ARITHMETICAL FUNCTIONS OF THE FORM f([g(n)])

J.-C. PUCHTA and J. SPILKER (Freiburg)

Abstract. Two results on composed functions $f\left([g(n)]\right)$ are proven. First we give conditions on f and g so that the mean $\frac{1}{N}\sum_{N< n\leq 2N} f\left([g(n)]\right)$ behaves like $\frac{1}{N}\sum_{N< n\leq 2N} f(n)$, if $N\to\infty$, including the examples

$$\frac{1}{x} \sum_{n \le x} \Omega([n^c]) = \frac{1}{x} \sum_{n \le x} \Omega(n) + O(1),$$

 $c>1,\ c$ not an integer for $x\to\infty$. Secondly we find conditions on the real positive numbers α,β , such that $f\left([\alpha n]\right)$ and $f\left(([\alpha n],[\beta n])\right)$ are almost periodic and we compute their mean values and spectra.

1. Introduction

If $0 < c < \frac{12}{11}$, Piatetski-Shapiro [7] has shown that the number of natural $n \le x$ for which $[n^c]$ is prime is asymptotically $\frac{x}{c \log x}$. Here [x] denotes as usual the integral part of the real number x. Generally one can expect that the number-theoretical properties of the set $\left\{ \left[g(n) \right] : n \in \mathbf{N} \right\}$ depends only on the density of this set, if $g: [1, \infty) \to [1, \infty)$ is a suitable function. In this direction we prove three theorems.

THEOREM 1. Let N be a natural number, $g:[N,2N] \to [1,\infty)$ an (l+2)-times continuously differentiable function with $l \ge 0$, and let $\alpha > 1$, $c, \lambda > 0$ be real constants with the properties

$$g(x) \le x^c$$
, $\lambda \le |g^{(l+2)}(x)| \le \alpha \lambda$ if $N \le x \le 2N$.

Set $L=2^l$. Then we have for every additive function $f: \mathbf{N} \to \mathbf{C}$ with

$$|f(p^k) - f(p^{k-1})| \le 1$$
 for all p^k

Key words and phrases: mean-value, additive functions, almost-periodic functions. 1991 Mathematics Subject Classification: 11A25, 11K70, 11N37.

0236-5294/2/\$ 5.00 © 2002 Akadémiai Kiadó, Budapest

and for every $0 < \delta \leq c$

$$\sum_{N < n \le 2N} f([g(n)]) = \sum_{N < n \le 2N} f(n) + O(N^{1+\delta}(\alpha^2 \lambda))^{\frac{1}{4L-2}}$$

$$+\,N^{1-\frac{1}{2L}+\delta}\alpha^{\frac{1}{2L}}\log N+N^{1-\frac{2}{L}+\frac{1}{L^2}+\delta}\lambda^{-\frac{1}{2L}}+cN\delta^{-1}\Big),$$

if $l \geq 1$, and

$$\sum_{N < n \le 2N} f([g(n)])$$

$$= \sum_{N < n \le 2N} f(n) + O(N^{1+\delta} \alpha^{2/3} \lambda^{1/3} + N^{3\delta/2} \lambda^{-1/2} + N\delta^{-1}),$$

if l=0. The constants implied by the O-symbol are absolute, provided that $N^{\delta/4}\gg L\delta^{-1}$.

EXAMPLES. Let $\Omega(n)$ be the total number of prime factors of n and c > 1, not an integer, l = [c] - 1. Then in the notation of Theorem 1 we have $\alpha \ll 1$, $\lambda \asymp N^{\{c\}-1}$, hence we can choose $\delta = \frac{1-\{c\}}{8L}$ to get

$$\sum_{N < n \leq 2N} \Omega([n^c]) = \sum_{N < n \leq 2N} \Omega(n) + O\left(2^c \frac{N}{1 - \{c\}}\right).$$

We sum over intervals of the form $(2^k, 2^{k+1}]$. Together with $\sum_{n \leq x} \Omega(n) = x \log \log x + O(x)$ ([5], Theorem 430) we get

$$\sum_{n \le x} \Omega([n^c]) = x \log \log x + O\left(2^c \frac{x}{1 - \{c\}}\right)$$

uniformly in c, provided that $x>2^{2^{c+3}((c+\log^{-1}(1-\{c\}))/(1-\{c\}))}$. There is an analogous result for $\omega(n)$; but $\Omega(n^2)=2\Omega(n)$, so that

$$\sum_{n \le x} \Omega(n^2) \ne \sum_{n \le x} \Omega(n) + O(x).$$

Note that if g is sufficiently smooth, the error term may be improved, e.g. using the theory of exponential pairs. However, for most functions g the

greatest contribution to the error term stems from $N\delta^{-1}$ which cannot be improved this way.

