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A finite automaton consists of a finite set S of states with a specified starting state
s0, an input alphabet A, an output alphabet B, and two functions f : A × S → S,
g : S → B. Given a word w over A, the output of the automaton is determined as
follows: At first, the automaton is in s0. Then the first letter a of w is read, and the
new state of the automaton is changed to s1 = f(a, s0). Then the next letter b of w
is read, and the state of the automaton is changed to s2 = f(b, s1). This is repeated
untill all letters of w are read, and the procedure terminates. If the automaton ends in
the state s, it returns the value g(s).

Fix some integer q ≥ 2. In our context, the alphabet A consists of the integers
0, 1, . . . , q − 1, and B consists of integers or elements in some fixed finite fields. Every
integer n ≥ 1 can be written in the form n =

∑
ei(n)qi with ei(n) ∈ {0, 1, . . . , q − 1},

hence n can be viewed as word over A, and the automaton can be applied to this word.
More precisely, write n =

∑k
i=0 eiq

i with ei ∈ {0, 1, . . . , q − 1} and ek 6= 0, and identify
the integer n with the string ekek−1 . . . e1e0. In this way, every automaton defines a se-
quence (an)n≥0. An automaton with A = {0, 1, . . . , q− 1} is called a q-automaton, and
an arbitrary sequence is called q-automatic, if there exists a q-automaton which gener-
ates this sequence. More generally, a sequence is called automatic, if it is k-automatic
for some integer k ≥ 2.

Apart from intrinsic interest, the question whether a given sequence is automatic is
of interest because of its number theoretical consequences. In fact, automaticity and
algebraicity are linked via the following result of G. Christol, T. Kamae, M. Mendès
France and G. Rauzy [2].

Theorem 1. Let p be a prime number, (an)n≥1 be a sequence of elements in Fp. Then
the series

∑∞
n=1 anx

n is algebraic over Fp(x) if and only if the sequence (an) is p-
automatic.

Hence, to prove the transcendence of a power series, we need only to show that a certain
sequence is not automatic. This can for example be accomplished by the following
theorem of A. Cobham [3].

Theorem 2. Let (an)n≥1 be an automatic seqence over an alphabet B. Assume that for
some a ∈ B the limit δa = limx→∞

1
x
|{n ≤ x : an = a}| exists. Then δa is rational.

In [1], J.-P. Allouche used this to prove the following result.
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Corollary 1. The power series f(x) =
∑

n≥1(µ(n) mod p)xn is transcendental over
Fp(x) for all primes p.

Here, µ(n) denotes the Möbius-function, i.e., the multiplicative function satisfying
µ(p) = −1, µ(pk) = 0 for all primes p and integers k ≥ 2.

Proof. Since µ(n) = 0 if and only if n is divisible by some square a2, a ≥ 2, we see that
in the notation of Theorem 2,

δ0 = lim
x→∞

1

x
|{n ≤ x : ∃a ≥ 2, a2|n} = 1−

∏
p

(
1− 1

p2

)
= 1− π2

6
,

hence, the limit exists and is irrational. So by Theorem 2, the sequence (µ(n) (mod p))n≥1
is not automatic. �

Albeit short and ingenious, the proof has the disadvantage that it is difficult to apply

to other situations for two reasons. First, it requires to evaluate
∏

p

(
1− 1

p2

)
and prove

that the result is irrational. This is equivalent to Euler’s evaluation of ζ(2) and the fact
that π2 is irrational. In our case, these are well known, yet non-trivial facts. However,
in other cases there might be no known formula for δa. The second, more fundamental
problem is that in many cases δa = 1

|B| for all a, so Theorem 2 cannot be applied.

The aim of this note is to give another proof of Corollary 1. In fact, we have the
following more general result.

Theorem 3. Let (an)n≥1 be an automatic sequence. Assume that for some letter a and
for every integer k there exists an integer n such that an = an+1 = · · · = an+k = a.
Then there is a constant c > 0 such that for an infinite number of integers x we have
an = a for all n ∈ [x, (1 + c)x].

Other criteria involving strings of repeated values can be found in [4]. Before proving
our theorem, we first give some corollaries.

Corollary 2. Let (qi)i≥1 be a sequence of positive integers such that
∑

i
1
qi
<∞. Assume

that for all k ≥ 1, there are indices i1, . . . , ik such that (qil , qim) = 1 for 1 ≤ l < m ≤ k.
For all integers n ≥ 1, set an = 0, if there exists some i such that qi|n, and an = 1
otherwise. Then the sequence (an)n≥1 is not automatic.

