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ARITHMETICAL FUNCTIONS OF THE
FORM f([g(n)])

J.-C. PUCHTA and J. SPILKER (Freiburg)

Abstract. Two results on composed functions f( [g(n)]) are proven. First
we give conditions on f and g so that the mean + ZN<n§2N f( [g(n)]) behaves

like % ZN<n§2N f(n), if N — oo, including the examples
LS () =13 am) + o)
v < v < 7

¢ > 1, ¢ not an integer for £ — co. Secondly we find conditions on the real positive
numbers a, 8, such that f( [an]) and f( ([an], [ﬂn])) are almost periodic and we
compute their mean values and spectra.

1. Introduction

If 0 < ¢ < 12, Piatetski-Shapiro [7] has shown that the number of natural
n < z for which [n€] is prime is asymptotically clo“gz. Here [z] denotes as
usual the integral part of the real number z. Generally one can expect that
the number-theoretical properties of the set { [ g(n)] in € N} depends only
on the density of this set, if g : [1,00) — [1,00) is a suitable function. In this

direction we prove three theorems.

THEOREM 1. Let N be a natural number, g: [N,2N] — [1,00) an
(I + 2)-times continuously differentiable function with [ 20, and let o> 1,
¢, A > 0 be real constants with the properties

g(z) <2°, A< gD ()] SaX if N<a<2N.
Set L = 2. Then we have for every additive function f: N — C with
‘f(pk) - f(pkfl)‘ <1 forall p*
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188 J.-C. PUCHTA and J. SPILKER

and for every 0 < d < ¢

Yo f(lem]) = > f(n)+O(N1+5(a2)\)4Ll——2

N<n<2N N<n<2N
1—5=4d 5 - 24546y L -1
+ N2 a2l logN+ N "T7227°\ 2L 4+ ¢Nd6 ),

if 121, and

> f([em)])

N<n<2N

= Y f(n)+O(N"BN 4 NB2NY2 4 NgTY
N<n<2N

if 1 =0. The constants implied by the O-symbol are absolute, provided that
N/t > L5~

ExAMPLES. Let Q(n) be the total number of prime factors of n and
¢ > 1, not an integer, ! = [c] — 1. Then in the notation of Theorem 1 we have

a <1, A=< N1 hence we can choose § = LA} ¢4 get

8L
Yo o) = > Qn)+0(2° Ny
1—{c}
N<n<2N N<n<2N
We sum over intervals of the form (2%,2%F1]. Together with >, <, Q(n) =

zloglogz + O(z) ([5], Theorem 430) we get

Y 0([n]) = zloglogz + 0 (2%)

n<g

uniformly in ¢, provided that z > 227 ((ce+log™ (1={c}))/(1—{e})) | There is an
analogous result for w(n); but Q(n?) = 2Q(n), so that

> Qn?) # ) Q(n) + O(x).

Note that if g is sufficiently smooth, the error term may be improved,
e.g. using the theory of exponential pairs. However, for most functions g the
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ARITHMETICAL FUNCTIONS OF THE FORM f([g(n)]) 189

greatest contribution to the error term stems from N§ ! which cannot be
improved this way.

Before we formulate the other two theorems, we need some definitions
on almost periodic functions (see [8]). If f: N — C and ¢ € [1,00), define
the g-seminorm

1/q

171, = | Jm e S £
n<N

We call an arithmetical function f: N — C g¢-almost periodic (¢ € [1,00)),
if for each € > 0 there is some linear combination h over C of exponential
functions e, (n) := e?™" o € R, such that ||f — hll, <e. Tt is called g-limit-
periodic, if one can choose exponential functions with exponents o € Q. The

space of all g-almost-periodic resp. ¢-limit-periodic functions is denoted by
A? resp. D1. If f € A9, then the mean-value M(f) := zhﬁrgo 1 >on<a f(n) ex-

ists and so does f(a) := M(fe_ o), @ € R. We denote spec f := {aeR/Z:
F(a) #0}.

THEOREM 2. Let a € (0,00), q € [1,00) and f: N — C. Define F(n)
:= f(lan]), if n =1 and 0 otherwise.

1. If f e A%, then F € A9.
2. If fe€D? and « 1is irrational, then M(F)= M(f) and specF C

(aQ)/Z.

REMARK. If f is a multiplicative function whose modulus does not ex-
ceed one, Part 2 was proven in [1].

ExAMPLES. We give two examples (see [2], p. 524).

