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Denote by rν(N) the number of representations of N as the sum of ν
squarefree numbers. In a series of papers Evelyn and Linfoot [3]–[7] proved
that

rν(N) = Sν(N)N ν−1 +O(Nν−1−θ(ν)+ε),

where

Sν(N) =
1

(ν − 1)!

(
6

π2

)ν ∏
p2-N

(
1− 1

(1− p2)ν

)∏
p2|N

(
1− 1

(1− p2)ν−1

)
,

and

θ(2) = θ(3) =
1

3
, θ(ν) =

1

2
− 1

2ν
(ν ≥ 4).

Mirsky[10] improved the error term for ν ≥ 3 to θ(ν) = 1
2
− 1

4ν−2 . Using
a new approach to bound the minor arc integral develloped by Brüdern,
Granville, Perelli, Vaughan and Wooley[1], Brüdern and Perelli[2] showed
that θ = 1

2
for all ν ≥ 3, and that any further improvement would imply a

quasiriemannian hypothesis. Moreover, assuming the generalized riemann-
ian hypothesis, they proved that θ(3) = 3

4
+ 1

14
and θ(ν) = 3

4
for all ν ≥ 4.

These result are optimal apart from the summand 1
14

; in personal commu-

nication Brüdern conjectured that θ(3) = 3
4

should hold true. It is the aim
of this note to prove this conjecture.

Define S(α) =
∑

n≤N µ
2(n)e(αn), and, for integers N and Q satisfying

1 ≤ Q < N1/2/2, let M(Q) be the union of all intervals {α : |αq − a| ≤
QN−1}, where q ≤ Q, and (a, q) = 1, and set m(Q) = [QN−1, 1−QN−1] \
M(Q). With these notation we will prove the following.

Theorem 1. We have S(α) � N1+εQ−1 for all α ∈ m(Q), provided that
Q ≤ N1/2.

Under the restriction Q ≤ N3/7, this was proven in [2, Theorem 4]. As
already remarked in [2, Sec. 5], the weakening of the assumption on Q
implies the following.

Theorem 2. Assume the generalized riemannian hypothesis. Then we have

r3(N) = S(N)N2 +O(N5/4+ε).
1
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By Dirichlet’s theorem on diophantine approximation, for every α ∈ m(Q)
there exist coprime integers a, q with q ≤ NQ−1, such that |qα−a| ≤ N−1Q.
By the definition of m(Q), we necessarily have q > Q. Hence, Theorem 1 is
essentially equivalent to the following.

Theorem 3. Define S(α) as above, and let q be an integer satisfying |αq−
a| ≤ q−1. Then we have

|S(α)| � N1+εq−1 +N εq.

We approach Theorem 3 by the following lemma, which replaces Lemma 1
in [2].

Lemma 1. Let α ∈ (0, 1) be a real number, and assume that |qα − a| < 1
q
.

Let D be an integer, and denote by W (D, z) the number of integers d ≤ D
satisfying ‖d2α‖ ≤ z. Then, for D2 > 1

4
q, we have

W (D, z)� D2q−1 +D1+εz1/2.

Proof. Cut the interval [1, D2] into K = [D2q−1] + 1 intervals of length q,
where the last interval may be shorter. For k ≤ K, let ak be the num-
ber of integers d, such that ‖d2α‖ ≤ z and kq ≤ d2 < (k + 1)q. Then∑

k≤K ak = W (D, z), and by the arithmetic-quadratic mean inequality,∑
k≤K a

2
k ≥ W (D, z)2K−1. Denote by D the set of all pairs (d1, d2) with the

properties that ‖d2iα‖ ≤ z and 1 ≤ |d21−d22| ≤ q. Then eitherW (D, z) ≤ 2K,
which is sufficiently small, or we can bound |D| from below via

|D| ≥
∑
k

(
ak
2

)
�
∑
k

a2k −
∑
k

ak �
∑
k

a2k � W (D, z)2K−1.

Denote by N ⊆ [1, q] the set of all values of |d21 − d22|, where d1, d2 ranges
over all pairs in D. Then every pair in D gives rise to an element of N , and
the number of different pairs d1, d2 having the same difference d21−d22 = n is
bounded above by the number of divisors of n, and therefore � qε. Hence,
we decuce

W (D, z)2 � |D|K � |N|Kqε.
On the other hand, for every n ∈ N , we have ‖nα‖ ≤ ‖d21α‖+ ‖d22α‖ ≤ 2z,
hence,

W (D, z)2 � D2qε−1
∣∣{n ≤ q : ‖αn‖ ≤ 2z

}∣∣� D2qε−1(qz + 1).

From this we obtain in the case W (D, z) > 2K, that

W (D, z)� D1+εz1/2 +D1+εq−1/2,

which is again of the right size, since D > 1
2
q1/2. �
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Proof of Theorem 3. Write

S(α) =
∑
d≤
√
N

µ(d)
∑

m≤Nd−2

e(αd2m)

� logN max
1≤D≤

√
N/2

∑
D≤d<2D

min
( N
D2

, ‖αd2‖−1
)

= logN max
1≤D≤

√
N/2

Υ(α,D),

say. To prove Theorem 3, it suffices to show that Υ(α,D) � N1+εQ−1 for

all D ≤
√
N/2. For D > 1

4
q1/2, we have

Υ(α,D) � logN max
z>N/D2

z−1W (D, z)

� logN max
z>N/D2

(
z−1D2q−1 +D1+εz−1/2

)
� N1+εq−1 +N1/2+ε.

For D ≤ 1
4
q1/2, we argue as in the proof of [2, Lemma 1]. We have

|αd2 − ad2/q| ≤ 4D2|α− a/q| ≤ 4D2q−2 ≤ 1

4q
,

and therefore

|Υ(α,D)| ≤ 2
∑

D≤d<2D

∥∥∥∥ad2q
∥∥∥∥� q log q � N εq.

Taking these estimates together, we find that

S(α)� N1+εq−1 +N1/2+ε +N εq,

and the second term is always dominated by either the first or the last one,
which implies our theorem. �
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