Proof. Assume that the sequence (an)n≥1 is automatic, and let k be a given integer.
Choose indices i1, . . . , ik as in the Corollary. By the Chinese remainder theorem, there
is some integer n solving n+ l ≡ 0 (mod qil), that is, an+l = 0 for 1 ≤ l ≤ k. Hence, the
assumptions of Theorem 3 are satisfied, and we deduce that there exist some c > 0 and
arbitrarily large integers x such that an = 0 for all n ∈ [x, (1 + c)x]. On the other hand,
we can bound from below the number of integers n ∈ [x, (1 + c)x] such that an = 0 in
the following way. Let ε > 0 be given, and let K be some constant with

∑
i>K

1
qi
< ε.

Let L be the least common multiple of q1, . . . , qK . Then the set of all integers n such
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that qi 6 |n for all i ≤ K is periodic with period L, and has density dK ≥
∏

i≤K

(
1− 1

qi

)
,

with equality if and only if the qi are pairwise coprime. Note that

dK >

∞∏
i=1

(
1− 1

qi

)
> 0,

that is, dK can be bounded away from 0 independently of K. Now for x→∞, we have

|{n ∈ [x, (1 + c)x] : an = 1}| ≥ |{n ∈ [x, (1 + c)x] : ∀i ≤ K : qi 6 |n}| (1)

−
∑
i>K

|{n ∈ [x, (1 + c)x] : qi|n}|

≥ dKcx− L− εcx− |{i : qi ≤ (1 + c)x}|
≥ (dK − ε)cx+ o(x),

since |{i : qi ≤ (1 + c)x}| = o(x), for otherwise the series
∑

1
qi

would diverge. In fact, if

lim sup
x→∞

|{i : qi < x}|
x

> 0,

there exists some constant k > 0 such that

lim sup
n→∞

|{i : 2n ≤ qi < 2n+1}|
2n+1

> k,

thus,
∑

i
1
qi

=∞. By Theorem 3 we would find arbitrarily large integers x such that the

left-hand side of (1) is zero, thus we arrive at a contradiction. So the sequence (an)n≥1
is not automatic. �

Choosing qi = p2i , with pi the i-th prime number, we find that the sequence (µ(n)2

(mod p))n≥1 is not automatic, which is slightly stronger then Corollary 1.

Out next result deals with the automaticity of multiplicative functions.

Corollary 3. Let f : N → Z be a multiplicative function. Let q ≥ 2 be an integer.
Assume that the following conditions hold.

(1) There exist infinitely many primes p such that there exists some hp ≥ 1 with
q|f(php).

(2) If bn denotes the n-th integer with f(bn) 6≡ 0 (mod q), we have bn+1

bn
→ 1.

Then the sequence (f(n) (mod q))n≥1 is not automatic.

Proof. As in the proof of Corollary 2, the first condition implies that for every k there
exist some n with f(n) ≡ f(n + 1) ≡ · · · ≡ f(n + k) ≡ 0 (mod q), while the second
condition means that for every c > 0 there are only finitely many integers x such that
f(n) ≡ 0 (mod q) holds for all n ∈ [x, (1 + c)x]. Together with Theorem 3, we obtain
the desired conclusion. �

This result generalizes a theorem of S. Yazdani [5, Theorem 2]. In fact, the conditions
on f are relaxed in two aspects: First, the integers hp are allowed to depend on p. More
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important, the lower bound for the density of the set of integers n satisfying q - f(n)
in the second condition of Corollary 3 is smaller then in [5, Theorem 2]. The latter
theorem requires q - f(p) for all primes in a residue class, which by the prime number
theorem for arithmetic progressions implies condition (2) of Corollary 3.

Now we return to the proof of Theorem 3.

Proof of Theorem 3. Assume that (an)n≥1 is a sequence satisfying the conditions of
Theorem 3, and it is generated by a q-automaton. For every integer l, let n be an
integer such that an+i = a for all i ≤ ql. We may assume that n is divisible by
ql. Indeed, by hypothesis, for all integers l ≥ 1 there exists an integer m such that
am+i = a for 0 ≤ i < 2ql. Let nl be the least integer such that n ≥ m and ql|n. Then
n < m+ ql, and therefore an+i = a for 0 ≤ i < ql. Let s be the state of the automaton
reached when reading all digits of n except the last l digits. Then the definition of s
implies that all states accessible from s within precisely l steps return a. To every state
s define a set Ns ⊆ N such that l ∈ Ns if and only if all states accessible from s within
precisely l steps return a. Our argument above shows that for every l ∈ N there is some
state s accessible from the starting state such that l ∈ Ns. Hence, since there are only
finitely many states, there exists some s0 such that s0 is accessible from the starting
state, and there are infinitely many l such that all states accessible from s0 in precisely
l steps return a. Let d be some integer such that when reading d, the automaton stops
in the state s0. Then we claim that for all l ∈ Ns0 and all n ∈ [dql, dql + ql − 1], we
have an = a. In fact, after reading d, the automaton is in state s0, then, after reading
l arbitrary digits, it is in some state returning a. Hence, our theorem follows with
c = (1− q−1)d−1. 2
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