Before we formulate the other two theorems, we need some definitions on almost periodic functions (see [8]). If $f: \mathbf{N} \to \mathbf{C}$ and $g \in [1, \infty)$, define the q-seminorm

$$||f||_q := \left(\overline{\lim_{N \to \infty}} \frac{1}{N} \sum_{n \le N} |f(n)|^q\right)^{1/q}.$$

We call an arithmetical function $f: \mathbf{N} \to \mathbf{C}$ q-almost periodic $(q \in [1, \infty))$, if for each $\varepsilon > 0$ there is some linear combination h over ${\bf C}$ of exponential functions $e_{\alpha}(n) := e^{2\pi i \alpha n}, \ \alpha \in {\bf R}$, such that $\|f - h\|_q < \varepsilon$. It is called q-limit-periodic, if one can choose exponential functions with exponents $\alpha \in {\bf Q}$. The space of all q-almost-periodic resp. q-limit-periodic functions is denoted by \mathcal{A}^q resp. \mathcal{D}^q . If $f \in \mathcal{A}^q$, then the mean-value $M(f) := \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n)$ exists and so does $\hat{f}(\alpha) := M(fe_{-\alpha}), \ \alpha \in \mathbf{R}$. We denote spec $f := \{ \alpha \in \mathbf{R}/\mathbf{Z} :$ $f(\alpha) \neq 0$.

THEOREM 2. Let $\alpha \in (0, \infty)$, $q \in [1, \infty)$ and $f : \mathbf{N} \to \mathbf{C}$. Define F(n) $:= f\left([\alpha n]\right), \text{ if } n \geq \frac{1}{\alpha} \text{ and } 0 \text{ otherwise.}$ $1. \text{ If } f \in \mathcal{A}^q, \text{ then } F \in \mathcal{A}^q.$ $2. \text{ If } f \in \mathcal{D}^q \text{ and } \alpha \text{ is irrational, then } M(F) = M(f) \text{ and spec } F \subseteq$

 $(\alpha \mathbf{Q})/\mathbf{Z}$.

Remark. If f is a multiplicative function whose modulus does not exceed one, Part 2 was proven in [1].

- Examples. We give two examples (see [2], p. 524).

 1. Let $\alpha > 0$ be irrational and $f = \mu^2$. Then F is the characteristic function of the set $\left\{n \in \mathbf{N} : n \geq \frac{1}{\alpha}, [\alpha n] \text{ squarefree}\right\}$ and we have $F \in \mathcal{A}^q$
- $(q \ge 1), M(F) = \frac{6}{\pi^2}, \operatorname{spec} F \subseteq (\alpha \mathbf{Q})/\mathbf{Z}.$ 2. Let $\alpha > 1$ be irrational and χ be the characteristic function of $\{ [\alpha m] : m \in \mathbf{N}, m \text{ squarefree} \} \text{ and } h(x) = 1 \text{ if } 0 < \{x\} \leq \frac{1}{\alpha}. \text{ Since } \chi(n)$ $=h\left(\frac{n+1}{\alpha}\right)\mu^2\left(\left[\frac{n+1}{\alpha}\right]\right)$, we have $\chi\in\mathcal{A}^2\cdot\mathcal{A}^2\subseteq\mathcal{A}^1$ ([8], p. 198–200) and spec χ $\subseteq (\frac{1}{\alpha}\mathbf{Q})/\mathbf{Z}$. Since χ is bounded, $\chi \in \mathcal{A}^q$ for every $q \ge 1$ ([8], p. 202).

Theorem 3. Let $f: \mathbf{N} \to \mathbf{C}$ be bounded and

$$\delta_k := \left\| f(\cdot) - f((\cdot, k!)) \right\|_1 \to 0$$

if $k \to \infty$. We define $F(n) := f\left(\left([\alpha n], [\beta n]\right)\right)$ if $n \ge \frac{1}{\alpha}$ and $n \ge \frac{1}{\beta}$, zero otherwise $(\alpha, \beta \in (0, \infty))$.

