On Shanks’™ Algorithm for Modular Square Roots*

Jan-Christoph Schlage-Puchtaf

29 May 2003

Abstract

Let p be a prime number, p = 2"¢+ 1, where ¢ is odd. D. Shanks described an
algorithm to compute square roots (mod p) which needs O(log ¢ +n?) modular
multiplications. In this note we describe two modifications of this algorithm. The
first needs only O(loggq + n®/?) modular multiplications, while the second is a
parallel algorithm which needs n processors and takes O(log g + n) time.

MSC-Index 11Y16, 68Q25, 68W10
Key words: Modular Square Root, Parallel Algorithm

Jan-Christoph Schlage-Puchta
Mathematisches Institut
Eckerstr. 1
79111 Freiburg
Germany

D. Shanks|[3] gave an efficient algorithm for computing square roots modulo a prime.
If p = 2"g+1, this algorithm consists of an initialization, which takes O(log ¢) modular
multiplications, and a loop, which is performed at most n times and needs n modular
multiplications at most. Hence the total cost is O(log ¢ +n?) modular multiplications.
This is actually the normal running time, for S. Lindhurst [2] has shown that on
average the loop needs i(n2 + 7n — 12) + 1/2"~! modular multiplications. For most
prime numbers p, n is much smaller than /logq, hence the initialization will be the
most costly part, however, prime numbers occuring “in practice” are not necessarily
random, and if p—1 is divisible by a large power of 2, the loop becomes more expensive
than the initialization. In this note we will give two modifications of Shanks’ algorithm.
The first algorithm needs only O(log q+n?/ %) modular multiplications, while the second
is a parallel algorithm running on n processors which needs O(logq + n) time. Here
and in the sequel time is measured in modular multiplications, and we assume that
all other operations are at most as expensive as a modular multiplication. On the

*Mathematics Subject Classifications: 11Y16, 68Q25, 68W10
TMathematisches Institut, Eckerstr. 1, 79111 Freiburg, Germany

other hand both our algorithms have larger space requirements. Whereas Shanks’
algorithm has to store only a bounded number of residues (mod p), our algorithms
have to create two arrays, each containing n residues (mod p). However, on current
hardware this amount of memory appears easily manageable compared to the expenses
of the computation.

D. Bernstein[1] found a different improvement of Shanks algorithm, which has run-
ning time O(log ¢ + n2/log® n). Although asymptotically worse than our algorithm, it
appears that Bernstein’s algorithm is more efficient for medium sized values of n.

We assume that looking up an element in a table of length n is at most as ex-
pensive as a modular multiplication, an assumption which is certainly satisfied on any
reasonable computer.

First we give a description of Shanks’ algorithm. We assume that we are given a
prime p = 2"q + 1, a quadratic residue a and a non-residue u, and are to compute an
x such that 2 = a (mod p). Then the algorithm runs as follows.

Algorithm 1:

1. Set k=n, z=u?, z = al9tV/2 b = g9,

2. Let m be the least integer with b =1 (mod p).

2k—m—1

3. Sett==z2 , 2z =12, b=bz, x = xt.

4. If b =1, stop and return z, otherwise set £k = m and go to step 2.

It is easy to see that the congruence x? = ab (mod p) holds at every stage of the
algorithm, hence, if it terminates we really obtain a square root of a.

To show that this algorithm terminates after at most n loops, consider the order of
band z (mod p). After the first step, the latter is 2" = 2*, since u is a nonresidue,
whereas the first one is strictly smaller, since a is a quadratic residue. In the second
step the order of b is determined to be exactly 2™, and in the third step z is replaced
by some power, such that the new value of z has order exactly 2™, too. Then b is
replaced by bz, thus the order of the new value of b is 2™~ at most. Setting k = m,
we get the same situation as before: the order of z is exactly 2%, and the order of b is
less. Hence every time the loop is executed, the order of b is reduced, at the same time
it always remains a power of 2. Hence after at most n loops, the order of b has to be
1,ie,b=1 (mod p).

The next algorithm is our first modification of Algorithm 1.

Algorithm 2:
1. Set k=mn, z=u?, z = al9tV/2 b = a9,

2 3 n .
. Compute 22,22 ,2%,...,2% an r values in an array.
2. Compute 22, 22,22 ,...,2%" and store these values in an arra;

w

. Compute b2, 1922,19237 ...,b¥" and store these values in an array.

4. Seti:O,bO:b,zozz

5. Let m be the least integer, such that 3" 22" --- 22" =1 (mod p).

K2

2k—m—1

6. Set t =z czig1 =1 b=bzi g, x=at,i=i+1,k=nm.

i
7. If b= 1, stop and return z.
8. If i < /n, continue with (5), otherwise set z = z;41 and continue with (3).

To illustrate this algorithm, we compute a solution of the congruence z? = 11
(mod 257). Then we have ¢ = 1 and n = 8. As a non-residue (mod 257), we may
choose u = 5. Hence, in the first step the variables are set to the values k = 8,z = 5,
and z = b = 11. In the second step, the powers of z are computed. We find

52 ‘ 24 ‘ 28 | 416 | 532 | .64 | 128 ‘ 5256
25 ‘ 111 ‘ 242 | 225 | 253 | 16 | 256 ‘ 1

Similarly, in the third step we obtain the following table.
b2 ‘ b4 ‘ bS b16 b32 b64 b128 ‘ b256
121 ‘ 249 ‘ 64 | 241 | 256 | 1 1 ‘ 1

In the fourth step, we set i = 0,bg = 11, 29 = 5.

