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ABSTRACT. Let g, h be solutions of a linear recurrence relation of length 2. We show
that under some mild assumptions the greatest common divisor of g(n) and h(n) is
periodic as a function of n and compute its mean value.

1. PROBLEMS AND RESULTS

Let a,b be coprime integers, b # 0, and consider the recurrence relation

f(n+2)=af(n+1)+0bf(n), n € Np. (1)
Let g, h : Ny — Z be solutions of (1) with
lg(n)] + [A(n)] >0 (2)

for all n € Ny. We consider the g.c.d.-function ¢(n) = (g(n), h(n)).

Problem 1. Under which conditions on g and h is the function t(n) periodic?
Problem 2. If t(n) is periodic, what is the mean value of ¢(n)?

We first need a

Definition. We call a function f : Ny — Z periodic and ¢ € N a period of f, iff there
exists some ng € Ny such that f(n) = f(n+q) for all n > ny. If one can choose ny = 0,
f is called simply periodic.

In this note we prove the following two theorems.

Theorem 1. Let g,h : Ny — 7Z be solutions of (1) satisfying (2), and assume that
c:=g(1)h(0) — g(0)h(1) # 0. Then

(a) the function t(n) is periodic, moreover, if (b,c) =1, it is simply periodic,
(b) every common period of g(n) mod |c| and h(n) mod |c| is a period of t(n);
(c) for all n € Ny we have t(n)|c.

Theorem 2. Let g,h : Ng — 7Z be solutions of (1) satisfying (2), and assume that
g(0) =0, g(1) =1, ¢ := h(0) # 0 and (b,c) = 1. Then the mean value of t(n)equals

D dle %, where k(d) := min{n € N : d|g(n)}.

Examples. 1. In the case g(0) = 0, g(1) = 1, A(0) = 2, h(1) = a, McDaniel [1] has
shown, that ¢(n) is 1 or 2 for n € N. This follows also from our Theorem 1 (c). If
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further a = b = 1, we obtain the Fibonacci- resp. Lucas-function. Since g(n) mod 2
and h(n) mod 2 are simply periodic with period 3, we get

2, n=0 (mod 3);
tw_{ 1, Z;éo (mgd3),

with mean value 3. This is a well-known result (see e.g. [2], [3]).

2. Defining g and h by a = 1,b =2, ¢(0) = h(0) =1, g(1) = 2, h(1) = 0, we obtain the
g.c.d-function

which is periodic, but not simply periodic.

Remarks. 1. The assumption (a,b) = 1 in Theorem 1 is necessary, since for every
common divisor d of a and b we have

d"|t(2n), n e N.
If d > 1, t(n) is unbounded, hence not periodic.

2. The g.c.d.-functions of recurrences of higher order need not be periodic. The com-
panion polynomial (z — 1)(x — 2)(xz — 3) corresponds to
f(n+3)=6f(n+2)—11f(n+1)+6f(n), n € Ny.

It has solutions g(n) = 2" — 1 and h(n) = 3" — 1 with ¢ = —2. If p > 5 is a prime,
and n = —1 (mod p — 1), then

tin) = (2" - 1,3"" —~1) =0 (mod p)
and t(n) > p; hence, t(n) is not bounded and a forteriori not periodic.

3. The function ¢(d) does not depend on the period ¢ of ¢(n) mod d. If f(n) is the so-
lution of (1) with initial values f(0) =0, f(1) = 1 (the generalized Fibonacci-function),
one can take any period ¢ of f(n) mod d: We have

g(n) = (9(1) —ag(0))f(n) + g(0)f(n+1),  n €N,

hence, ¢ is a period of g(n) mod d, and similarly for h(n) mod d, thus ¢ is a period of
t(n) mod d, too.

4. The mean value M of ¢(n) depends only on the determinant ¢ of the initial values
of g and h. It is unbounded as a function of m = |¢|, even if ¢g(0) = 0, g(1) = 1, since
k(d) < d4*@ (see [3]) implies

w(m)
p(d) ( p—1 ) (9)
M > = I+4——j) > (=

p’m

5. The assumption (b, c) = 1 in Theorem 2 is necessary, however, there is always some
no such that the function ¢(n) = t(n + ng) has the same mean value as ¢(n) and the
mean value formula holds true for ¢.
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2. PROOFS

We first need two lemmas, which are well-known for the classical Fibonacci-function
(see [2]).