1. Then $F \in \mathcal{A}^q$ for $q \in [1, \infty)$.

2. If $1, \alpha, \beta$ are linearly independent over \mathbf{Q} , then $M(F) = \sum_{n \geq 1} \frac{f'(n)}{n^2}$, where $f' := f * \mu$. 3. If $\beta = 1$, then

$$M(F) = \begin{cases} \sum_{n \ge 1} \frac{f'(n)}{n^2} & \alpha \ irrational \\ \frac{1}{b} \sum_{1 \le n < b} \sum_{d \mid n} \frac{f'(d)}{d} + \frac{1}{b} \lim_{k \to \infty} \sum_{d \mid k!} \frac{f'(d)}{d}, \\ \alpha = \frac{a}{b}, \ b \in \mathbf{N}, \ (a, b) = 1. \end{cases}$$

Examples. 1. Set f(1) := 1, f(n) := 0 if n > 1. Then $f' = \mu$, $\delta_k = \prod_{k=1}^{n} \left(1 - \frac{1}{p}\right)$ and F (with $\beta = 1$) is the characteristic function of the set $\{n \in N : (n, [\alpha n]) = 1\}$. The mean-values

$$M(F) = \begin{cases} \frac{6}{\pi^2} & \alpha \text{ irrational} \\ \frac{1}{b} \sum_{1 \le n < b} \frac{\varphi(n)}{n}, & \alpha = \frac{a}{b}, (a, b) = 1 \end{cases}$$

were computed by Watson [10], the almost-periodicity was proved in [9].

2. If $f = \mu^2$, $\beta = 1$, then F is the characteristic function of $\{n \in \mathbf{N} :$ $n \ge \frac{1}{\alpha}$, $(n, [\alpha n])$ is squarefree, and we have

$$M(F) = \begin{cases} \frac{90}{\pi^4} & \alpha \text{ irrational} \\ \frac{1}{b} \sum_{1 \leq n \leq b} \sum_{t^2 \mid n} \frac{\mu(t)}{t^2} + \frac{6}{b\pi^2}, & \alpha = \frac{a}{b}, b \in \mathbf{N}, (a, b) = 1. \end{cases}$$

3. The case $\alpha = \beta = 1$ gives a criterion for almost-periodicity: every bounded function f with $\lim_{k\to\infty} \delta_k = 0$ belongs to \mathcal{A}^q for all $q \geq 1$.

2. Proof of Theorem 1

We need

Lemma 1. Let g, l, L, α, λ be defined as in Theorem 1, q be an integer. Then for l=0 we have

$$\#\left\{n\in (N,2N]:\, q\Big|\left[g(n)\right]\right.\right\} \,=\, \frac{N}{q} \,+\, O\left(N\alpha^{2/3}\lambda^{1/3}q^{-1/3}\,+\,\lambda^{-1/2}q^{1/2}\right),$$

and for l > 0 we have

$$\begin{split} &\#\left\{\left.n\in(N,2N]:\,q\right|\left[g(n)\right]\right.\right\}\\ &=\frac{N}{q}+O\left(N\left(\frac{\alpha^2\lambda}{q}\right)^{\frac{1}{4L-1}}+N^{1-\frac{1}{2L}}\alpha^{\frac{1}{2L}}\log N+N^{1-\frac{2}{L}+\frac{1}{L^2}}\left(\frac{q}{\lambda}\right)^{\frac{1}{2L}}\right). \end{split}$$

PROOF. We use the notation $x = [x] + \{x\}$. Then

$$q \mid [g(n)] \Leftrightarrow \left\{ \frac{g(n)}{q} \right\} < \frac{1}{q}.$$

The discrepancy D_N of the sequence $\left(\frac{g(n)}{q}\right)_{N < n \leq 2N}$ can be estimated by the theorem of Erdős–Turán ([6], p. 114, (2.42)):

$$\left| \# \left\{ n \in (N, 2N] : q \middle| \left[g(n) \right] \right\} - \frac{N}{q} \right|$$

$$= \left| \# \left\{ n \in (N, 2N] : \left\{ \frac{g(n)}{q} \right\} < \frac{1}{q} \right\} - \frac{N}{q} \right|$$

$$\leq ND_N = O\left(\min_{m \in \mathbb{N}} \left(\frac{N}{m} + \sum_{1 \leq h \leq m} \frac{1}{h} \middle| \sum_{N < n \leq 2N} e^{2\pi i h g(n)/q} \middle| \right) \right).$$