1. Let a > 0 be irrational and f = 2. Then F is the characteristic
function of the set {n eEN:n2> é, [an] squarefree} and we have F' € A?
(g2 1), M(F) = 5, specF C (aQ)/Z.

2. Let a>1 be irrational and x be the characteristic function of
{[am] : m € N, m squarefree} and h(z) =1 if 0 < {z} < 1. Since x(n)
= h("T‘H) MQ([RT—H} ) , we have x € A% A% C A! ([8], p- 198-200) and spec x
- (%Q) /Z. Since x is bounded, x € A? for every g = 1 ([8], p. 202).

THEOREM 3. Let f: N — C be bounded and
o = [ FO) = F(CBD) ||, =0
if k— oo. We define F(n):= f(([om], [,Bn])) if n2 i and n = %, 2ero
otherwise (a, 3 € (0,00)).
1. Then F € AY for q € [1,00).
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2. If 1,c, 8 are linearly independent over Q, then M(F') =" >, I'(n)
where f':= f * p.

3. If B=1, then

n27

( !
Z i?) «o irrational
n
n>1
ME) =11 Fld) 1 )
b >, X d +bk15202 d
1<n<b dln d|k!
a=2beN, (a,b) = 1.
\ b

ExampPLEs. 1. Set f(1):=1, f(n):=0 if n>1. Then f'=pu,
=11 (1 - %) and F' (with g = 1) is the characteristic function of the set
plk!

{n €N: (n,[an]) = 1}. The mean-values

6 . .
— « irrational
T
M(F) =141
T p(n) _a _
g n , = 57 (aab) =1
1<n<b

were computed by Watson [10], the almost-periodicity was proved in [9].

2. If f =%, B =1, then F is the characteristic function of {n eN:
n = i, (n, [om]) is squarefree}, and we have

92 « irrational
T
M(F) =41
w(t) 6 a
- E E ——+—, a=-,beN, (a,b) =1.
2 2
b Vot 2 t br b

3. The case a = =1 gives a criterion for almost-periodicity: every
bounded function f with klim dr = 0 belongs to A? for all ¢ > 1.
—00
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2. Proof of Theorem 1

We need
LEMMA 1. Let g, 1, L, a, A be defined as in Theorem 1, q be an integer.
Then for I =0 we have

V= N L O(NQ3A g 13 4 \1/241/2)

#{ne (N,2N] : q‘ [g(n)] =

and for 1 >0 we have

#{n € (N,2N]: q| [g(n)] }
23\ TI-T ‘ o
-Yio (N <O‘—A> NV FratriogN 4 NITE (2) 2L> .
q q )

PROOF. We use the notation = [z] + {z}. Then

o 22) <}

(g(n ) can be estimated by the
N<n<2N
(

The discrepancy Dy of the sequence S

theorem of Erdés Turan (6], p. 114, (2.42)):
n-
e {2} <2} -2

< NDy = O(min (E + Z %‘ Z e2mihg(n)/q ))
m 1ShSm ' N<nl2N

meN

‘#{ne (N,2N]: q|[g(n

The inner exponential sum satisfies by van der Corput’s theorem ([4], p. 8,
Theorem 2.2) for [ =0

1/2
Z eQm'hg(n)/q =0 (Na <hq>\> + (%) 1/2> ,

N<n<2N
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and for [ > 0 as follows ([4], p. 14, Theorem 2.8)

Z e2mihg(n)/q

N<n<2N

1
1 hA 4L-2 1-241 (/¢ 3%
=0 | Nazt-1 | = N N'TTt (L .
( 2 1<q> —|— 2La2L+ (h)\) >

Summing over h we obtain in the first case

#{n € (N,2N] : q‘ [g(n)] }

1/2 1/2
ZE—FO(min(N—i-N (m)\) +<g)/>>7
q meN q A

and in the second case

e s o (2]

)1/3

In the first case it suffices to choose for m the nearest integer to (ag—A
In the second case we certainly may assume m < N, thus the third term

is < N 2rasr log N. The first and the second term would be equal if
1
m = (%) 4L=1 " however, m has to be an integer. We therefore choose m

1
to be [( 2)\) 4L’1} + 1. If m =1, our claim follows from the trivial bound

N, otherwise changing m by an amount < 1 does not change our estimate.
Thus the error is bounded by

23\ T B
N (O‘_A> e 4+ N'=srqar logN+ N~ T £tz (%) "
q

which proves our claim. Il

PrROOF OF THEOREM 1. Since f is assumed to be additive, we have

Yo f(lem)]) = Do feH)#{ne (N 2N]|p"[g(n)] }.

