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Abstract. We show that an arithmetic function which satisfies some weak

multiplicativity properties and in addition has a non-decreasing or log-uniformly

continuous normal order is close to a function of the form n 7→ nc. As an ap-
plication we show that a finitely generated, residually finite, infinite group,

whose normal growth has a non-decreasing or a log-uniformly continuous nor-

mal order is isomorphic to (Z,+).

1. Introduction and results

A function f : N→ R is called multiplicative, if for all coprime positive integers
n,m we have f(nm) = f(n)f(m). P. Erdős [2] showed that a non-decreasing
multiplicative function f is of the form f(n) = nc for some c ≥ 0. Birch [1] showed
that the same conclusion holds, if we assume that f has a non-decreasing normal
order (see Definition 2). Following these results there has been a lot of activity
dealing with similar statements for other regularity properties of multiplicative
functions; however, the question whether “multiplicative” can be replaced by a
weaker statement has received much less attention. In [6] it was shown that a
function f is of the form f(n) = nc for some c, provided that f has the following
property: f is monotonic, non-vanishing, and for all n ∈ N and all ε > 0 there is
some x0 > 0 such that for all x > x0 the interval [x, (1 + ε)x] contains some m
with f(nm) = f(n)f(m). This statement was motivated by the fact that, if G is
a finitely generated group and if f(n) denotes the number of normal subgroups of
index n in G, then f satisfies some weak multiplicativity properties. In this note
we will deal in a similar way with functions having a smooth normal order.

Definition 1. A function f : N → [0,∞) is weakly super-multiplicative, if for all
n ∈ N and all ε > 0 there exists some x0 > 0 and some δ > 0 such that for all
x > x0 we have

#{m ∈ [x, (1 + ε)x] : f(nm) ≥ (1− ε)f(n)f(m)} ≥ δx.

Note that being weakly super-multiplicative is a very weak property. Clearly
multiplicative functions are weakly super-multiplicative. A more striking example is
the fact that if the values of f(n) are chosen as the values of independent identically
distributed random variables with values in [0, 1], then f is almost surely weakly
super-multiplicative. To see this note that, as f(m) ≤ 1 for all m, we have for every
fixed n that

{m : f(nm) ≥ f(n)f(m)} ⊆ {m : f(nm) ≥ f(n)}.
Our claim now follows from the fact that for each m the event f(nm) ≥ f(n) has
positive probability.
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Definition 2. (1) A function f : N → [0,∞) has normal order g, if for all
ε > 0 the set {n : |f(n)− g(n)| ≥ εg(n)} has upper density 0.

(2) A function g : (0,∞) → (0,∞) is log-uniformly continuous, if for every

ε > 0 there exists some δ > 0 such that for all x, y > 0 with
∣∣∣xy − 1

∣∣∣ < δ we

have
∣∣∣ g(x)g(y) − 1

∣∣∣ < ε.

(3) The essential limit lim ess an of a sequence (an) exists and is equal to a, if
for all ε > 0 the set {n : |an − a| > ε} has density 0. We say the essential
limit is ∞, if for all M ∈ R the set {n : an < M} has density 0.

Note that some authors include the monotonicity of g in the definition of a
normal order, however, we do not do so here. With these notations we state the
following.

Theorem 1. Let f be a weakly super-multiplicative function, which has a strictly
positive normal order g, where g is either non-decreasing or log-uniformly contin-
uous. Then

sup
log f(n)

log n
= lim ess

log f(n)

log n
.

In particular f(n) either tends super-polynomially to ∞, or it approaches nc

for some constant c from below. Note that a more precise statement is impossi-
ble, since for any function δ(n) which decreases monotonically to 0, the function
f(n) = n1−δ(n) is both strictly increasing and super-multiplicative, i.e. we have
f(nm) ≥ f(n)f(m) for all n,m. This example shows that even if in Theorem 1 we
replace “non-decreasing normal order” by “strictly increasing”, and “weakly super-
multiplicative” by “super-multiplicative”, the convergence to the limit can still be
arbitrarily slow.

As a first application we recover a strengthening of Birch’s result.

Corollary 1. Let f : N→ (0,∞) be a function such that both f and f−1 are weakly
super-multiplicative. If f has a normal order that is monotonic or log-uniformly
continuous, then there is some c such that f(n) = nc holds for all n.

As a second application we prove the following.

Corollary 2. Let G be a finitely generated residually finite group, and let f(n) be
the number of normal subgroups of G of index n. If f has a strictly positive normal
order that is monotonic or log-uniformly continuous, then G ∼= (Z,+).

This result shows that the normal subgroup growth behaves completely different
from subgroup growth. For the latter monotonicity has been established in a variety
of cases, see e.g. [3], [4].