The inner exponential sum satisfies by van der Corput's theorem ([4], p. 8, Theorem 2.2) for l=0

$$\sum_{N < n \leq 2N} e^{2\pi i h g(n)/q} = O\left(N\alpha \left(\frac{h\lambda}{q}\right)^{1/2} + \left(\frac{q}{h\lambda}\right)^{1/2}\right),$$

and for l > 0 as follows ([4], p. 14, Theorem 2.8)

$$\sum_{N < n \le 2N} e^{2\pi i h g(n)/q}$$

$$= O\left(N\alpha^{\frac{1}{2L-1}} \left(\frac{h\lambda}{q}\right)^{\frac{1}{4L-2}} + N^{1-\frac{1}{2L}}\alpha^{\frac{1}{2L}} + N^{1-\frac{2}{L} + \frac{1}{L^2}} \left(\frac{q}{h\lambda}\right)^{\frac{1}{2L}}\right).$$

Summing over h we obtain in the first case

$$\begin{split} &\#\left\{n\in(N,2N]:\,q\Big|\left[g(n)\right]\right.\right\}\\ &=\frac{N}{q}+O\left(\min_{m\in\mathbf{N}}\left(\frac{N}{m}+N\alpha\left(\frac{m\lambda}{q}\right)^{1/2}+\left(\frac{q}{\lambda}\right)^{1/2}\right)\right), \end{split}$$

and in the second case

$$\# \left\{ n \in (N, 2N] : q \mid [g(n)] \right\} = \frac{N}{q} + O\left(\min_{m \in \mathbb{N}} \left(\frac{N}{m} + N\alpha^{\frac{1}{2L-1}} \left(\frac{m\lambda}{q} \right)^{\frac{1}{4L-2}} + N^{1-\frac{1}{2L}} \alpha^{\frac{1}{2L}} \log m + N^{1-\frac{2}{L} + \frac{1}{L^2}} \left(\frac{q}{\lambda} \right)^{\frac{1}{2L}} \right) \right).$$

In the first case it suffices to choose for m the nearest integer to $\left(\frac{q}{\alpha^2\lambda}\right)^{1/3}$. In the second case we certainly may assume $m \leq N$, thus the third term is $\ll N^{1-\frac{1}{2L}}\alpha^{\frac{1}{2L}}\log N$. The first and the second term would be equal if $m=\left(\frac{q}{\alpha^2\lambda}\right)^{\frac{1}{4L-1}}$, however, m has to be an integer. We therefore choose m to be $\left[\left(\frac{q}{\alpha^2\lambda}\right)^{\frac{1}{4L-1}}\right]+1$. If m=1, our claim follows from the trivial bound N, otherwise changing m by an amount ≤ 1 does not change our estimate. Thus the error is bounded by

$$N\left(\frac{\alpha^{2}\lambda}{q}\right)^{\frac{1}{4L-1}} + N^{1-\frac{1}{2L}}\alpha^{\frac{1}{2L}}\log N + N^{1-\frac{2}{L} + \frac{1}{L^{2}}}\left(\frac{q}{\lambda}\right)^{\frac{1}{2L}}$$

which proves our claim. \Box

PROOF OF THEOREM 1. Since f is assumed to be additive, we have

$$\sum_{N < n \le 2N} f([g(n)]) = \sum_{p^k \le (2N)^c} f(p^k) \#\{n \in (N, 2N] | p^k \| [g(n)]\}.$$

We will break up the sum on the right hand side into three sums, the first running over all $p^k \leq N^{\delta}$, the second running over prime powers p^k such that $p^k > N^{\delta}$ and $p \geq N^{\delta/4}$, and the last one running over prime powers p^k such that $p^k > N^{\delta}$ and $p < N^{\delta/4}$. We will see that the last two sums contribute only to the error term. Consider the first sum. In the sequel we will assume l > 0, the case l = 0 being similar but simpler. Using Lemma 1 we have

$$\begin{split} \sum_{p^k \leq N^{\delta}} f(p^k) \# \Big\{ \, n \in (N, 2N] \, \big| \, p^k \| \big[\, g(n) \big] \, \Big\} \\ &= \sum_{p^k \leq N^{\delta}} \left(f(p^k) - f(p^{k-1}) \right) \frac{N}{p^k} \\ &+ O \bigg(\sum_{p^k \leq N^{\delta}} \left(N \left(\frac{\alpha^2 \lambda}{p^k} \right)^{\frac{1}{4L-1}} + N^{1 - \frac{1}{2L}} \alpha^{\frac{1}{2L}} \log N + N^{1 - \frac{2}{L} + \frac{1}{L^2}} \left(\frac{p^k}{\lambda} \right)^{\frac{1}{2L}} \right) \bigg) \\ &= \sum_{p^k \leq N^{\delta}} \left(f(p^k) - f(p^{k-1}) \right) \frac{N}{p^k} \\ &+ O \bigg(N^{1 + \delta} \left(\alpha^2 \lambda \right)^{\frac{1}{4L-1}} + N^{1 - \frac{1}{2L} + \delta} \alpha^{\frac{1}{2L}} \log N + N^{1 - \frac{2}{L} + \frac{1}{L^2} + 2\delta} \lambda^{-\frac{1}{2L}} \right). \end{split}$$

