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Abstract

It is known, that under the assumption of the generalized Riemannian
hypothesis, the function π(x, q, 1) − π(x, q, a) has infinitely many sign
changes. In this article we give an upper bound for the least such sign
change. Similarly, assuming the Riemannian hypothesis we give a lower
bound for the number of sign changes of π(x) − lix. The implied results
for the least sign change are weaker then those obtained by numerical
methods, however, our method makes no use of computations of zeros of
the ζ-function.

1 Introduction

The following question is known as the Shanks-Renyi-race problem: Given an
integer q, and a bijection σ from the set {1, 2, . . . , ϕ(q)} to the set of residue
classes prime to q, is it true that there are arbitrary large values x, such that
the inequalities

π(x, q, σ(1)) > π(x, q, σ(2)) > · · · > π(x, q, σ(ϕ(q)))

hold true?In this form the problem is unsolved for all q with ϕ(q) > 2, even
assuming the Generalized Riemannian Hypothesis. With π replaced by Ψ, it
was solved by J. Kaczorowski [6] for q = 5, and the method develloped there
can be used for other small modules, too. However, the problem involving π
is far more difficult, and the only result obtained so far involving more then 2
residue classes was obtained by J. Kaczorowski [5], who showed that the function
π(x, q, 1) − max

a6≡1 (mod q)
π(x, q, a) has infinitely many sign changes. In [12], the

same was shown by a different method. In this note we use the method of [12]
to give numerical bounds for the first sign change and for the number of sign
changes up to a given bound. We will prove the following theorem.

Theorem 1. Let q be a natural number, and set q+ = max(q, e(1260)). As-
sume that no L-series (mod q) has zeros off the critical line. Let f(q) be
the number of solutions of the congruence x2 ≡ 1 (mod q). Then there is
an x < e2((q+)170 + e18f(q)) such that π(x, q, 1) > π(x, q, a) for all a 6≡ 1
(mod q). Moreover, if V (x) denotes the number of sign changes of π(t, q, 1) −

max
a 6≡1 (mod q)

π(t, q, a) in the range 2 ≤ t ≤ x, we have

V (x) >
log x

exp((q+)170 + e18f(q))
− 1.
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Here and in the sequel, ek(x) denotes the k-fold iterated exponential func-
tion, and logk x the k-fold iterated logarithm. Note that the dependence on
f(q) is an immanent feature of the problem, however, for almost all q we have
f(q) < log q, thus the least sign change is of order less then e3(55 log q log2 q)
for almost all q.

By the same method bounds for sign changes of π(x)− li x can be obtained.
Our result on the first sign change is substantially weaker than those given by
Skewes[14], Lehmann[7] and te Riele[13], however, these estimates involve large
scale computation of zeros of Riemann’s ζ-function and give no bound on the
asymptotical behaviour of the number of sign changes.

Theorem 2. Assume the Riemann hypothesis. Then there is an x < e3(16.7),
such that π(x) > li x. If V (x) denotes the number of sign changes of π(x)− li x,
we have V (x) > log x

e2(16.7) − 1.

A. E. Ingham[4] proved that V (x) > c log x − 1 for some positive constant
c, however, his method of proof was ineffective. Without the assumption of the
Riemannian Hypothesis, slightly weaker estimates were given by J. Pintz (see
[10] for an ineffective, [11] for an effective result). Moreover, J. Kaczorowski
proved V (x) > c log x− 1 unconditionally.

Since the proof of this theorem is easier, but shows all relevant details, we
will give this first.

Throughout this note, ρ will denote nontrivial zeros of ζ or some L-series.
Since we will always assume that all zeros are on the critical line, we can write
ρ = 1

2 + iγ with γ real. For a real number x, ‖x‖ denotes the distance of x to
the nearest integer. Similar, for x ∈ Rn, define ‖x‖ to be the distance of x to
the nearest lattice point.

I would like to thank the anonymous referee for many helfull comments.

2 Some Lemmata for Theorem 1

We begin our computations with the following statement on the vertical distri-
bution of zeros of ζ.

Lemma 3. Denote with N(T ) the number of zeros ρ of ζ with 0< ρ < 1, 0 <
= ρ < T . Then for T > 2 we have N(T ) < 1

6T log T and N(T + 1) −N(T ) <
log T .