N<n<2N pk<(2N)°
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We will break up the sum on the right hand side into three sums, the first
running over all p¥ < N, the second running over prime powers p* such that

pF > N% and p > N9/%, and the last one running over prime powers p* such

that p¥ > N? and p < N%%. We will see that the last two sums contribute
only to the error term. Consider the first sum. In the sequel we will assume
[ > 0, the case | = 0 being similar but simpler. Using Lemma 1 we have

Y FEN#{n e (N2N][p"[g(n)] }

pk§N5
= Y (F6H - F)
ph< NS p
ol X N(@>4L1—_1+Nlﬁaﬁlo N4 Nt <P_k>%
pk< N9 p & A
N
= > (OH -1t )

+ O(Nl”(a?A)ﬁ N30 +0037 log N + Nl—%ﬁ%*”xi).
Since the estimate of Lemma 1 is trivial for g(n) = n, we get

> rM#{n e (N, 2N]|p¥(I[9(n)] }

png‘;

> FEH#{N <n < 2N|pk|n}

png‘;
+0 <N1+5(a2>\)ﬁ +lei+5+%aﬁ log N + Nl—%+L1—2+26>\7i) ‘

Extending the sum on the right hand side to all p*¥ < 2N, we introduce an

error < %, and the resulting sum equals )y, <o f(7). Thus we get

1
Zl = Z f(n) + O<N1+6(a2)\)m 4 Nl—i+5ai logN
N<n<2N

F N RN %)
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Finally we can replace 2§ by ¢ by doubling the constant implied by the O-
symbol. Every [ g(n)] has at most % < % prime divisors p > N9/4,
counted with multiplicity, and each of them contributes at most 1 to the
second sum, thus the second sum is at most %N .

Now we consider the third sum. Let p¥ > N° be a prime power, p <
N9/% Then there is a k' < k such that N2 < pk' < N°. Obviously, the
number of n € (N,2N] such that [g(n)] is divisible by p* is at most the
number of n such that [ g(n)] is divisible by p*'. Using Lemma 1 again this
number is

&l
&l

& N1/ 4 N(N-3/262)) T=T 4 NV Sra® log N + N' "t N
There are < N5/4/log N9/% primes p < N4, and if pF < 2N, we have k <
log N, thus there are < N%*log N/log NO/4 = 4N9/45=1 such prime powers.
Hence the total contribution of these terms is

< N+ N1+6(a2>\)ﬁ + Nl_%—ﬂsa% logN + N17%+§+5>\_%

provided that N%/* > Lé~'. This bound equals the error term of the first
sum, thus we get for the complete sum the estimate of our theorem. O

3. Proof of Theorem 2

LEMMA 2 (oral communication by M. Peter). Let h: [0,1] = C have
bounded variation and o € R\ Q. Then, for H(n) := h({an}):

1. H € A7 for every q = 1;

2. specH € aZ/Z.

PROOF. Let Y, 7 7kex(z) be the Fourier series of h € L9([0,1]) and
hi(z) = 3 j<p Yeek(@), L € N. The function hj (z) := h({z}) — hi(z) has
bounded variation, so by Koksma’s inequality ([6], p. 143)

1
Y \hz(an)\q—/\hz(t)\th‘ < Var |5 "D,
n<N 0

where Dy is the discrepancy of the sequence ({om}) <y Since o is irra-

nSN-’
tional, this sequence is uniformly distributed (mod 1) ([6], p. 8) and ]\}im Dy
— 00
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=0 ([6], p- 89). Hence

1 1
th(an)uggngnoo‘N > ‘hL(an)‘q_/‘hL(t)‘th‘+/‘hL(t)‘th
n<N 0 0

1
_ /\(h—hL)(t)\"dt.
0

The span of the exponential functions ey, k € Z is dense in Lq([O, 1]) , SO

| H = he(a)||, = |[pL(a)]|, — 0.

L—oo

It follows H € A? and spec H € |J spechr(an) CaZ/Z. O
LeN

PROOF OF THEOREM 2. At first we prove that

(1) e?mrlanl ¢ AT for every real .