Since the estimate of Lemma 1 is trivial for g(n) = n, we get

$$\begin{split} \sum_{p^k \leq N^{\delta}} f(p^k) \# \Big\{ \, n \in (N, 2N] \, \big| \, p^k \| \big[g(n) \big] \, \Big\} \\ = & \sum_{p^k \leq N^{\delta}} f(p^k) \# \big\{ \, N < n \leq 2N \, \big| \, p^k \| n \big\} \\ + & O \left(N^{1+\delta} (\alpha^2 \lambda)^{\frac{1}{4L-1}} + N^{1-\frac{1}{2L} + \delta + \frac{\delta}{2L}} \alpha^{\frac{1}{2L}} \log N + N^{1-\frac{2}{L} + \frac{1}{L^2} + 2\delta} \lambda^{-\frac{1}{2L}} \right). \end{split}$$

Extending the sum on the right hand side to all $p^k < 2N$, we introduce an error $< \frac{2cN}{\delta}$, and the resulting sum equals $\sum_{N < n \leq 2N} f(n)$. Thus we get

$$\sum_{1} = \sum_{N < n \le 2N} f(n) + O\left(N^{1+\delta} (\alpha^{2} \lambda)^{\frac{1}{4L-1}} + N^{1-\frac{1}{2L}+\delta} \alpha^{\frac{1}{2L}} \log N + N^{1-\frac{2}{L}+\frac{1}{L^{2}}+2\delta} \lambda^{-\frac{1}{2L}} + \frac{cN}{\delta}\right).$$

Finally we can replace 2δ by δ by doubling the constant implied by the O-symbol. Every $\left[g(n)\right]$ has at most $\frac{\log g(n)}{\delta/4\log N} \le \frac{4c}{\delta}$ prime divisors $p > N^{\delta/4}$, counted with multiplicity, and each of them contributes at most 1 to the second sum, thus the second sum is at most $\frac{4c}{\delta}N$.

Now we consider the third sum. Let $p^k > N^{\delta}$ be a prime power, $p < N^{\delta/4}$. Then there is a k' < k such that $N^{\delta/2} < p^{k'} \le N^{\delta}$. Obviously, the number of $n \in (N, 2N]$ such that [g(n)] is divisible by p^k is at most the number of n such that [g(n)] is divisible by p^k . Using Lemma 1 again this number is

$$\ll N^{1-\delta/2} + N \left(N^{-\delta/2} \alpha^2 \lambda \right)^{\frac{1}{4L-1}} + N^{1-\frac{1}{2L}} \alpha^{\frac{1}{2L}} \log N + N^{1-\frac{2}{L} + \frac{1}{L^2}} \lambda^{-\frac{1}{2L}} N^{\frac{\delta}{4L}}.$$

There are $\ll N^{\delta/4}/\log N^{\delta/4}$ primes $p \leq N^{\delta/4}$, and if $p^k \leq 2N$, we have $k \ll \log N$, thus there are $\ll N^{\delta/4}\log N/\log N^{\delta/4} = 4N^{\delta/4}\delta^{-1}$ such prime powers. Hence the total contribution of these terms is

$$\ll N + N^{1+\delta} (\alpha^2 \lambda)^{\frac{1}{4L-1}} + N^{1-\frac{1}{2L}+\delta} \alpha^{\frac{1}{2L}} \log N + N^{1-\frac{2}{L}+\frac{1}{L^2}+\delta} \lambda^{-\frac{1}{2L}}$$

provided that $N^{\delta/4} > L\delta^{-1}$. This bound equals the error term of the first sum, thus we get for the complete sum the estimate of our theorem.

3. Proof of Theorem 2

LEMMA 2 (oral communication by M. Peter). Let $h: [0,1] \to \mathbf{C}$ have bounded variation and $\alpha \in \mathbf{R} \setminus \mathbf{Q}$. Then, for $H(n) := h(\{\alpha n\})$:

- 1. $H \in \mathcal{A}^q$ for every $q \geq 1$;
- 2. spec $H \subseteq \alpha \mathbf{Z}/\mathbf{Z}$.

