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ABSTRACT 

The subgroup growth and the normal growth of a pronilpotent group is 

multiplicative. We show the converse for the normal growth and under 

the additional condition of prosolvability for subgroup growth. On the 

other hand, we show that  the normal growth of any profinite group has 

some weak multiplicativity properties. These allow one to determine all 

groups with monotonic normal growth. 

1. I n t r o d u c t i o n  a n d  r e s u l t s  

Let G be a finitely generated profinite group, and denote by an (G) the number 
of open subgroups of index n. An overview of recent results concerning the 

behaviour of an(G) for various classes of groups was given by Lubotzky [4]. Since 

a profinite pronilpotent group is the direct product of its Sylow subgroups, an(G) 
is multiplicative whenever G is pronilpotent. Thus the study of the subgroup 
growth of pronilpotent groups reduces to the study of pro-p-groups, which was 

initiated by Grunewald, Segal and Smith [1]. In this note we will consider the 

question, to what extent multiplicativity of an (G) determines the structure of G. 

The question, whether multiplicativity of an implies pronilpotence of G, seems to 

be difficult unless we assume prosolvability. Things become easier if we consider 

a~(G), the number of normal subgroups of index n. More generally, for every 

A _< Aut(G) define aA(G) to be the nmnber of A-invariant subgroups of index n. 
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THEOREM 1: Let G be a finitely generated profinite group. Then the following 

statements are equivalent: 

1. G is pronilpotent. 

2. For any A, aA(G) is multiplicative. 

3. There is some A with Inn(G) _< A _< Aut(G), such that aA(G) is sub- 

multiplicative. 

4. G is prosolvable, and there is some A which fixes all pP-Hall groups of G, 

such that Inn(G) _< NAut(a)(A) and aA(G) is multiplicative 

THEOREM 2: Let G be a finitely generated profinite group. Assume that every 

even n with at least 3 distinct prime factors can be written as n = d �9 t with 

(d,t) = 1 and d > 1,t > 1, such that a~(G) = a~(G) .a~(G) .  Then G is 

prosolvable. 

On the other hand, for every group we have some weak multiplicativity, thus 

we cannot hope to give a simple combinatorial description of a~n(G), e.g., for free 

groups G, whereas an (G) can be computed easily. 

THEOREM 3: Let G be a finitely generated profinite group. 

1. Let n = I-Ip~' be the prime factorization of n. Assume that for every i 7~ j 

we have 

Pi X(P~ -r - 1)(Py ~-1 - 1) . - .  (pj - 1). 

Then we have 

a~n(G) = H a;:, (G). 

2. I f  G is prosolvable, then 1. is true with an(G) instead of a~n(G). 

3. Let p be a prime, n an integer, such that (n,p(p - 1)) = 1 and n has no 

divisor d - 1 (mod p). Then we have 

a ;n (a  ) = a ; ( a ) . a ~ ( a ) .  

As an application we determine all groups with monotonic growth. 

THEOREM 4: Let G be a finitely generated profinite group. Assume that a~(G) 

is monotonic. Then G is trivial, cyclic of order 2 or infinite procyclic. 

The proof of Theorem 4 depends on the following result from elementary 

number theory. 
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THEOREM 5: Let f be a monotonic real valued function. Assume that there is 

some Q such that for any n, relatively prime to Q, and any e > 0 there is some 

mo such that, for m > too, there is some rn' with [ m -  m'[ < em which solves 

the equation f ( n m ' )  = f ( n ) f ( m ' ) .  Then there is some constant c such that we 

have f (n )  = n c for every n relatively prime to Q. 

Theorem 5 was proven by P. Erd6s under the assumption that  f is mono- 

tonic and multiplicative. In the sequel monotony was replaced by several other 

regularity properties (see, e.g., [3] for an overview); however, the assumption of 

multiplicativity has never been weakened. 

ACKNOWLEDGEMENT: This paper is part of the author's diploma thesis written 

under the supervision of T. Weigel. I would like to thank him for his help and 

advice. 