After these initializations, we begin the loop consisting of steps (5)—(8). From the
precomputed values for b2k, we see that the least m such that b*” =1 (mod 257) is
m = 6. Hence in step (6), we set t = 23 = 25, z; = t> = 111, b = 11 - 111 = 193, and
x = 11-25 = 18. These computations are somewhat facilitated by the use of the tables
computed above, however, we still have to do modular multiplications. The new values
i =1 and k = 6 are trivial. Since b = 193 £ 1, and 1 =i < y/n ~ 2.8, we continue
with step (5).

We have to find the least integer m such that (193)?” =1 (mod ¢). The latter
can be written as 112" 52m+2, hence, we can use the tables above to find that m = 3,
since 25364 =1 (mod 257), while 225-249 = —1 (mod 257). From this we obtain
the new values t = 225, zo = 253 and x = 195.

Next, we have to find the least integer m such that (11-111-253)?" =1 (mod 257),
that is, we have to check which of the numbers

11-111-253, 121-242-16, 249-225-256

is congruent to 1 (mod 257). Computing these integers, we find that this is the case
for 121 - 242 - 16, hence, m = 1. From this we obtain the new values ¢ = 16, z3 = 256
and x = 36.

Finally, we find that

11-111-253-256 =1 (mod 257),

that is, the algorithm terminates in this step and returns z = 36, which is indeed a
modular square root of 11.

In view of Algorithm 1, it is easy to see that Algorithm 2 always terminates and
returns a square root, in fact, there are no essential differences between Algorithm 1
and Algorithm 2. The only major difference is that in step (5) of Algorithm 2 — which

corresponds to step (2) in Algorithm 1 — no explicit reference to b is made, but b is
replaced by bgz; - - - z;. Of course, the numerical value of these expressions is the same,
however, we claim that in the form above the algorithm needs only O(logq + n3/ 2)
modular multiplications.

Note first that for any 4 at any stage in the algorithm, z; = u??" for some integer [,
and the same is true for ¢. In fact, the only point where some operations are performed
with these numbers is in step (6), where a certain number of squarings are performed,
however, the effect of this operation is just a shift within the array of precomputed
values. Hence, for any exponent m and index 1, z?m can be obtained by looking up in
the array generated in step (2). After this remark we can compute the running time.
The inner loop is performed at most n times, hence step (6) needs O(n) modular multi-
plications alltogether. The outer loop is performed at most [/n]-times, hence step (3)
requires n%/2 modular multiplications alltogether. Step (2) requires n multiplications
and is performed once, and steps (1), (4), (7) and (8) can be neglected.

Hence we have to consider step (5). The check whether for a given m/ the congruence
b2m/z%MI e z?m/ =1 (mod p) holds true, can be done using i modular multiplications,
since all the powers can be obtained by looking up in the arrays generated in step (2)
and (3). We already know at this stage that the congruence holds for m’ = k, hence
we compute the product for m’ = k—1, k—2, ..., until we find a value for m such that
the product is not 1 (mod p). Doing so we have to check k& —m values m/, hence at a
given stage this needs (k —m)i = O((k — m)+/n) modular multiplications. To estimate
the sum of these costs, introduce a counter v, which is initialized to be 0 in step (1)
and raised by one in step (5), that is, v counts the number of times the inner loop is
executed. Define a sequence (m,,), where m,, is the value of m as found in step (5) in
the v-th repetition of the loop. With this notation the costs of step (5) as estimated
above are O((m,_1 — m,)y/n), and the sum over v telescopes. Since m; < n, and
my, = 1, where v, is the value of the counter v when the algorithm terminates, the
total cost of step (5) is O(n®/?).

Putting the estimates together we see that there is a total amount of O(n®/?)
modular multiplications. In the same way one sees that we need O(n3/2) look ups, and
by our assumption on the costs of the latter operation we conclude that the running
time of Algorithm 2 is indeed O(log g + n®/?).

Finally we describe a parallel version of Algorithm 1:

Algorithm 3:
1. Set k=n, z=u4, x = al?tD/2 p = g4,
2. Compute 22, z22, z23, ..., 22" and store these values in an array.

3. Compute b2, b22,b23, ...,b¥" and store these values in an array.

4. Let m be the least integer, such that 2" =1 (mod p).

5.8t t=22"""" 2=, 2 =uat, k=m.
6. Set b = bz, compute b2, ..., 62" and replace the powers of b by these new
values.

7. If b =1, stop and return z, otherwise continue with step (4).

It is clear that this algorithm is equivalent to Algorithm 1, furthermore all steps with
the exception of step (6) can be performed by a single processor in time O(log g + n).
Now counsider step (6). This step has to be executed at most n times, and we claim
that it can be done by n processors in a single step. Indeed, since all relevant powers
both of the old value of b and of z are stored, each of the powers of the new value
of b can be obtained by a single multiplication, and all these multiplications can be
done independently from each other on different processors. Hence, Algorithm 3 runs
in time O(log g + n) on n processors.

References

[1] D. J. Bernstein, Faster square roots in annoying finite fields, Draft,
http://cr.yp.to/papers.html

[2] S. Lindhurst, An analysis of Shanks’s algorithm for computing square roots in
finite fields, in: Number theory (Ottawa, 1996), CRM Proc. Lecture Notes, 19,
1999, 231-242.

[3] D. Shanks, Five number-theoretic algorithms, in: Proceedings of the Second Man-

itoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII,
1973, 51-70.