PROOF. Let $\sum_{k \in \mathbf{Z}} \gamma_k e_k(x)$ be the Fourier series of $h \in \mathbf{L}^q([0,1])$ and $h_L(x) = \sum_{|k| \leq L} \gamma_k e_k(x)$, $L \in \mathbf{N}$. The function $h_L^*(x) := h(\{x\}) - h_L(x)$ has bounded variation, so by Koksma's inequality ([6], p. 143)

$$\left| \frac{1}{N} \sum_{n \leq N} \left| h_L^*(\alpha n) \right|^q - \int_0^1 \left| h_L^*(t) \right|^q dt \right| \leq \operatorname{Var} |h_L^*|^q D_N,$$

where D_N is the discrepancy of the sequence $(\{\alpha n\})_{n \leq N}$. Since α is irrational, this sequence is uniformly distributed (mod 1) ([6], p. 8) and $\lim_{N \to \infty} D_N$

= 0 ([6], p. 89). Hence

$$\|h_L^*(\alpha n)\|_q^q \le \overline{\lim}_{N \to \infty} \left| \frac{1}{N} \sum_{n \le N} |h_L^*(\alpha n)|^q - \int_0^1 |h_L^*(t)|^q dt \right| + \int_0^1 |h_L^*(t)|^q dt$$

$$= \int_0^1 |(h - h_L)(t)|^q dt.$$

The span of the exponential functions $e_k, k \in \mathbf{Z}$ is dense in $\mathbf{L}^q([0,1])$, so

$$\|H - h_L(\alpha \cdot)\|_q = \|h_L^*(\alpha \cdot)\|_q \xrightarrow[L \to \infty]{} 0.$$

It follows $H \in \mathcal{A}^q$ and spec $H \subseteq \bigcup_{L \in \mathbb{N}} \operatorname{spec} h_L(\alpha n) \subseteq \alpha \mathbb{Z}/\mathbb{Z}$.

PROOF OF THEOREM 2. At first we prove that

(1)
$$e^{2\pi i r[\alpha n]} \in \mathcal{A}^q$$
 for every real r .

If α is rational, say $\frac{a}{b}$, $b \in \mathbb{N}$, then $e^{-2\pi i r \{\alpha n\}}$ has period b and so

$$e^{2\pi i r[\alpha n]} = e^{2\pi i r \alpha n} e^{-2\pi i r \{\alpha n\}} \in \mathcal{A}^q.$$

If α is irrational, we can conclude in the same way by Lemma 2. Secondly we show:

(2)
$$\begin{cases} \text{For every } \varepsilon > 0 \text{ we have a } \mathbf{C}\text{-linear combination } P(n) \\ \text{of exponentials } e_r, \ r \in \mathbf{R} \text{ such that } \left\| f\left([\alpha n]\right) - P\left([\alpha n]\right) \right\|_q < \varepsilon. \end{cases}$$

Since $f \in \mathcal{A}^q$, we have such a P(n) with the property that $||f - P||_q < \varepsilon(\alpha + 1)^{-1/q}$. So

$$\sum_{n \leq N} \left| f \left([\alpha n] \right) - P \left([\alpha n] \right) \right|^q = \sum_{m \leq \alpha N} \left(\left| f(m) - P(m) \right|^q \sum_{n: [\alpha n] = m} 1 \right).$$

The inner sum is $\leq 1 + \alpha^{-1}$, so

$$\|f([\alpha \cdot]) - P([\alpha \cdot])\|_q \le (\alpha + 1)^{1/q} \|f - P\|_q < \varepsilon.$$

Now we can prove Part 1: If $\varepsilon > 0$ is given, we choose P(n) by (2), then $P([\alpha n]) \in \mathcal{A}^q$ by (1) and so $F \in \mathcal{A}^q$.

To prove Part 2, let f be the characteristic function of some residue set $a \pmod{d}$, $d \in \mathbf{N}$ and h(x) := 1 if $\{x\} < \frac{1}{d}$, 0 otherwise. We have $f\left([\alpha n]\right) = h\left(\frac{\alpha n - a}{d}\right)$. Let $h_L(x) = \sum_{|k| \leq L} \gamma_k e_k(x)$ with $\gamma_k := \int\limits_0^1 h(x) e^{-2\pi i k x} dx$. Since α is irrational, the sequence $\left(\left\{\frac{\alpha n - a}{d}\right\}\right)_{n \in \mathbf{N}}$ is uniformly distributed and

$$\left\|f\left([\alpha n]\right)-h_L\left(rac{lpha n-a}{d}
ight)
ight\|_2^2=\int\limits_0^1\left|\left(h-h_L
ight)(t)
ight|^2dt.$$