Lemma 1. Let f : Ny — Z be a solution of (1), and d € N. Then the function
n — f(n) mod d is periodic, and simply periodic if (b,d) = 1.

Proof. There are positive integers n; < ng, such that both f(ny) = f(n2) (mod d) and
f(ni+1) = f(na+1) (mod d). Then ¢ = ny—ny is a period of f(n) mod d, since by (1),
f(n+q) = f(n) (mod d) for all n > ny. Assume that f(ng+q) Z f(ng) (mod d), and
choose ny maximal with this property. Then by (1), we have mod d the congruences

bf(no) = [flno+2)—af(ng+1)
flno+q+2) —af(no+q+1)

= bf(no+q).

If (b,d) = 1, this gives the contradiction f(ng) = f(no +¢) (mod d). O
Lemma 2. Let f : Ng — Z be the generalized Fibonacci-solution of (1), i.e., f(0) =
0,f(1)=1. Then

(a) (f(n),f(n+1)) =1,n¢€ Ny;
(b) f(m+n) = f(m+1)f(n)+bf(m)f(n—1),m € No,n €N,
(c) if d,n €N, and k(d) = min{n € N:d|f(n)}, then (d|f(n) < k(d)|n).

Proof. (a). Let p be a prime, and n be the least integer with p|f(n),p|f(n + 1); in
particular, n > 1. The equation f(n + 1) = af(n) + bf(n — 1) implies p|bf(n — 1),
hence, p|b. Similarly, f(n) = af(n —1) +bf(n — 2) implies plaf(n — 1), thus p|a. This
contradicts the assumption (a,b) = 1.

(b). This follows by induction on n.

(c). Let L:={n €Ny :d|f(n)}. f m,n € L, we get m +n € L by (b)., and if m > n,
we have f(m) = f(m —n)f(n+1)+bf(m —n —1)f(n), hence, d|f(m —n)f(n+ 1),
som—n € L by (a). Take n € L and write n = mk(d) +t with 0 <t < k(d). Since
t =n—mk(d) € L, we have t = 0 and L = k(d) - Ny. This proves the last claim. [

Proof of Theorem 1. Let f : Ny — Z be the solution of (1) with initial values f(0) =
0, f(1) = 1. We have

cf(n) = h(0)g(n) —g(0)h(n),  n €Ny, (3)
since both sides solve (1), and the initial values are 0 and c. Similarly,
cf(n+1) = (ah(0) = h(1))g(n) = (ag(0) = g(1))h(n), ~ n €N (4)

Fix n € Ny and let ¢t be a common divisor of g(n) and h(n). Then t|c(f(n), f(n + 1))
by (3) and (4), hence t|c by Lemma 2 (a) From this we deduce

t(n)|e, for all n € Ny. (5)
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By Lemma 1, a common period ¢ of g(n) mod |c| and h(n) mod |c| exists, so, by (5),
t(n) = (g(n), h(n),c) = (9(n +q), h(n+ q),c) = t(n +q), if n > no.
This proves Theorem 1. O

Proof of Theorem 2. Set m := |c|, and let g be a period of ¢(n) mod m, which exists by
Lemma 1. Then, since ¢ is simply periodic, the mean value of ¢(n) is

1
M= - Z t(n),
q 1<n<q

and by Theorem 1 (c), this quantity is equal to ézdlm dl(d), where ¢(d) = #{n < q:
(t(n),m) = d}. Further, we have

MZEZ(t(n),m)zézs 3o

q

lsnsq S|m (t(lnS)’,nw%)q:s
Since
1, n=1
;mm:{a n=l )

the inner sum can be written as

oD utk)y =) |utk) > 1

1<n< m 1<n<
sTt('rT)q k|(t(n)/s,m/s) k| s sI;|t(;L(§

Set d := sk; then
M= 3 | ) S

dlm kld

We use 3, p(d) = n together with (6) and see -, (k)¢ = o(d). Hence,
M= Y pld)n < a3 dit(n)}

dm

Since g(0) = 0,¢(1) = 1, we have
h(n) = (h(1) = ah(0))g(n) + h(0)g(n + 1),
and by Lemma 2 (a), we obtain
t(n) = (9(n), h(0)g(n + 1)) = (g(n), h(0)) = (g(n), m).

We finally get by Lemma 2 (c) for every d|m

#n<adint= 30 1= 3 1=

1<n<gq 1<n<gq
dlg(n) k(d)|n

and Theorem 2 is proven. [
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