2. Proof of the Theorem

For the proof we first deduce a growth condition for g, given in equation (3)
below. The deduction of this condition depends on whether g is supposed to be
non-decreasing or log-uniformly continuous. From that point onwards the proof of
the two cases runs completely parallel.

A growth condition for monotonic g. Let n be an integer and ε > 0 a real
number. Let x0 > 0 and δ > 0 be real numbers such that for x > x0 we have
f(nm) ≥ (1 − ε)f(n)f(m) holds for ≥ δx integers m ∈ [x, (1 + ε)x]. Let x1 > 0
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be a real number such that for x > x1 we have that |f(t) − g(t)| < εg(n) holds
for all integers t ∈ [x, (1 + ε)x] with at most δ

3nx exceptions. We conclude that for

x > max(x0, x1) the interval [x, (1+ε)x] contains at least
(
1− δ

3n

)
x ≥ 2δ

3 x integers
m with

f(nm) ≥ (1− ε)f(n)f(m) ≥ (1− 2ε)f(n)g(m) ≥ (1− 2ε)f(n)g(x),

where in the last step we used the monotonicity of g. In the interval [nx, n(1 + ε)x]
there are at most δ

3n · (nx) = δ
3x integers q with |f(q)− g(q)| > εg(q), thus, for at

least δ
3x integers m ∈ [x, (1 + ε)x] we have

g(n(1 + ε)x) ≥ g(nm) ≥ (1− ε)f(nm) ≥ (1− 3ε)f(n)g(x)

We conclude that for all n, all ε > 0 and all x > x0(n, ε) we have

(1) g(n(1 + ε)x) ≥ (1− 3ε)f(n)g(x).

A growth condition for log-uniformly continuous g. Let n be an integer,

ε > 0 be a real number, and let 0 < γ ≤ ε be a real number such that
∣∣∣xy − 1

∣∣∣ < γ

implies
∣∣∣ g(x)g(y) − 1

∣∣∣ < ε. Let x0 > 0 and δ > 0 be a real numbers such that for x > x0

we have that f(nm) ≥ (1 − ε)f(n)f(m) holds for ≥ δx integers m ∈ [x, (1 + γ)x].
As in the case g non-decreasing we conclude that for x sufficiently large we deduce

g(nm) ≥ (1− ε)f(nm) ≥ (1− ε)2f(n)f(m) ≥ (1− ε)3f(n)g(m)

for at least δ
3x integers m ∈ [x, (1 + γ)x]. Using the fact that g is log-uniformly

continuous and our definition of γ we have for m in this range the estimates∣∣∣ g(nm)
g((1+γ)nx) − 1

∣∣∣ ≤ ε and
∣∣∣ g(m)
g(x) − 1

∣∣∣ < ε, thus

(2) g
(
n(1 + γ)x

)
≥ 1

1 + ε
g(nm) ≥ (1− ε)3

1 + ε
f(n)g(m)

≥ (1− ε)4

1 + ε
f(n)g(x) ≥ (1− 5ε)f(n)g(x).

Conclusion of the theorem. Comparing (1) and (2) we find in either case that
for every n and every ε > 0 there exists some γ in the range 0 < γ ≤ ε and some
x0 = x0(n, ε) such that for x > x0 we have

(3) g(n(1 + γ)x) ≥ (1− 5ε)f(n)g(x).

Iterating (3) we obtain for x > x0(n, ε) and an integer k ≥ 1 the bound

g(nk(1 + γ)kx) ≥ (1− 5ε)kf(n)kg(x).

Put µ = inf{g(t) : 1 ≤ t ≤ n(1 + γ)}. If g is non-decreasing, then mu = g(1).
If g is log-uniformly continuous, than in particular g is continuous, thus g attains
its minimum in this interval. Since g is strictly positive, in both cases we obtain
µ > 0. Then we get for y ∈ [nk(1 + γ)k, nk+1(1 + γ)k+1] the estimate

g(y) ≥ (1− 5ε)kf(n)kµ,

thus

lim inf
y→∞

log g(y)

log y
≥ lim inf

k→∞

log
(
(1− 5ε)kf(n)km

)
log
(
nk+1(1 + γ)k+1

) =
log
(
(1− 5ε)f(n)

)
log
(
n(1 + γ)

) .
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As ε→ 0, and n ranges over all integers, we obtain lim inf log g(y)
log y ≥ sup log f(n)

logn . By

the defition of a normal order we have

lim sup
y→∞

log g(y)

log y
≤ sup

log f(n)

log n
≤ lim inf

y→∞

log g(y)

log y
,

thus lim log g(y)
log y exists and equals sup log f(n)

logn . Again from the definition of the

normal order we see that we can replace lim log g(y)
log y by lim ess log f(n)

logn , and the

theorem follows.