In fact Backlund[2] gave a more precise estimate, however, this lemma will
suffice for our purpose. Even better estimates are available under the Rieman-
nian hypothesis, however, it seems difficult to make these improvements explicit,
and the bounds obtained that way will not influence our final result significantly.

For this and the next section, define the functions ∆(t) =
∑
γ
eitγ

ρ and

∆T (t) =
∑
|γ|<T

eitγ

ρ , where both summations run over roots of ζ on the critical
line.
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Lemma 4. Let a > b > 0 be real numbers with a − b < 1
36 and T > e4. Then

we have

b∫
a

|∆(t)−∆T (t)|2dt =
∑

|γ1|,|γ2|>T

1

(1/2 + iγ1)(1/2 + iγ2)

eb(γ1+γ2) − ea(γ1+γ2)

γ1 + γ2

<
2

9

log3 T

T

If γ1 + γ2 = 0 then eb(γ1+γ2)−ea(γ1+γ2)

γ1+γ2
denotes its limit for γ2 → −γ1, i.e.

b− a.
We will also need the following statement, which depends on a pigeon-hole

principle, for a proof see [12].

Lemma 5. Let n and N be natural numbers, ~α = (t1, . . . , tn) ∈ Rn, ε > 0. Then

there is a sequence of N real numbers 1 < s1 < . . . < sN < N2nΓ(n/2)
πn/2εn

+ 1 =:
M + 1 such that for 1 ≤ i ≤ N we have

‖si · (t1, . . . , tn)‖ < ε

and si+1 ≥ si + 1.

Further we note that studying sign changes of π is equivalent to studying
large values of Ψ, an observation which is made exploicit by the following lemma.

Lemma 6. Let x > e60 be a real number such that Ψ(x) > x + 1.01
√
x − 2.

Then π(x) > lix.

Proof. The argument follows the lines of S. Lehmann[7]. Define Π(x) =
∑
n≤x

Λ(n)
logn ,

and ∆∗(x) = Ψ(x)− x. We have an explicit formula

Π(x) = lix−
∑
ρ

lixρ + θx1/3,

where θ is some real number, which depends on x and satisfies |θ| ≤ 1, provided
that x > e12. Further we have

lixρ =
xρ

ρ log x
+ θ

x1/2

|ρ|2 log2 x

where θ is some complex number satisfying |θ| ≤ 1. Thus, comparing the sum
over zeros with the sum occuring in the explicit formula for Ψ(x), we get

Π(x)− lix =
Ψ(x)− x

log x
+ θ

(
1

log x

∑
ρ

1

|ρ|2
+ x−1/6 log x

) √
x

log x
.

Finally, again under the assumption x > e12, we have

π(x)−Π(x) = −1

2
li
√
x+ θx1/3.
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Putting these estimates together, we get

π(x)− lix =
Ψ(x)− x

log x
−
√
x

log x
θ

(
1

log x

∑
ρ

1

|ρ|2
+ x−1/6 log x

) √
x

log x
.

Hence, under the assumptions x > e12 and ∆∗(x) > 1.01
√
x− 2, we get

π(x)− lix ≥ 0.01
√
x

log x
− 0.05

√
x

log2 x
− 2x1/3 − 2,

where we used the bound
∑
ρ

1
|ρ|2 < 0.05 (see the proof of the next lemma).

For x > e60, the right-hand side of the last equation becomes positive, and the
proof of the lemma is complete.

Finally we need the following quantitative version of [12], Lemma 8.

Lemma 7. We have
|∆(t) + ∆(−t)| < 0.0462

Proof. We have

|g(t) + g(−t)| =
1

2

∣∣∣∣∣∑
ρ

eitγ + e−itγ

ρ
+
eitγ + e−itγ

ρ̄

∣∣∣∣∣
=

1

2

∣∣∣∣∣∑
ρ

eitγ + e−itγ

|ρ|2

∣∣∣∣∣
≤

∑
ρ

1

|ρ|2

= 2 + C − log π − 2 log 2

= 0.04619 . . .

Here C = 0.5772 . . . denotes Euler’s constant. The evaluation of the sum
∑
ρ

1
|ρ|2

is given e.g. in [3]. Note that here we have twice the value given in [3], since we
take the sum over all zeros, not only zeros with positive imaginary part.