By Parseval's equality

$$\int\limits_0^1 ig| (h-h_L)(t) ig|^2 \, dt = \sum_{|k|>L} \left| \gamma_k
ight|^2 \, dt$$

and so

$$\lim_{L \to \infty} \left\| f([\alpha n]) - h_L\left(\frac{\alpha n - a}{d}\right) \right\|_2 = 0.$$

We get

$$M(F) = \lim_{L \to \infty} M\left(h_L\left(\frac{\alpha n - a}{d}\right)\right) = \sum_{k \in \mathbf{Z}} \gamma_k M\left(e^{2\pi i k \frac{\alpha n - a}{d}}\right) = \gamma_0,$$

$$\gamma_0 = \int_0^1 h(t) dt = \frac{1}{d} = M(f),$$

and spec $f(\alpha]$ $\subseteq \bigcup_{L \in \mathbb{N}} \operatorname{spec} h_L(\frac{\alpha n - a}{d}) \subseteq (\alpha \mathbb{Q})/\mathbb{Z}$. So we have proved (ii) for these special characteristic functions. Since these approximate every $f \in \mathcal{D}^q$, we have the same properties in the general case, too. \square

4. Proof of Theorem 3

PROOF OF PART 1. Let $F_k(n) := f(([\alpha n], [\beta n], k!)), k \in \mathbf{N}$. We need only show

$$(3) F_k \in \mathcal{A}^q, \quad q \ge 1,$$

$$\lim_{k \to \infty} ||F - F_k||_q = 0.$$

PROOF OF (3). Let f_d be the characteristic function of $\{n \in \mathbb{N} : n \equiv 0 \pmod{d}\}$. Since f = f' * 1, we have

(5)
$$F_{k}(n) = \sum_{\substack{d \mid [\alpha n] \\ d \mid [\beta n] \\ d \mid k!}} f'(d) = \sum_{d \mid k!} f'(d) f_{d}([\alpha n]) f_{d}([\beta n]).$$

By Theorem 2, the functions $f_d([\alpha n])$ and $f_d([\beta n])$ belong to every \mathcal{A}^q , hence so does their product. So we have proved (3).

Proof of (4). Let
$$\rho_d(x):=\sum_{\substack{n\leq x\\([\alpha n],[eta n])=d}}1.$$
 By considerations similar to

[3], p. 458 we see

$$\rho_d(x) \le \begin{cases} \delta \frac{x}{d^2} + \frac{\log x}{\log 2} + 1 & \text{if } x \ge 1, d \in \mathbf{N}, \\ 1 & \text{if } d^2 \ge (\alpha + \beta)x, \end{cases}$$

where δ is a constant that depends only on α and β . Set $\gamma := \alpha + \beta$, then we have

$$\frac{1}{x} \sum_{n \le x} |F(n) - F_k(n)|^q = \frac{1}{x} \sum_{d \ge 1} |f(d) - f((d, k!))|^q \rho_d(x) = \sum_1 + \sum_2 |f(d) - f((d, k!))|^q \rho_d(x) = \sum_1 |f(d) - f((d, k!))|^q \rho_d(x)$$

with

$$\sum_{1} := \frac{1}{x} \sum_{d \leq (\gamma x)^{1/2}} |f(d) - f((d, k!))|^{q} \rho_{d}(x)$$

$$\leq \delta \sum_{d \leq (\gamma x)^{1/2}} \frac{1}{d^{2}} |f(d) - f((d, k!))|^{q} + O(x^{-1/2} \log x)$$

and

$$\sum_{2} \leq \frac{1}{x} \sum_{d \leq \gamma_{x}} \left| f(d) - f((d, k!)) \right|^{q}.$$

Since f is bounded, it follows

$$||F - F_k||_q^q = O\left(\sum_{d \ge 1} \frac{1}{d^2} |f(d) - f((d, k!))|\right) + O(\delta_k).$$

Since $\delta_k \to 0$, (4) is proved.

