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ABSTRACT. We show that an arithmetic function which satisfies some weak

multiplicativity properties and in addition has a non-decreasing or log-uniformly
continuous normal order is close to a function of the form n + n¢. As an ap-

plication we show that a finitely generated, residually finite, infinite group,

whose normal growth has a non-decreasing or a log-uniformly continuous nor-

mal order is isomorphic to (Z, +).

1. INTRODUCTION AND RESULTS

A function f: N — R is called multiplicative, if for all coprime positive integers
n,m we have f(nm) = f(n)f(m). P. Erdds [2] showed that a non-decreasing
multiplicative function f is of the form f(n) = n¢ for some ¢ > 0. Birch [1] showed
that the same conclusion holds, if we assume that f has a non-decreasing normal
order (see Definition 2). Following these results there has been a lot of activity
dealing with similar statements for other regularity properties of multiplicative
functions; however, the question whether “multiplicative” can be replaced by a
weaker statement has received much less attention. In [6] it was shown that a
function f is of the form f(n) = n° for some ¢, provided that f has the following
property: f is monotonic, non-vanishing, and for all n € N and all € > 0 there is
some zg > 0 such that for all z > z( the interval [z, (1 + €)z] contains some m
with f(nm) = f(n)f(m). This statement was motivated by the fact that, if G is
a finitely generated group and if f(n) denotes the number of normal subgroups of
index n in GG, then f satisfies some weak multiplicativity properties. In this note
we will deal in a similar way with functions having a smooth normal order.

Definition 1. A function f : N — [0,00) is weakly super-multiplicative, if for all
n € N and all € > 0 there exists some g > 0 and some § > 0 such that for all
T > xg we have

#{m € [z,(1+€)a]: flnm) = (1 =€) f(n)f(m)} = bx.

Note that being weakly super-multiplicative is a very weak property. Clearly
multiplicative functions are weakly super-multiplicative. A more striking example is
the fact that if the values of f(n) are chosen as the values of independent identically
distributed random variables with values in [0, 1], then f is almost surely weakly
super-multiplicative. To see this note that, as f(m) < 1 for all m, we have for every
fixed n that

{m: f(nm) = f(n)f(m)} € {m: f(nm) > f(n)}.
Our claim now follows from the fact that for each m the event f(nm) > f(n) has
positive probability.
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Definition 2. (1) A function f : N — [0,00) has normal order g, if for all
€ > 0 the set {n:|f(n) — g(n)| > eg(n)} has upper density 0.
(2) A function g : (0,00) — (0,00) is log-uniformly continuous, if for every

€ > 0 there exists some § > 0 such that for all 2,y > 0 with

have ’M —

571’<6we

<€

9(y)

(3) The essential limit limess a,, of a sequence (a,,) exists and is equal to a, if
for all € > 0 the set {n : |a, — a|] > €} has density 0. We say the essential

limit is oo, if for all M € R the set {n : a,, < M} has density 0.

Note that some authors include the monotonicity of ¢ in the definition of a
normal order, however, we do not do so here. With these notations we state the
following.

Theorem 1. Let f be a weakly super-multiplicative function, which has a strictly
positive normal order g, where g is either non-decreasing or log-uniformly contin-

wous. Then
log f(n) _ .. log f(n)
sup ———— = limess ———.
logn logn
In particular f(n) either tends super-polynomially to oo, or it approaches n¢
for some constant ¢ from below. Note that a more precise statement is impossi-
ble, since for any function §(n) which decreases monotonically to 0, the function
fln) = n'=9(") is both strictly increasing and super-multiplicative, i.e. we have
fnm) > f(n)f(m) for all n,m. This example shows that even if in Theorem 1 we
replace “non-decreasing normal order” by “strictly increasing”, and “weakly super-
multiplicative” by “super-multiplicative”, the convergence to the limit can still be
arbitrarily slow.
As a first application we recover a strengthening of Birch’s result.

Corollary 1. Let f : N — (0,00) be a function such that both f and f~* are weakly
super-multiplicative. If f has a normal order that is monotonic or log-uniformly
continuous, then there is some ¢ such that f(n) = n° holds for all n.

As a second application we prove the following.