3 Proof of Theorem 2

Obviously, the lower bound for V (x) implies the bound for the first sign change,
hence, we will only consider the second claim of Theorem 2. Define ∆(t) and
∆T (t) as above. We have for t > 0

Ψ(et) = et − et/2∆(t)− ζ ′

ζ
(0)− 1

2
log(1− e−2t)

For 0 < t < log 2 this becomes

∆(t) = et/2 −
(

log 2π +
1

2
log(1− e−2t)

)
e−t/2 > 1− log 2π − 1

2
log 2t
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Together with Lemma 7 we obtain for − log 2 < t < 0

∆(t) <
1

2
log(−t) + 1.25

Especially we have ∆(t) < −1 for −e−4.6 < t < 0. Now let T > e4 be a
real number to be determined later, M = N(T ) the number of zeros of ζ with
0 < = ρ ≤ T and ε = 1

4
√
M

. By Lemma 5 there exists a sequence of real numbers

si, 1 ≤ i ≤ N satisfying s1 ≥ 1, si+1 ≥ si + 1 and

sN ≤
N(32π2M)M/2Γ(M/2)

πM/2
< Ne

3
2M logM+4M , (1)

such that (∑
ρ

∗
| arg sγ|

)2

≤M
∑
ρ

∗
| arg sγ|2 ≤ 1

2
√

2

where arg z is chosen to lie in the interval [−π, π]. Note that with this choice
we have | arg sγ| ≤ 2π‖sγ‖ For each such si and every real t we get

|∆T (t)−∆T (t+ si)|2 ≤

 ∑
|γ|≤T

∣∣∣∣eitγρ − ei(t+si)γ

ρ

∣∣∣∣
2

≤

 ∑
0≤γ≤T

∣∣∣∣arg sγ

ρ

∣∣∣∣
2

≤ 1

γ0

2
∑

0≤γ≤T

| arg sγ|

2

≤ 1

2γ0

=
1

28.269 . . .

Now assume that ∆(t+ si) > −1.01 for all t with −e−4.6 < t < 0. Then on one
hand we get

0∫
e−4.6

|∆(t+ si)−∆(t)|2dt <

0∫
e−4.6

|∆(t)−∆T (t)|2dt+

0∫
e−4.6

|∆T (t+ si)−∆T (t)|2dt

+

0∫
e−4.6

|∆T (t+ si)−∆(t+ si)|2dt

<
4

9

log3 T

T
+
e−4.6

196
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while on the other hand we have

0∫
e−4.6

|∆(t+ si)−∆(t)|2dt > −
e−4.6∫
0

(0.5 log t− 2.26)2dt

> 0.32e−4.6

These estimates contradict each other, provided that 4
9

log3 T
T < 0.31e−4.6, i.e.

for T > 282000. Thus we get M < 590000, and from (1) we conclude that sN <
N · e2(16.6). Now if t > 10 then ∆(t) < −1.01 implies Ψ(et) > et + 1.01et/2 − 2
and by Lemma 6 the latter implies π(et) > li et, provided that t > 60. Since
there are at most 60 values si excluded by the last condition, we see that in
the interval [2, exp(N · e2(16.2))] there are at least N − 60 values xi, such that
xi+1 > e · xi, and π(xi) > li xi. Since

e·a∫
a

Ψ(et)− et

et/2
dt <

∑
ρ

2

|γρ|
< 0.1

between xi and xi+1 there is some yi such that π(yi) < li yi. Hence in the
interval [2, exp(N ·e2(16.2))] there are at least N−60 sign changes of π(x)−li x.
Our claim now follows from the fact that 61 · e2(16.6) < e2(16.7).

4 Lemmata for Theorem 1

Fix a natural number q > 2, and assume that no L-series (mod q) vanishes in
< s > 1

2 . In the sequel let χ be any charakter (mod q). We will prove Theorem
1 under the additional assumption that q > e(1260), it will be apparent from
the proofs that stronger conclusions than Theorem 1 can be obtained in the case
of small values of q, however, we do not believe that these results are worth the
additional effort.

Define the functions ∆(t, χ) =
∑
γ
eitγ

ρ and ∆T (t, χ) =
∑
|γ|<T

eitγ

ρ , where

both summations run over the nontrivial roots of L(s, χ).