2. Notations and preparations 

In the sequel G will always denote a finitely generated profinite group. Let A be 

some group of automorphisms. We will call A harmless, if it fixes all p'-Hallgroups 

of G and if Inn(G) < NAut(G)(A). 

LEMMA 6: Assume that A is harmless, U < G A-invariant, g 6 G. Then U g is 

A-invariant, too. 

Proof: Assume a 6 A. Then we have 

( U g )  Ot : Uge~g--lg __.~ uOtgg .~ U ~9 --  U g 

where/~ 6 A, since A is normalized by Inn(G). Note that we identified g 6 G 

with its canonical image in Inn(G). | 

We defne bn (G) by 

[G:U]=n 
~6A~U~=U 

[ a :  Nc(U)]" 

The main reason to introduce b is the following property. 

LEMMA 7: Assume that G is prosolvable and that A is harmless. Then bA(G) is 

multiplicative. 

Proof: Fix an integer k. The intersection of all subgroups of index _< n is a char- 

acteristic subgroup N. Consider the natural action of A on the quotient. Since 
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the Hall subgroups of G are exactly the projective limits of the Hall subgroups of 

the finite quotients of G, A acts harmless on G/N. Now bAn(G/N) = bAn(G) for 

n _ k, thus it suffices to prove that bA(G/N) is multiplicative. Hence we may 

assume that G is a finite solvable group. 

Let U be an A-invariant subgroup of G, [G : U] = n. Let Sp, be a p'-Hallgroup 

of G. In a solvable group all Sylow systems are conjugated, and for every sub- 

group U there is a Sylow system {Sp} such that U A Sp is a p-Sytow subgroup 

of U for all p (see, e.g., [2], VI.2.4 and VI.2.5). Hence there is some g C G such 

that U g = Apln UgSp, and U g is unique. Furthermore, VgSp, is A-invariant, 

since U g is A-invariant by Lemma 6, and Sp, is A-invariant by assumption. Now 

write n = I-I P~', and choose for every pi a subgroup V/ of G containing SR~ of 

index pe~ in G. Then A V/is an A-invariant subgroup of index n, thus there is a 

bijection between the set of conjugacy classes of A-invariant subgroups of index 

n and tuples of A-invariant subgroups containing Sp~ of index p~.  The number 

of the latter is clearly multiplicative, whereas the number of the former equals 

bAn(G). Thus bA(G) is multiplicative. | 

LEMMA 8: Let G be prosolyable, A harmless, and cA(G) be multiplicative. 
Define B = (A, Inn(G)}. Then aB(G) is multiplicative, too. 

Proof'. For every subgroup U of finite index set 5(U) = [G: Na(U)].  If U, V are 

A-invariant subgroups with coprime finite index, we have 5(U)~(V) > 5(U N V), 
since NG(U) n NG(V) <<_ Na(U fq V). By Lemma 7, bAn(G) is multiplicative, thus 

we have 
k 

b~(C) = I I  b~,(C) 
i=1 

and 
k 

[a:Ul=n i=1  [G:Ul=pe~ 
uA=u uA=u 

As in the proof of Lemma 7, for every U with [G : U] = n we can find some 

k-tuple of subgroups Ui of index Pie~, and since cAn(G) is multiplieative, this is 

a bijeetion. Thus on both sides of the second equality above there is the same 

number of terms, and every single term on the right hand side is at most equal 

to the corresponding term on the left hand side. Thus every term on the right 

hand side equals the corresponding term on the left hand side, i.e., for every U 

we have 5(U) = 5(USpl)... 5(USp, k). Especially, if N is an A-invariant normal 

subgroup, we have ~(USpl)...5(USp,k) = 1, thus 5(USp,) = 1 for every i, hence 
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USv~ is normal. Thus there is a bijection between k-tuples of A-invariant normal 

subgroups of index p~ and A-invariant normal subgroups of index n. The latter 

number equals a B (G), whereas the first is multiplicative, l 

3. P r o o f  o f  T h e o r e m s  1 -4  a n d  6 

We begin with Theorem 1. The implication 2. ~ 3. is trivial, and since the 

p-Sylow subgroups of a pronilpotent group are characteristic, 1. implies all other 

statements. By Lemma 8, 4. implies 3., thus it suffices to show that  3. implies 1. 