Corollary 2. Let G be a finitely generated residually finite group, and let f(n) be
the number of normal subgroups of G of index n. If f has a strictly positive normal
order that is monotonic or log-uniformly continuous, then G = (Z,+).

This result shows that the normal subgroup growth behaves completely different
from subgroup growth. For the latter monotonicity has been established in a variety
of cases, see e.g. [3], [4].

2. PROOF OF THE THEOREM

For the proof we first deduce a growth condition for g, given in equation (3)
below. The deduction of this condition depends on whether g is supposed to be
non-decreasing or log-uniformly continuous. From that point onwards the proof of
the two cases runs completely parallel.

A growth condition for monotonic g. Let n be an integer and € > 0 a real
number. Let g > 0 and § > 0 be real numbers such that for x > zg we have
fnm) > (1 — €)f(n)f(m) holds for > dx integers m € [z, (1 + €)z]. Let 1 > 0



WEAKLY MULTIPLICATIVE FUNCTIONS 3

be a real number such that for > x; we have that |f(¢t) — g(¢)| < eg(n) holds
for all integers ¢ € [z, (1 4 €)z] with at most - exceptions. We conclude that for
z > max(zo, 1) the interval [z, (14 €)z] contains at least (1 — £ ) 2 > 2z integers

3
m with
fnm) = (1 =€) f(n)f(m) = (1 —2¢)f(n)g(m) = (1 - 2¢)f(n)g(z),

where in the last step we used the monotonicity of g. In the interval [nx, n(1+ €)z]
there are at most 3% - (nz) = gx integers ¢ with |f(q) — g(q)| > eg(q), thus, for at
least S integers m € [z, (1 + €)z] we have

g(n(1+e)z) = g(nm) > (1 —e)f(nm) > (1 = 3¢) f(n)g(x)
We conclude that for all n, all € > 0 and all z > z¢(n, €) we have

(1) g(n(1+e)x) > (1 = 3e)f(n)g(x).
A growth condition for log-uniformly continuous g. Let n be an integer,
€ > 0 be a real number, and let 0 < v < € be a real number such that ‘5 — 1’ <7

implies % — 1‘ < e. Let zp > 0 and 6 > 0 be a real numbers such that for z > xg
we have that f(nm) > (1 —€)f(n)f(m) holds for > dz integers m € [z, (1 + v)z].

As in the case g non-decreasing we conclude that for x sufficiently large we deduce

g(nm) > (1 =€) f(nm) > (1 = €)*f(n) f(m) > (1 =€)’ f(n)g(m)

for at least 2z integers m € [z, (1 + v)z]. Using the fact that g is log-uniformly
continuous and our definition of v we have for m in this range the estimates

g((gl(fi%—lléeand‘%—l‘<@thus
1 (1- 6)3
(2) g(n(t+7)2) 2 o g(nm) = 5= f(n)g(m)
—_ )4
> %ﬂn)g(x) > (1 56) f(n)g(a).

Conclusion of the theorem. Comparing (1) and (2) we find in either case that
for every n and every € > 0 there exists some « in the range 0 < v < € and some
2o = xo(n, €) such that for x > xy we have

(3) g(n(1+7)z) = (1 = 5¢) f(n)g(x).
Iterating (3) we obtain for > xg(n,€) and an integer k£ > 1 the bound

g(n" (L +7)*x) = (1 -5€)* f(n)*g(x).

Put p = inf{g(t) : 1 <t < n(l1+4++)} If g is non-decreasing, then mu = g(1).
If g is log-uniformly continuous, than in particular g is continuous, thus g attains
its minimum in this interval. Since g is strictly positive, in both cases we obtain
p > 0. Then we get for y € [n*(1 + )%, n*+1(1 4 v)**+1] the estimate

g9(y) = (1 —56)" f(n)*p,
thus

lim inf M > liminf IOg ((1 — 5€)kf(n)km) _ log ((1 B 56)f(n)) '

y—oo  logy T k—oo log (nFt(1 4 4)kt) B log (n(14 7))
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log f(n) . By

As e — 0, and n ranges over all integers, we obtain lim inf lolgﬂ > sup —
ogy ogn

the defition of a normal order we have

1 1 1
Jimn sup 0g9(y) < sup og f(n) < liminf Ogg(y)7
y—oo logy logn y—oo  logy
thus liml(ﬁﬂ exists and equals sup lolgﬂ. Again from the definition of the
gY ogmn
normal order we see that we can replace lim% by limess %7 and the

theorem follows.