Lemma 8. Denote with N(T, χ) the number of zeros of L(s, χ) with 0 < < ρ <
1, |= ρ| < T . Then for q, T > 10 we have∣∣∣∣N(T, χ)− T

π
log

qT

2π
+
T

π

∣∣∣∣ < 1

2.1
log qT + 30

For log qT > 1260 and q, T > 40 the bounds

N(T, χ) <
1

3
T log qT

and
N(T + 1, χ)−N(T, χ) < log qT.
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Let N+(T, χ) denote the number of zeros with 0 ≤ γ ≤ T , and N−(T, χ) the
number of zeros with 0 ≥ γ ≥ −T . Then we have for q, T > 40 and log qT >
1260 the bound

|N+(T, χ)−N−(T, χ)| < 5

4
log qt.

Finally, we have ∑
ρ

1

|ρ|2
≤ 13 log q. (2)

Proof. The asymptotic bound for N(T, χ) follows from [9, Theorem 2.1] setting
η = 0.01. The upper bound for N(T, χ) follows immediatelly from this estimate.
For the upper bound for N(T + 1, χ)−N(T, χ) we begin with the equation

−<L
′

L
(s, χ) =

1

2
log

q

π
+

1

2
<Γ′

Γ

(
s+ a

2

)
−<

∑
ρ

1

s− ρ
, (3)

where the summation over the zeros has to be taken with respect to increasing

imaginary part, and a = 1−χ(−1)
2 . To bound the term coming from the Γ-

function, we use the estimate (see[1, 6.1.42])∣∣∣∣log Γ(z)−
(
z − 1

2

)
log z + z − 1

2
log 2π − 1

12z

∣∣∣∣ ≤ K(z)

360|z3|
,

where K(z) = supu∈R

∣∣∣ z2

z2+u2

∣∣∣, which for <z ∈ [5/4, 7/4] and =z > 40 implies∣∣∣∣Γ′Γ (z)− log z

∣∣∣∣ ≤ 1

79
,

which together with (3) implies

−<L
′

L
(5/4 + it, χ) ≤ 1

2
log qt−<

∑
ρ

1

s− ρ
− 1

2
.

Set t = T +1/2, and assume that N(T +1, χ)−N(T, χ) > 5
4 log qT . Then every

zero with imaginary part in the range [T, T + 1] would contribute at least 12
13 to

the right-hand side sum, and the last inequality would imply

−<L
′

L
(5/4 + it, χ) ≤ − 2

13
log qT ≤ −193,

which would contradict the lower bound

−<L
′

L
(5/4 + it, χ) ≥ ζ ′

ζ
(5/4) ≥

Finally, the bound comparing N+(T, χ) and N−(T, χ) can be proven in the
same way as [9, Theorem 2.1], and the bound for

∑
ρ

1
|ρ|2 follows from the other

estimates.
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Just as in section 2 we get

Lemma 9. Let a > b > 0 be real numbers with a − b < 1
324 and T > e4. Set

∆T (t) =
∑
|γ|>T

eitγ

1/2+iγ . Then we have

b∫
a

|∆T (t)|2dt =
∑

|γ1|,|γ2|>T

1

(1/2 + iγ1)(1/2 + iγ2)

eb(γ1+γ2) − ea(γ1+γ2)

γ1 + γ2
<

2

9

log3 qT

T

For x > 1 we have the explicit formula

Ψ(x, χ) = Eχx−
√
x
∑
ρ

eiγ log x

ρ
− dχ log x−R(x, χ) +B(χ)

where

Eχ =

{
1 if χ = χ0

0 otherwise

dχ =

{
1 if χ(−1) = 1, χ 6= χ0

0 if χ(−1) = −1 or χ = χ0

R(x, χ) =

{
1
2 log(1− x−2) if χ(−1) = 1
1
2 log(1− x−2) + log x

x+1 if χ(−1) = −1

B(χ) = −Eχ + log 2− C + log
q

π
+
L′

L
(1, χ̄)

The value of B(χ) can be obtained using the functional equation, see [6, Lemma
1]. Define ∆(t, q, a) := 1

ϕ(q)

∑
χ χ(a)∆(t, χ). To estimate ∆(t, q, a) in a neigh-

bourhood of 0, we need an upper bound for B(χ), and hence for L′

L (1, χ).

