THE EXPONENTIAL SUM OVER SQUAREFREE
INTEGERS
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Denote by r,(N) the number of representations of N as the sum of v
squarefree numbers. In a series of papers Evelyn and Linfoot [3]-[7] proved
that

ry(N) = &, (N)N""" + O(N"=1 7000,

where
&N = =y (E)H (- ﬁ)ﬂ(*ﬁ)
and 0(2>:9(3>:%7 9@):%_% (v > 4).

Mirsky[10] improved the error term for v > 3 to 0(v) = 2 —

5 — 1,3 Using
a new approach to bound the minor arc integral develloped by Briidern,
Granville, Perelli, Vaughan and Wooley[1], Briiddern and Perelli[2] showed
that 6 = % for all ¥ > 3, and that any further improvement would imply a
quasiriemannian hypothesis. Moreover, assuming the generalized riemann-
ian hypothesis, they proved that 6(3) = % + & and O(v) = % for all v > 4.
These result are optimal apart from the summand 1—14; in personal commu-
nication Briidern conjectured that 6(3) = % should hold true. It is the aim
of this note to prove this conjecture.
Define S(a) = Y, .y p*(n)e(an), and, for integers N and @ satisfying
1 <Q < NY2/2, let 9M(Q) be the union of all intervals {a : |ag — a| <
QN~'}, where ¢ < Q, and (a,q) = 1, and set m(Q) = [QN"1,1 — QN7 \
M(Q). With these notation we will prove the following.

Theorem 1. We have S(a) < N Q™! for all a € m(Q), provided that
Q < N1/2'

Under the restriction Q < N3 this was proven in [2, Theorem 4]. As
already remarked in [2, Sec. 5], the weakening of the assumption on @
implies the following.

Theorem 2. Assume the generalized riemannian hypothesis. Then we have

r3(N) = G(N)N? + O(N?/4+¢),
1
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By Dirichlet’s theorem on diophantine approximation, for every a € m(Q)
there exist coprime integers a, ¢ with ¢ < NQ ™!, such that |ga—a|] < N7'Q.
By the definition of m(Q), we necessarily have ¢ > ). Hence, Theorem 1 is
essentially equivalent to the following.

Theorem 3. Define S(«) as above, and let q be an integer satisfying |aq —
a| < q¢7'. Then we have

[S(a)] < N'™e¢™" + Ng.

We approach Theorem 3 by the following lemma, which replaces Lemma 1
in [2].

Lemma 1. Let a € (0,1) be a real number, and assume that |qa — a| < %.

Let D be an integer, and denote by W (D, z) the number of integers d < D
satisfying ||d*a|| < z. Then, for D* > 1q, we have

W(D,z) <« D*¢~' + D212,

Proof. Cut the interval [1, D?] into K = [D?*¢'] + 1 intervals of length g,
where the last interval may be shorter. For £ < K, let a; be the num-
ber of integers d, such that ||d*a|| < z and kg < d* < (k+ 1)g. Then
Yok = W(D,z), and by the arithmetic-quadratic mean inequality,
S ohex @i > W(D,z)? K. Denote by D the set of all pairs (di, dz) with the
properties that ||d?a|| < zand 1 < |d2—d3] < g. Then either W (D, z) < 2K,
which is sufficiently small, or we can bound |D| from below via

|D| > Z (a;) > Zai — Zak > Za% > W(D, 2> K.
f k k k

Denote by N C [1,¢| the set of all values of |d? — d3|, where d;,dy ranges
over all pairs in D. Then every pair in D gives rise to an element of A/, and
the number of different pairs d, dy having the same difference d? — d3 = n is
bounded above by the number of divisors of n, and therefore < ¢°. Hence,
we decuce

W(D, 2)? < |D|K < |N|K¢.

On the other hand, for every n € N, we have ||na|| < ||| + ||d3e|| < 2z,
hence,

W(D,z)? < D’¢ '[{n < q: |lon| <22}| < D*¢ (g2 + 1).
From this we obtain in the case W (D, z) > 2K, that
W(D,Z) < D1+5Z1/2 _i_DlJreqfl/Q7

which is again of the right size, since D > %qlﬁ. ([
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Proof of Theorem 3. Write
S) = > ud) D e(adm)

d<VN m<Nd—2
(N 2|1
< log N max Z min (—2, ||ad?|| )
LSDSVN/2 2020 D

= logN max Y(«a,D),
1<D<VN/2

say. To prove Theorem 3, it suffices to show that T(a, D) < N'*Q~! for
all D <+v/N/2. For D > iql/z, we have

Y(a, D log N “‘W(D
(a, D) < log max 2 (D, 2)

< log N max (z_lDQq_1+D1+€z_1/2)
2>N/D?

< N1+Eq—1 +N1/2+€.

For D < %¢*/?, we argue as in the proof of [2, Lemma 1]. We have
1
lad? — ad?/q| < 4D?*|a — a/q| < 4D*¢? < o
q

and therefore
2

< qlogg < N¢gq.

T(a,D)| <2 )

D<d<2D

Taking these estimates together, we find that
S(Oé) < Nqu*l +Nl/2+a —i—NEq,

and the second term is always dominated by either the first or the last one,
which implies our theorem. O
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