3. PROOF OF THE COROLLARIES

To prove Corollary 1 note that the conclusion of Theorem 1 can be reformu-
lated as stating that either lim ess % = o0, or there exists a constant ¢ and
a non-negative function w, tending to 0, such that f(n) < n¢ holds for all n,
and f(n) = n°“™ holds for almost all n. Hence, if f and f~! are both weakly
super-multiplicative, and f has a strictly positive normal order which is either non-
decreasing or log-uniformly continuous, then there exist two constants ¢, co, and
two non-negative functions wi,ws, tending to 0, such that n®t < f(n) < n° holds
true for all n, and n1T«1(") = f(n) = n2=«2(" holds for almost all n. But then
¢1 +wi(n) = ca —wa(n), since w; — 0, we deduce ¢; = ¢o and wy(n) = we(n) = 0.
This in turn is equivalent to the statement that f(n) = n¢ for all n.

To prove Corollary 2 we first recall some properties of the number of normal

subgroups of a finitely generated group.

Proposition 1. Let G be an r-generated group, f(n) be the number of normal
subgroups of index n.
(1) 1 (n,m) = 1, then f(nm) > f(n)(m).
(2) For all € > 0 we have that for almost all n the inequality f(n) < n"—1+e
holds.
(3) If n is an integer, p a prime number, (n,p(p — 1)) = 1, and n has no
non-trivial divisor d =1 (mod p), then f(np) = f(n).

Proof. The first statement follows from the fact that if N, M are normal subgroups
of G of coprime index m and n, then M N N is a normal subgroup of index mn.
Moreover, the map (M, N) — M N N is injective, since in this case G/(M N N) =
(G/N) x (G/M). The second statement is [5, Theorem 2 (i)].

For the third statement let H be a group of order np, where n and p satisfy
the conditions of the proposition. By Sylow’s theorem H has a normal p Sylow
subgroup P, which is cyclic of order p. Hence, h € H acts on P by conjugation.
The order of h divides n, and is therefore coprime to |Aut(Cp)| = p— 1, thus h acts
trivially on P. We conclude that P is central in H. Since (n,p) = 1, Zassenhaus’
theorem implies that P has a complement, and since P is central, this complement
is normal. We conclude that every group of order np is the direct product of a
group of order n and a group of order p. This implies that in G every normal
subgroup of index np is the intersection of a normal subgroup of index n with a
normal subgroup of index p, thus the map (M, N) — M NN used to prove the first
statement is actually a bijection, thus f(np) = f(n)f(p). a

For an integer n, denote by PT(n) the largest prime divisor of n. Then we have
the following.
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Proposition 2. The set of integers n such that P*(n) > /n and (P*(n)—1,n) =

1, has natural density (log2) ] (1 — ﬁ).
P

Proof. We partition the set A of all integers n < z with P*(n) > /n and (P*(n)—
1,n) = 1 into three subsets, depending on the size of P*(n). Put

A = {neA:Pt(n)>Vz},
Ay = {nEA:IO\gi<P+(n)<\/§},

As = {ned: Prm < Yoy

~ logx

As usual Ay and Aj are negligible, we therefore begin with estimating |.A;].

Fix a parameter y, and let Q) be the product of all prime numbers < y. Let d be
a divisor of Q. The Siegel-Walfisz-theorem implies that for A fixed and d < logA x
we have

1 1 1
- =——logl —).
E R og og:chCdJrO(lng)

p<T
p=1 (mod d)

Therefore the number of integers n < x such that the largest prime divisor p of n
is larger than /z, and d|(n,p — 1) equals

> #n<lidpy= ) (CZ)+O(1))

pE[zt/2 2] pE[zt/2 ]
p=1 (mod d) p=1 (mod d)
T 1 x T T
. 40 = log2+ O .
i 2 p <1ogfc> do(d) 5 (logx)
pE[zt/2 7]
p=1 (mod d)