Lemma 10. Let q > 10 be an integer, and χ a character (mod q). Then there
is some constant θ of absolute value at most 1, such that∣∣∣∣∣∑

χ

χ(a)
L′

L
(1, χ)

∣∣∣∣∣ =
ϕ(q)Λ(a)

a
+ ϑ

(
2 log2 q + 9

√
ϕ(q) log q

)
.

Proof. The proof will be similar to the estimate given by Masley and Montgomery[8],

however, things become easier since we assume GRH here. Set f(s) =
∑
χ χ(a)L

′

L (s, χ),
thus we have to estimate f(1). Using the Brun-Titchmarsh inequality we get
for σ > 1 the estimate∣∣∣∣f(σ)− Λ(a)ϕ(q)

aσ

∣∣∣∣ < Λ(q + a)ϕ(q)

(q + a)σ
+ 3 +

1

(σ − 1) log 2
+ log2 q

(see [8], Lemma 1). Now differentiating the partial fraction decomposition of
L′

L we get for σ > 1

f ′(σ) =
∑
χ

χ(a)
∑
ρ

1

(σ − ρ)2
+ ϑ
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where the inner sum runs over all nontrivial zeros of L(s, χ) and |ϑ| < 1. We
assume < ρ = 1

2 for all ρ, so the inner sum can be estimated using lemma 3 by
10 log q, thus |f ′(σ)| < 10ϕ(q) log q + 1. Finally∣∣∣∣f(1)− Λ(a)ϕ(q)

aσ

∣∣∣∣ < 3+log2 q+log q+
1

(σ − 1) log 2
+10(σ−1)ϕ(q) log q+(σ−1)

Choosing σ = 1 + 1√
7ϕ(q) log q

we obtain

∣∣∣∣f(1)− Λ(a)ϕ(q)

a

∣∣∣∣ < 2 log2 q + 8
√
ϕ(q) log q,

which proves our claim.

Now we have enough information to give an estimate for ∆(t, q, a) for t close
to 0.

Lemma 11. For 0 < t < log 2, q > e32 we have for some real θ satisfying
|θ| < 1 the estimate

∆(t, q, 1) =

(
log q − 1

2
log(1− e−2t) + 2θ

)
e−t/2,

and for a 6= 1 (mod q) we have the bound

|∆(t, q, a)| ≤ 3

Proof. We consider three cases: a ≡ 1 (mod q), a ≡ −1 (mod q) and a 6≡ ±1
(mod q).

For a 6≡ 1 (mod q), all contributions to ∆(t, χ), which are independent of
χ cancel, if further a 6≡ −1 (mod q) terms depending only on χ(−1) cancel as
well, so if a 6≡ ±1 (mod q) we get for 0 < t < log 2

∆(t, q, 1) =
et/2 − e−t/2

ϕ(q)
+
te−t/2

ϕ(q)
+
e−t/2

ϕ(q)

∑
χ

χ(a)
L′

L
(1, χ̄)

=
et/2 − e−t/2

ϕ(q)
+
te−t/2

ϕ(q)
+

Λ(a)e−t/2

a
+
ϑe−t/2

ϕ(q)

(
2 log2 q + 8

√
ϕ(q) log q

)
.

For a ≡ −1 (mod q) we get

∆(t, q,−1) =
et/2

ϕ(q)
+

(ϕ(q)/2− 1)te−t/2

ϕ(q)
+

1

2
log

et

et + 1
+
e−t/2

ϕ(q)

∑
χ

χ(a)
L′

L
(1, χ̄)

=
et/2

ϕ(q)
+

(ϕ(q)/2− 1)te−t/2

ϕ(q)
+

1

2
log

et

et + 1
+
ϑe−t/2

ϕ(q)

(
2 log2 q + 8

√
ϕ(q) log q

)
.
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Finally for a ≡ 1 (mod q) we get

∆(t, q, 1) =
et/2 − e−t/2

ϕ(q)
+

(ϕ(q)/2− 1)te−t/2

ϕ(q)
+
e−t/2

ϕ(q)

∑
χ

χ(a)
L′

L
(1, χ̄)

+e−t/2
(

log 2− C + log
q

π
− 1

2
log(1− e−2t)

)
=

et/2 − e−t/2

ϕ(q)
+

(ϕ(q)/2− 1)te−t/2

ϕ(q)
+ e−t/2

(
log 2− C + log

q

π
− 1

2
log(1− e−2t)

)
+
ϑe−t/2

ϕ(q)

(
2 log2 q + 8

√
ϕ(q) log q

)
.