Thus assume that cA(G) is submultiplicative. Let N be an A-invariant, thus 

normal subgroup of index n, n -- 1-IP~ ~ . If there exist A-invariant subgroups N~ 

with [G :N~] -p~- e~, [~ N~ = N, then GIN is nilpotent, thus the N~ are uniquely 

determined. On the other hand, the intersection of A-invariant subgroups is A- 

invariant, thus if ~A(G) denotes the number of A-invariant subgroups which are 

intersections of A-invariant subgroups of coprime prime power indices, we have 

k k 

a,~ (V) > 
i=1 i=1 

where the last inequality reflects the assumption that a A (G) is submultiplicative. 

Thus equality holds everywhere, i.e., every A-invariant subgroup is a unique 

intersection of A-invariant subgroups of coprime prime power indices. 

Let N be a normal subgroup of finite index. Then N contains a characteristic 

subgroup of finite index; so to prove that G/N is nilpotent for all N,  it suffices 

to show that GIN is niipotent for all characteristic N. Especially, we may as- 

sume that N is A-invariant. We know that N is the intersection of A-invariant 

subgroups of coprime prime power indices, thus GIN has normal p~-Hall groups 

for any p, thus GIN is nilpotent. Since this is true for any N, we obtain that G 
is pronilpotent. | 

To prove Theorem 2, choose an open normal subgroup N. We have to show 

that G/N is solvable. If [G : N] is odd, or has at most two different prime 

factors, this is true by the odd order theorem resp. Burnsides theorem. If N and 

M are normal subgroups of coprime index, such that  GIN and G/M are solvable, 

G/(NNM) is solvable. Since N/(NAM) and M/(NNM) are normal Hall groups, 

they are uniquely determined; thus if n and m are coprime, the number of normal 

subgroups N of index nm, which can be written as the intersection of normal 

subgroups of index n and m, such that  GIN is solvable, equals the number of 

pairs (N1,N2) of normal subgroups of index n and m respectively, such that  
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both  G/N1 and GINs. are solvable. Now let n be an integer, such that  for all 

normal subgroups N of index < n, GIN is solvable. We have to show that  GIN 
is solvable for all normal subgroups of index n. By assumption there are coprime 

numbers dt = n, d, t > 1, such that  a4n(G) = a~(G)a~(G). There are a~(G)a~(G) 
pairs of normal subgroups (N1, N2), such that  [G : N1] -- d, [G : N2] --- t and 

G/N1, G/N2 are solvable. Each such pair defines a normal subgroup N of index 

n with GIN solvable, hence there are at least a~(G)a~(G) normal subgroups of 

index n with solvable quotient. But by multiplicativity this is already the total  

number of normal subgroups of index n, thus for all normal N with index n, 

GIN is solvable. | 

To prove Theorem 3, assume that  n is a natural  number fulfilling the condition 

of 1. Every group of order n is nilpotent [5]. For let H be a minimal counter- 

example. Then H is minimal non-nilpotent, since the divisibility properties of 

n hold for any divisor of n, too. Thus [HI -- paqb. Suppose that  the q-Sylow 

subgroups are not normal. Then their number is --- 1 (mod q), and at the same 

time a divisor o f p  a, thus there is some j ~ a such that  q[/P - 1; by assumption 

j = 0. Thus there is only one q-Sylow subgroup, which therefore is normal. In 

the same way we see that  the p-Sylow subgroup is normal, hence H is nilpotent. 

Now assume that  N is a normal subgroup of index n. Then GIN is nilpotent, 

thus there are uniquely determined normal subgroups Ni of index p~ such that  

N = [7 Ni. Thus there is a bijection between normal subgroups of index n and 

tuples of normal subgroups of index p~,  which yields the desired multiplicativity. 