3. Proof of the Corollaries

To prove Corollary 1 note that the conclusion of Theorem 1 can be reformu-

lated as stating that either lim ess log f(n)
logn = ∞, or there exists a constant c and

a non-negative function ω, tending to 0, such that f(n) ≤ nc holds for all n,
and f(n) = nc−ω(n) holds for almost all n. Hence, if f and f−1 are both weakly
super-multiplicative, and f has a strictly positive normal order which is either non-
decreasing or log-uniformly continuous, then there exist two constants c1, c2, and
two non-negative functions ω1, ω2, tending to 0, such that nc1 ≤ f(n) ≤ nc2 holds
true for all n, and nc1+ω1(n) = f(n) = nc2−ω2(n) holds for almost all n. But then
c1 + ω1(n) = c2 − ω2(n), since ωi → 0, we deduce c1 = c2 and ω1(n) = ω2(n) = 0.
This in turn is equivalent to the statement that f(n) = nc for all n.

To prove Corollary 2 we first recall some properties of the number of normal
subgroups of a finitely generated group.

Proposition 1. Let G be an r-generated group, f(n) be the number of normal
subgroups of index n.

(1) If (n,m) = 1, then f(nm) ≥ f(n)f(m).
(2) For all ε > 0 we have that for almost all n the inequality f(n) ≤ nr−1+ε

holds.
(3) If n is an integer, p a prime number, (n, p(p − 1)) = 1, and n has no

non-trivial divisor d ≡ 1 (mod p), then f(np) = f(n).

Proof. The first statement follows from the fact that if N,M are normal subgroups
of G of coprime index m and n, then M ∩ N is a normal subgroup of index mn.
Moreover, the map (M,N) 7→M ∩N is injective, since in this case G/(M ∩N) ∼=
(G/N)× (G/M). The second statement is [5, Theorem 2 (i)].

For the third statement let H be a group of order np, where n and p satisfy
the conditions of the proposition. By Sylow’s theorem H has a normal p Sylow
subgroup P , which is cyclic of order p. Hence, h ∈ H acts on P by conjugation.
The order of h divides n, and is therefore coprime to |Aut(Cp)| = p−1, thus h acts
trivially on P . We conclude that P is central in H. Since (n, p) = 1, Zassenhaus’
theorem implies that P has a complement, and since P is central, this complement
is normal. We conclude that every group of order np is the direct product of a
group of order n and a group of order p. This implies that in G every normal
subgroup of index np is the intersection of a normal subgroup of index n with a
normal subgroup of index p, thus the map (M,N) 7→M ∩N used to prove the first
statement is actually a bijection, thus f(np) = f(n)f(p). �

For an integer n, denote by P+(n) the largest prime divisor of n. Then we have
the following.
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Proposition 2. The set of integers n such that P+(n) >
√
n and (P+(n)−1, n) =

1, has natural density (log 2)
∏
p

(
1− 1

p(p−1)

)
.

Proof. We partition the set A of all integers n ≤ x with P+(n) >
√
n and (P+(n)−

1, n) = 1 into three subsets, depending on the size of P+(n). Put

A1 = {n ∈ A : P+(n) >
√
x},

A2 = {n ∈ A :

√
x

log x
< P+(n) ≤

√
x},

A3 = {n ∈ A : P+(n) ≤
√
x

log x
}.

As usual A2 and A3 are negligible, we therefore begin with estimating |A1|.
Fix a parameter y, and let Q be the product of all prime numbers ≤ y. Let d be

a divisor of Q. The Siegel-Walfisz-theorem implies that for A fixed and d < logA x
we have ∑

p≤x
p≡1 (mod d)

1

p
=

1

ϕ(d)
log log x+ Cd +O(

1

log x
).

Therefore the number of integers n ≤ x such that the largest prime divisor p of n
is larger than

√
x, and d|(n, p− 1) equals

∑
p∈[x1/2,x]

p≡1 (mod d)

#{n ≤ x

p
: d|n} =

∑
p∈[x1/2,x]

p≡1 (mod d)

(
x

dp
+O(1)

)

=
x

d

∑
p∈[x1/2,x]

p≡1 (mod d)

1

p
+O

(
x

log x

)
=

x

dϕ(d)
log 2 +O

(
x

log x

)
.