For q > 6 we have ϕ(q) >
√
q, using this together with the bound q > e32 we

can conclude that the terms involving θ are of absolute value ≤ 0.02, and all
the other terms with the exception of 1

2 log(1 − e−2t) and log q can easily be
bounded absolutely. Putting these bounds together, we obtain our claim.

Lemma 12. We have for |x| ≤ 0.01 and q ≥ exp(1260) the bounds∣∣∣∣∫ x

0

∆(t, χ) + ∆(−t, χ) dt

∣∣∣∣ < 53x log q

and ∣∣∣∣∫ x

0

∆(t, q, a) + ∆(−t, q, a) dt

∣∣∣∣ < 53x log q.

Proof. It suffices to prove the first inequality, since the second is obtained by
averaging over all characters. Denote with ρn the n-th zero of L(s, χ) with
positive imaginary part, ρ−n the n-th zero with negative imaginary part. By
Lemma 8 we have |γn − γ−n| < 1. Further we have

|∆(t, χ) + ∆(−t, χ)| =

∣∣∣∣∣∑
ρ

etγn + e−tγn + etγ−n + e−tγ−n

ρ

∣∣∣∣∣ ,
and each single summand can be estimated as follows.

eitγn + e−itγn

ρn
+
eitγ−n + e−itγ−n

ρ−n
=

eitγn + e−itγn

|ρ|2
− (eitγn + e−itγn)

(
1

ρn
− 1

ρ−n

)
+

1

ρ−n

(
(eitγ−n + e−itγ−n)− (eitγn + e−itγn)

)
≤ 4

|ρn|2
+

1

ρn
min(4, 2t),

since

|e−itγ−n)− e−itγn)| = |e−itγ−n−itγn − 1|
< min(2, tγ−n + tγn).
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We will use this estimate for small values of γn. For large values of γn we
estimate the integral of a single term by∣∣∣∣∫ x

0

eitγn dt

∣∣∣∣ ≤ 2

|γn|
.

Putting these two estimates together and using (2), we obtain∣∣∣∣∫ x

0

∆(t, χ) + ∆(−t, χ) dt

∣∣∣∣ ≤ ∑
n

min

(
4x

|ρn|2
+

x2

|ρn|
,

4

γnρn|

)
≤

∑
n

4x

|ρn|2
+

∑
γn<x−2

x2

|ρn|
+

∑
γn≥x−2

4

γn|ρn|

≤ 52x log q +
∑

1≤n≤x−2

5x2 log
(
q(n+ 1)

)
3n

+
∑

n≥x−2

5 log
(
q(n+ 1)

)
3n2

≤ 52x log q + 2x2(2 log(x−1) + 1)(log q + 2 log(x−1) + 1)

+2x2 log q + 2x2 log(x−1)

≤ 53x log q,

provided that x < 0.01 and log q > 100, hence our claim.

The next lemma allows us to translate a statement on Ψ(x, q, 1)−Ψ(x, q, a)
into a statement on π(x, q, 1)− π(x, q, a).

Lemma 13. Let q > exp(1260) be an integer, x > exp(27q log q) be a real

number such that Ψ(x, q, 1) − Ψ(x, q, a) > 7f(q)
ϕ(q)

√
x, where f(q) is the number

of solutions of the congruence x2 ≡ 1 (mod q). Then we have π(x, q, 1) >
π(x, q, a). On the other hand, is a is a quadratic nonresidue, and Ψ(x, q, 1) <

Ψ(x, q, a) +
√
x

ϕ(q) , we have π(x, q, 1) < π(x, q, a).

Proof. As in the proof of Lemma 6, we have for x > e12 the relation

Π(x, q, 1)−Π(x, q, a) =
Ψ(x, q, 1)−Ψ(x, q, a)

log x
+

2θ
√
x

ϕ(q) log x

(
1

log x

∑
ρ

1

|ρ|2
+ x−1/6 log x

)
with some θ satisfying |θ| < 1. Using (2) we obtain

Π(x, q, 1)−Π(x, q, a) ≥ Ψ(x, q, 1)−Ψ(x, q, a)

log x
− 27 log q

log2 x

√
x.