Since the product of all primes below log log z is (log ) 7°(1), this implies that for
y < loglogz the number of integers n < z such that P*(n) > y/z and (n, P (n) —

1,Q)=1is

- ’ 1 )o@
Zﬂ(d)mlog2 + 0(@) z(log2) H (1 o= 1)) +O( )

d1Q p<y log
1 29
(log ),gj( p(p—1)> (logfc)

For modulus d > log”  the prime number theorem for arithmetic progression might
not hold anymore, we therefore switch to the Brun-Titchmarsh inequality in the
form 7 (x,q,a) < m, which holds for all choices of z and ¢. If ¢ < ¥z, we
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obtain by partial summation

#{n<x:PT(n)>Va,q(P(n) - Ln)}y= ) V}

pq

Vz<p<z
p=1 (mod q)
S M + Z W(tuqvl) _W(\/E7q71) S 2xlog\/§ < %
2q qt(t —1) q(qg —1)log(vz/q) ¢

Vr<t<z

For larger values of ¢ we omit the condition that p be prime, and obtain similarly

#{n<z:P*(n)>z,q(PT(n)—1,n)}= Z [x]
Vz<v<z v
v=1 (mod q)
Z t—/T < 2zlogx <« $10g$.

qt(t—1) ~ q(g—1) q?

xrq
Vo<t<z

Merging these ranges we find that the number of integers n < z such that
(P*(n) —1,n) =1 and P*(n) >/ equals

1 29x x xlogx
z(log 2) H (1 o= 1)>+(9(1ng)+(9 Z z +0 Z e

p<y y<q< Yz VeV
1 29 T
= z(log 2 11— ——— | +0(——)+0O(—-
(log )H< p(p—l)) (logx) (y)

p<y
For y > 3 we have

1 2 2 2
(- 50) Ze"f’(&z) zerpl=p) 2 -y

P>y P>y
thus we can extend the product over all primes without enlarging the error term.
Taking y = loglog x we obtain

1 x
A = 2(log2) [ (1 - p(p_l)) +Ologiogs

P
Next we give upper bounds for |Az| and |.A43]. We have

x
[Az| < Z [p} ~T <10g log v/x — log log1

NG > 2x loglog

ogT logz
a5 <p<va
Finally if n € Az, then /n < P+(n) < %, thus n < log%x, and therefore
‘A3| S logizt
We conclude that |A| ~ |Ai] ~ z(log2)]] (1 - m), and our claim follows.
2

O

To prove Corollary 2, note first that Proposition 1 (1) implies that we can apply
Theorem 1. From Proposition 1 (2) we find that a normal order of f grows at
most polynomially, and conclude that there exists a constant ¢ and a non-negative
function w(n), tending to 0, such that f(n) = n°=“™ for almost all n.
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If n is an integer, p the largest prime divisor of n, and p > +/n, then n/p has
no divisor d # 1 that satisfies d = 1 (mod p). If in addition (n,p — 1) = 1, then
Proposition 1 (3) implies f(n) = f(n/p)f(p). Proposition 2 shows that for a positive
proportion of all integers n we have f(n) = f(n/PT(n))f(PT(n)). Neglecting a
set of integers n of density 0 we may assume that f(n) = n~“() and f(n/p) =
(n/p)c~«/P) . We obtain f(p) = pct°(!) for infinitely many prime numbers p. On
the other hand we know that every normal subgroup of prime index in G contains
the commutator of G, thus the number of normal subgroups of index p in G equals
the number of subgroups of index p in G/G’, where G’ is the commutator subgroup
fo G. Being a finitely generated abelian group, this quotient is isomorphic to AGZ",
where A is some finite abelian group. Hence, for all but finitely many p we have

flp) = ’;:%11 = pr—1+o() | Comparing these two bounds we conclude that ¢ = r — 1.

Hence, % < f(p) < p"~!, which is only possible if 7 = 1 and A is trivial. We

~

conclude that f(n) < 1 and G/G’ = Z. In particular, all normal subgroups of
finite index contain G’. Since G is residually finite, we conclude G’ = 1, and finally
obtain G = Z.
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