Since the product of all primes below log log x is (log x)1+o(1), this implies that for
y ≤ log log x the number of integers n ≤ x such that P+(n) >

√
x and (n, P+(n)−

1, Q) = 1 is

∑
d|Q

µ(d)
x

dϕ(d)
log 2 +O(

x

log x
) = x(log 2)

∏
p≤y

(
1− 1

p(p− 1)

)
+O(

τ(Q)x

log x
)

= x(log 2)
∏
p≤y

(
1− 1

p(p− 1)

)
+O(

2yx

log x
)

For modulus d > logA x the prime number theorem for arithmetic progression might
not hold anymore, we therefore switch to the Brun-Titchmarsh inequality in the
form π(x, q, a) ≤ 2x

ϕ(q) log(x/q) , which holds for all choices of x and q. If q ≤ 4
√
x, we
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obtain by partial summation

#{n ≤ x : P+(n) >
√
x, q|(P+(n)− 1, n)} =

∑
√
x≤p≤x

p≡1 (mod q)

[
x

pq

]

≤ π(x, q, 1)

xq
+

∑
√
x≤t≤x

π(t, q, 1)− π(
√
x, q, 1)

qt(t− 1)
≤ 2x log

√
x

q(q − 1) log(
√
x/q)

� x

q2
.

For larger values of q we omit the condition that p be prime, and obtain similarly

#{n ≤ x : P+(n) >
√
x, q|(P+(n)− 1, n)} =

∑
√
x≤ν≤x

ν≡1 (mod q)

[
x

qν

]

≤ x

xq
+

∑
√
x≤t≤x

t−
√
x

qt(t− 1)
≤ 2x log x

q(q − 1)
� x log x

q2
.

Merging these ranges we find that the number of integers n ≤ x such that
(P+(n)− 1, n) = 1 and P+(n) >

√
x equals

x(log 2)
∏
p≤y

(
1− 1

p(p− 1)

)
+O(

2yx

log x
)+O

 ∑
y≤q≤ 4

√
x

x

q2

+O

 ∑
4
√
x≤q≤

√
x

x log x

q2


= x(log 2)

∏
p≤y

(
1− 1

p(p− 1)

)
+O(

2yx

log x
) +O(

x

y
)

For y ≥ 3 we have

1 >
∏
p>y

(
1− 1

p(p− 1)

)
≥ exp

(
−
∑
p>y

2

p2

)
≥ exp(−2

y
) ≥ 1− 2

y
,

thus we can extend the product over all primes without enlarging the error term.
Taking y = log log x we obtain

|A1| = x(log 2)
∏
p

(
1− 1

p(p− 1)

)
+O(

x

log log x
).

Next we give upper bounds for |A2| and |A3|. We have

|A2| ≤
∑

√
x

log x≤p≤
√
x

[
x

p

]
∼ x

(
log log

√
x− log log

√
x

log x

)
∼ 2x log log x

log x
.

Finally if n ∈ A3, then
√
n ≤ P+(n) ≤

√
x

log x , thus n ≤ x
log2 x

, and therefore

|A3| ≤ x
log2 x

.

We conclude that |A| ∼ |A1| ∼ x(log 2)
∏
p

(
1− 1

p(p−1)

)
, and our claim follows.

�

To prove Corollary 2, note first that Proposition 1 (1) implies that we can apply
Theorem 1. From Proposition 1 (2) we find that a normal order of f grows at
most polynomially, and conclude that there exists a constant c and a non-negative
function ω(n), tending to 0, such that f(n) = nc−ω(n) for almost all n.
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If n is an integer, p the largest prime divisor of n, and p >
√
n, then n/p has

no divisor d 6= 1 that satisfies d ≡ 1 (mod p). If in addition (n, p − 1) = 1, then
Proposition 1 (3) implies f(n) = f(n/p)f(p). Proposition 2 shows that for a positive
proportion of all integers n we have f(n) = f(n/P+(n))f(P+(n)). Neglecting a
set of integers n of density 0 we may assume that f(n) = nc−ω(n), and f(n/p) =
(n/p)c−ω(n/p). We obtain f(p) = pc+o(1) for infinitely many prime numbers p. On
the other hand we know that every normal subgroup of prime index in G contains
the commutator of G, thus the number of normal subgroups of index p in G equals
the number of subgroups of index p in G/G′, where G′ is the commutator subgroup
fo G. Being a finitely generated abelian group, this quotient is isomorphic to A⊕Zr,
where A is some finite abelian group. Hence, for all but finitely many p we have

f(p) = pr−1
p−1 = pr−1+o(1). Comparing these two bounds we conclude that c = r−1.

Hence, pr−1
p−1 ≤ f(p) ≤ pr−1, which is only possible if r = 1 and A is trivial. We

conclude that f(n) ≤ 1 and G/G′ ∼= Z. In particular, all normal subgroups of
finite index contain G′. Since G is residually finite, we conclude G′ = 1, and finally
obtain G ∼= Z.
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