On the other hand, using the Brun-Titchmarsh inequality to estimate the con-
tribution of higher powers to Π(x, q, 1), we obtain for x > q8 the estimate

Π(x, q, 1)−Π(x, q, a) ≤ π(x, q, 1)− π(x, q, a) +
6f(q)

√
x

ϕ(q) log q
+ x1/3.

Putting these estimates together, we get for q > exp(1260) and x > exp(27q log q)
the first estimate of our lemma. The proof of the second estimate is similar, yet
somewhat easier.
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5 Proof of Theorem 1

The proof begins as the proof of Theorem 2. By Lemma 11, we have for 0 <
t < log 2 ∣∣∣∣∆(t, q, 1)− e−t/2(log q − 1

2
log(1− e−2t))

∣∣∣∣ < 2,

as well as
|∆(t, q, a)| < 3

for −1 < t < 1, (a, q) = 1, and a 6≡ 1 (mod q). Applying Lemma 12, we obtain
for 0 < x ≤ 0.01 the bound∣∣∣∣∫ 0

−x
∆(t, q, 1) dt−

∫ x

0

e−t/2
(

1

2
log(1− e−2t)− log q

)
dt

∣∣∣∣ < 53x log q.

Setting x = q−120e−15f(q), we deduce that∫ 0

−x
∆(t, q, 1) dt <

∫ 0

−x
min
a6=1

∆(t, q, 1) dt− 4x log q − 7xf(q). (4)

From Lemma 9 we obtain that∫ 0

−x
∆T (t, q, 1) dt <

∫ 0

−x
min
a6=1

∆(t, q, 1) dt− 3x log q − 7xf(q),

provided that
2 log3 qT

9T
< x log q.

The latter condition is satisfied for T = q130e16f(q), provided that q > e8 ,since
f(q) < q holds trivially. From Lemma 8, the number M of zeros occuring in the
sum for ∆T (t) is at most qT log qT ≤ q140e17f(q). From Lemma 5, applied with
ε = 1

4π2M we obtain a sequence of real numbers s1, . . . , sN , such that s1 ≥ 1,
si+1 ≥ si + q3,

sN ≤
q3N(8π2M)M

πM/2
< exp

(
3

2
M logM + 3M

)
< exp

(
q150e18f(q)

)
and (∑

ρ

∗
| arg siγ|

)2

≤M
∑
ρ

∗
| arg siγ|2 ≤ 1,

where summation runs over all nontrivial zeros of all L-series (mod q) with
imaginary part γ satisfying |γ| ≤ q130e16f(q). As in Section 3, this bound implies

|∆T (t, q, a)−∆T (t+ si, q, a)| ≤ 2 < log q (5)

12



for all (q, a) = 1 and i = 1, . . . , N . Now assume that for all t ∈ [−x, 0] we had

∆(t+ si, q, 1) > min
a 6=1

∆(t+ si, q, a)− log q − 7f(q). (6)

Then we get on one hand from (4) and Lemma 9 the estimate∫ 0

−x
|∆(t+ si, q, 1)−∆(t, q, 1)| dt < 2x

√
log q + 2x,

whereas on the other hand we have from (3) and Lemma 9, applied to ∆(t, q, a)
the bound∫ 0

−x
|∆(t+ si, q, 1)−∆(t, q, 1)| dt > 3x log q − 2x

√
log q − 2x,

yielding a contradiction for q > e2. Hence, for each i, there is some t ∈ [−x, 0],
such that (5) fails for this value of t, and from Lemma 13 we deduce that this
implies

π(et+si , q, 1) ≥ π(et+si , q, a)

for all a 6≡ 1 (mod q), provided that si > 27q log q.
Repeating the same argument, this time starting with the inequality∫ 0

−x
∆(t, q, 1) dt <

∫ 0

−x
min
a 6=1

∆(t, q, 1) dt− 4x log q − 7xf(q)

instead of (3), we find that for each si there is some t ∈ [si, si + x] such that

π(et+si , q, 1) ≤ π(et+si , q, a)

for all a 6≡ 1 (mod q). Hence, there are at least N − 27q log q sign changes of
π(x, q, 1)−maxa6=1 π(x, q, a) below exp(N exp(q150e18f(q))), solving for N yields
the second statement of Theorem 1, since

27q log q exp(q150e18f(q)) ≤ exp(q160e18f(q)).
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