If  G is prosolvable, then bn (G) is nmltiplicative, and the same reasoning as in 

Theorem 1 gives the multiplicativity of an (G). 
Finally, if p is prime, and n has no divisor d -- 1 (mod p), the p-Sylow 

subgroup P of any group of order up is normal. Since (n,p(p - 1)) -- 1, G/P 
acts trivial on P,  thus P has a normal complement. If N is a normal subgroup 

of index pn, it can be uniquely written as the intersection of a normal subgroup 

of index p and a normal subgroup of index n. Thus a~(G)ag(G) = a~n(G ). 
Finally we will show how Theorem 4 can be deduced from Theorem 3 and 

Theorem 5. We may assume that  ag(G) is monotonically increasing, since other- 

wise G is finite; and since there is exactly one subgroup of index 1 and IGI, we 

conclude that  there is one subgroup of index IGI - 1, thus IGI - 1 IGI. This is 

impossible unless IGI = 1, 2. Thus we may assume that  a~n(G) is nondecreasing. 

We show that  the assumptions of Theorem 5 are satisfied. Set Q -- 2. If  n is 

odd, and p - 2 (mod n) is some prime, then (n,p(p-  1)) = 1. By Theorem 3 

~ = a~n(G ) for p. m we get ap(G)an(G ) these If  is sufficiently large, by the prime 
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number theorem for arithmetic progressions (see, e.g., [6], IV.7.5) there is always 

a prime p --_ 2 (mod n) in the interval [m, (1 + e)m], thus the assumptions of 

Theorem 5 hold. We conclude that  there is some constant c such that  a~ (G) = n ~ 

for all odd n. Since a~(G) is an integer, c has to be a nonnegative integer. Since 

the number of subgroups of prime index p is ~ 1 (mod p), we conclude c = 0. 

By monotony we get a~(G) = 1 for all n. Thus G is pronilpotent. If  Sp is a 

p-Sylow subgroup of G, we find that  Sp is procyclic, thus G itself is procyclic. 

4. P r o o f  o f  T h e o r e m  5 

Without  loss we assume that  f is monotonic increasing, otherwise we consider 

f - 1 .  Choose e > 0 and an integer n which is coprime to Q. For m > mo = 

m0(n, e) we have some m '  with m / n  _< m '  < (1 + ~)m/n such that  f(m'n) = 
f(m')f(n). Since f is monotonic, we get 

f(m) ~_ f(m'n)---- f (m') f(n)< f([(1 + 
k [ .  n . i  ] 

If m/n is still greater than m0, we can apply this inequality with m replaced by 

(1 + e) m to obtain the estimate 

By induction we obtain the bound 

:I.,> <_:([I: 
valid for any integer k > 0 such that  

( l + e )  k-1 m > m 0 .  
nk-1 

Choosing 
[ l o g m -  log. 0 1] 

k = Llogn- Tog-ffT ) + 
yields 

[ log m-- log  m 0 
f ( m )  < f(n),og,,-,og(l+,)+l]f(m0). 

In the same way, we can give a lower bound for f by comparing f(m ~) with 

f([(1 - ~)m]): 
[ l o g . . - l o g . , Q  ] 

f ( m )  > f(n),ogn--log(X--e) f (m0) .  

Taking the logarithm and dividing by log m, we obtain 

logf(m) logf(n)(l+O(e))+O, ( 1 ) 
log m log n ~ ' 
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where the second error term depends on e, since m0 depends on e. Fixing e and 

choosing m sufficiently large, we get 

log f (m)  

We may conclude that 

logf (n )  
dE.  

log f (m)  log f (n )  
log m log n 

The limit of the left hand side does not depend on n, thus l o g f ( q ) / l o g q  = c 
for any other integer q which is coprime to Q. Thus f ( n )  = n c for every n with 
(n, Q) = 1. 
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