PROOF OF PART 2. By (4), (5) and Parseval's equality ([8], p. 207)

$$M(F) = \lim_{k \to \infty} M(F_k) = \sum_{d \ge 1} f'(d) M(f_d([\alpha n]) f_d([\beta n]))$$
$$= \sum_{d \ge 1} f'(d) \sum_{r \in \mathbf{R}/\mathbf{Z}} M(f_d([\alpha \cdot]) e_{-r}) M(f_d([\beta \cdot]) e_r).$$

Since 1, α , β are linearly independent, the inner sum has, by Theorem 2, Part 2, only one nonvanishing term r = 0:

$$M(F) = \sum_{d\geq 1} f'(d) M(f_d([\alpha \cdot])) M(f_d([\beta \cdot]))$$

and
$$M(f_d([\alpha \cdot])) = M(f_d([\beta \cdot])) = \frac{1}{d}$$
, hence $M(F) = \sum_{d \ge 1} \frac{f'(d)}{d^2}$.

PROOF OF PART 3. Let $\beta = 1$. If α is irrational, then spec $f_d([\alpha \cdot]) \cap \operatorname{spec} f_d([\beta \cdot]) = \{0\}$ by Theorem 2 and the mean-value formula is valid. If $\alpha = \frac{a}{b}$ with $b \in \mathbf{N}$, (a, b) = 1, then spec $f_d = \{\frac{l}{d} : 0 \leq l < d\}$, hence

$$M(F_k) = \sum_{d|k!} f'(d) \sum_{0 \le l < d} \frac{1}{d} M(f_d([\alpha \cdot]) e^{-2\pi i l n/d})$$
$$= \sum_{d|k!} f'(d) M(f_d([\alpha \cdot]) f_d(\cdot)).$$

Since the function $f_d([\alpha \cdot]) f_d(\cdot)$ has period db, we compute

$$M(f_d([\alpha \cdot]) f_d(\cdot)) = \frac{1}{db} \sum_{\substack{0 \le n < db \\ d \mid [\alpha n], \ d \mid n}} 1 = \frac{1}{db} \sum_{\substack{0 \le m < b \\ \{am/b\} < 1/d}} 1$$

$$= \frac{1}{db} \sum_{\substack{0 \le m < b \\ m/b < 1/d}} 1 = \begin{cases} \frac{1}{d^2} & \text{if } d \mid b \\ \frac{1}{db} \left(\left[\frac{b}{d} \right] + 1 \right) & \text{if } d \nmid b. \end{cases}$$

So we get

$$M(F_k) = \sum_{\substack{d|k! \\ d|b}} \frac{f'(d)}{d^2} + \frac{1}{b} \sum_{\substack{d|k! \\ d\nmid b}} \frac{f'(d)}{d} \left(\left[\frac{b}{d} \right] + 1 \right)$$

$$= \frac{1}{b} \sum_{\substack{d|k! \\ d\nmid b}} \frac{f'(d)}{d} \left[\frac{b}{d} \right] + \frac{1}{b} \sum_{\substack{d|k! \\ d\nmid b}} \frac{f'(d)}{d} = \frac{1}{b} \sum_{\substack{n < b \\ d \mid n}} \frac{f'(d)}{d} + \frac{1}{b} \sum_{\substack{d|k! \\ d \mid n}} \frac{f'(d)}{d}.$$

Since $M(F) = \lim_{k \to \infty} M(F_k)$, we have proved the last formula in Theorem 3.

References

- [1] H. Daboussi and H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc, (2) 26 (1982), 245–264.
- [2] H. Delange, On a theorem of J.-L. Mauclaire on limit-periodic sequences, Bull. London Math. Soc., 17 (1985), 518-526.
- [3] T. Estermann, On the number of primitive lattice points in a parallelogramm, Can. J. Math., 5 (1953), 456-459.
- [4] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponentail Sums, Cambridge Univ. Press (Cambridge, 1991).
- [5] G. H. Hardy and H. M. Wright, An Introduction to the Theory of Numbers, 3rd edn., Clarendon Press (Oxford, 1954).
- [6] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley (New York, London, Sydney, Toronto, 1974).
- [7] II. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form [f(n)], Math Sb., 33 (1953), 559–566.
- [8] W. Schwarz and J. Spilker, Arithmetical Functions, Cambridge Univ. Press (Cambridge, 1994).
- [9] J. Spilker, Die Fastperiodizität der Watson-Funktion, Arch. Math., 74 (2000), 26–29.
- [10] G. L. Watson, On integers n relatively prime to $[\alpha n]$, Can. J. Math., 5 (1953), 451–455.

(Received July 14, 2000)

MATHEMATISCHES INSTITUT
ECKERSTRAßE 1
D-79104 FREIBURG
GERMANY
E-MAIL: JCP@ARCADE.MATHEMATIK.UNI-FREIBURG.DE
SPILKER@SUN7.MATHEMATIK.UNI-FREIBURG.DE