If v is rational, say 7,b € N, then e2mir{en} hag period b and so

e?mr[om] — e?mromef%m"{om} c A9,

If « is irrational, we can conclude in the same way by Lemma, 2.
Secondly we show:

For every € > 0 we have a C-linear combination P(n)

(2)

of exponentials e, 7 € R such that H f([an]) — P([an]) H <&

Since f € A7, we have such a P(n) with the property that [|f — P, <
el +1)719. 8o

S |#(lan]) - Plan) "= 5 (1w - Pe)]* ¥ 1),

n<N mSaN n: [an]=m
The inner sum is < 1+ a~!, so
[ £(fe]) = P(lec]) ||, £ (@+ DY f = P, < e
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Now we can prove Part 1: If € > 0 is given, we choose P(n) by (2), then
P(lan]) € A? by (1) and so F € A“.

To prove Part 2, let f be the characteristic function of some residue set
a (mod d), d € N and h(z) :=1if {z} < L, 0 otherwise. We have f([an])

1 .
= h(%) Let hr(z) = ngL Yrex(x) with vy := [ h(z)e 2"*dz. Since

0
« is irrational, the sequence ({ S } ) neN is uniformly distributed and

Hf([om]) —hL< ”_“) /\ (h— hi)(®)]* dt.

By Parseval’s equality

and so

ngr;OHf([anJ) — by (“";“)

We get

)=

L—oo

M(F) = lim M (hL (O‘”

) - e

keZ

1
— [ tyae = 3 =)
0

and spec f ([o]) C LUN spechr, (O‘"df“) € (aQ)/Z. So we have proved (ii) for
€

these special characteristic functions. Since these approximate every f € DY,
we have the same properties in the general case, too. O
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4. Proof of Theorem 3

PROOF OF PART 1. Let Fy(n):= f(([en],[8n],k!)), k € N. We need
only show

(3) Fk € Aqa q 2 ]-a
(4) lim |[F — Fy, = 0.
k—00 q

PROOF OF (3). Let f; be the characteristic function of {n € N:
n =0 (mod d)} Since f = f’* 1, we have

(5) Fp(n) = Y f(d)=Y_ f'(d)fa([an]) fa([Bn]) .
o
d|k!

By Theorem 2, the functions fd([om]) and fd([ﬁn]) belong to every A%,
hence so does their product. So we have proved (3).

PROOF OF (4). Let py(z) := > 1. By considerations similar to
nlz
(lan],[n])=d
[3], p. 458 we see

1
T8 Ly f p>1,deN,
pa(z) £ ¢ @ log2

1 if d®>2> (a+ B)z,

where ¢ is a constant that depends only on « and 8. Set v:= a + [, then
we have

iZ |F(n) = F(n)] = iZ | £(d) = (@ k) ["pa(z) = Y+,

n<g d>1

with
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and

S, S0 S )~ £ k)"

d<vz

Since f is bounded, it follows

17— Fly =0 5l F@) - £ (@) | ) + 0(6)

d>1
Since d; — 0, (4) is proved.
PROOF OF PART 2. By (4), (5) and Parseval’s equality ([8], p. 207)
M(F) = lim M(F) Zf M (fa([em]) fa([Bn]))

=37 S M(fa(loe]) e—r) M (Fa([B]) er).

a1 reR/Z

Since 1, a, § are linearly independent, the inner sum has, by Theorem 2,
Part 2, only one nonvanishing term r = 0:

=3 S M (fafee])) M (fa([8]))
d>1
and M(fd([a-])) = M(fd([ﬁ])) = §» hence M(F) = 2z %'

PROOF OF PART 3. Let f=1. If o is irrational, then spec fq([a:]) N
spec f4([8]) = {0} by Theorem 2 and the mean-value formula is valid. If
a = ¢ with b € N, (a,b) = 1, then spec fq = {é: 0§l<d},hence

_ Zf/(d) Z %M(fd([a]) 6727riln/d)

d|k! 0<i<d

=> f'(d) []) fa(*)) -

d|k!

Since the function fd( [a-]) fa(+) has period db, we compute

M(fd([a-])fd(')):% > 1=$ 2. 1

0<n<db 0<m<b
d|[an], d|n {am/b}<1/d
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) % it d|b
B2 T (] wan
m/b<1/d db \ | d
So we get
() | 1= £10) (T
i =S R SR (1] 1)
dlk! dlk!
dlb dfb
L@ 5] L S) _ = S | 1= £
S HEE S SR I ST DS
dlk! dJk! n<b d|k! d|k!
dtb dln

Since M (F) = klim M (Fy), we have proved the last formula in Theorem 3.
—00
O
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