set of projections of the points yn, for n ≥ 1, onto [x, y] is finite.
(3)

Now put p1 = z1 = y1. By (1) and (2), there is a direction at z1 defined by [z1, yn] for
infinitely many yn. Choose n smallest such that [z1, yn] defines this direction and put
z2 = yn.

By (3), there are finitely many points in [z1, z2] which are projections of at least one of
the yn onto it. Therefore, by (1) there exists p2 ∈ [z1, z2] such that p2 6= z1 and p2 is the
projection onto [z1, z2] of infinitely many of the points yn, n ≥ 1. (Note that p2 = z2

is possible.) By (1) and (3), infinitely many of the yn have p2 as their projection onto
[z1, z2] = [p1, z2] and define the same direction at p2. Choose such a yn with n as small
as possible and put z3 = yn. Now as before we can find p3 ∈ [p2, z3] such that p3 6= p2

and infinitely many of the yn have p3 as their projection onto [p2, z3]. Note that p2 is
the projection of z2 onto [p1, p3] ⊆ [p1, z3].

Continuing in this way, we construct sequences (pi), (zi) such that (pi) is monotone
increasing with respect to p1, pi is the projection of zi onto [p1, pi+1], pi 6= pj for i 6= j,
and zi ∈ {yn | n ≥ 1}. Let L =

⋃
i≥1[p1, pi]. Then L is a linear subtree with p1 as an

endpoint. By assumptions (i) and (ii), and criterion (iii) of Theorem 1, L ⊆ [p1, p] for
some p ∈ X. Thus [p1, p] = [p1, pi, pi+1, pi+2, p], so pi+1 6= p and it follows that pi is the
projection of zi onto [p1, p], for i ≥ 1. But then [p1, p] contains infinitely many points pi

which are projections onto it of points in {yn | n ≥ 1}. This contradicts (3) and proves
the theorem. �

We give two examples of complete, bounded, non-compact R-trees.
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Example 1. Let Xn be the set of points in R2 with polar coordinates (r, π/n), where
n is a positive integer and 0 ≤ r ≤ 1. Then Xn is a copy of the unit interval [0, 1]
with the distance between (r, π/n) and (r′, π/n) equal to |r − r′|. By [2, Chapter 2,
Lemma 1.13], X :=

⋃
n≥1 Xn is an R-tree, where, for m 6= n, the distance from (r, π/n)

to (r′, π/m) is r + r′. Then X is not 1-locally finite at the origin 0, so (iii) fails, but
(iv) holds as 0 is the only branch point. Also, (ii) holds as there are no open ends, and
(i) clearly holds.

Example 2. Let (Y, d) be the R-tree described before [2, Chapter 2, Lemma 2.7]. Thus
Y = R2, and, using Cartesian coordinates,

d((x1, y1), (x2, y2)) =

{
|y1|+ |y2|+ |x1 − x2| if x1 6= x2

|y1 − y2| otherwise.

Then the degree of a point is at most four, so Y and any subtree satisfies (iii). The
Euclidean unit square [0, 1] × [0, 1] is easily seen to be a subtree satisfying (i)–(iii).
However, (iv) fails because the segment [0, 1] on the real axis does not have 1-locally
finite branching. (Every point x = (x, 0) of this segment is the projection of (x, 1) onto
it.)

We can use our results to characterise locally compact R-trees. Let X be an R-tree
and let x ∈ X. If y, z ∈ X are points contained in the closed ball B̄(x, r) of radius r
around x, where r > 0, then the segment [y, z] joining them is also contained in this
ball, because [y, z] ⊆ [x, y] ∪ [x, z]. Thus B̄(x, r) is a subtree of X.

Corollary 1. An R-tree X is locally compact if and only if it satisfies Conditions (iii)
and (iv) of Theorem 2, as well as

(v) for each x ∈ X, there exists s > 0, such that B̄(x, s) has no open ends.

Proof. Suppose that X is locally compact. Then, for x ∈ X, there exists s > 0 such
that B̄(x, s) is compact. This closed ball is then bounded and complete, so has no open
ends by Theorem 1. If r > 0 and there are infinitely many directions in X at x of length
greater than or equal to r, then there are infinitely many directions in B̄(x, s) at x of
length greater than or equal to min{r, s}, contradicting Theorem 2. Hence, X satisfies
(iii) and (v).

Suppose that (iv) fails to hold. Then there are a segment [x, y] in X, a real number
r > 0, and a sequence (pi) of distinct points of X, such that there exists zn ∈ X
with d(zn, pn) = d(zn, [x, y]) ≥ r. Replacing (pn) by a subsequence, we may assume
it converges to a point p ∈ [x, y]. Choose s > 0 such that B̄(p, s) is compact. Then
B̄(p, s) ∩ [x, y] = [x′, y′] for some x′, y′ ∈ X with x′ 6= y′.

Let wn be the point on [zn, pn] at distance min{r, s/2} from pn. Infinitely many of the
points pn satisfy d(pn, p) ≤ s/2 and these are in [x′, y′]. For such pn, [wn, pn]∩ [x′, y′] =
{pn}, because [wn, pn] ⊆ [zn, pn] and [x′, y′] ⊆ [x, y]. Also, for such pn,

d(wn, p) = d(wn, pn) + d(pn, p) ≤ s/2 + s/2 = s,

so wn ∈ B̄(p, s). But then (iv) fails in B̄(p, s), contradicting Theorem 2. Hence, X
satisfies (iv).
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Conversely, assume that X satisfies (iii)–(v). Let x ∈ X and choose s > 0 such that
B̄(x, s) has no open ends. Then B̄(x, s) is bounded, so is complete by Theorem 1.
Clearly, B̄(x, s) satisfies (iii) and (iv), hence is compact by Theorem 2. Thus X is
locally compact. �

If (X, d) is a complete locally compact R-tree, then any closed ball B̄(x, r) is compact.
For, by Corollary 1, X satisfies (iii) and (iv), hence B̄(x, r) satisfies (iii) and (iv).
Compactness then follows from Theorem 2. This observation is made by Duquesne and
Winkel [3], but using a version of the Hopf-Rinow Theorem given by Gromov [4].

It follows that a complete locally compact R-tree is separable, and they go on to deduce
that such an R-tree has at most countably many branch points [3, Lemma 3.1]. For given
a base point x0 and a countable dense subset {yi | i ≥ 1}, any branch point is contained
in one of the segments [x0, yi] by Lemma 3(i), and segments have only countably many
branch points. From our point of view, this follows from (iv) in Corollary 1. We do not
know if this result is true without the assumption that the R-tree is complete.

We remark that, by Condition (iii) in Corollary 1, the set of directions at every point
of a locally compact R-tree is at most countable (this fact is probably well-known, but
we do not know a reference for it).
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