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CHARACTER THEORY OF SYMMETRIC GROUPS AND
SUBGROUP GROWTH OF SURFACE GROUPS
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Abstract

Results from the character theory of symmetric groups are used to obtain an asymptotic esti-
mate for the subgroup growth of fundamental groups of closed 2-manifolds. The main result
implies an affirmative answer, for the class of groups investigated, to a question of Lubotzky’s
concerning the relationship between the subgroup growth of a one-relator group and that of
a free group of appropriately chosen rank. As byproducts, an interesting statistical property
of commutators in symmetric groups and the fact that in a ‘large’ surface group almost all
finite index subgroups are maximal are obtained, among other things. The approach requires
an asymptotic estimate for the sum

∑
1/(χλ(1))s taken over all partitions λ of n with fixed

s > 1, which is also established.

1. Introduction

For a group Γ, denote by sn(Γ) the number of subgroups of index n in Γ. If Γ is
finitely generated (as will be the case here) or of finite subgroup rank, then sn(Γ)
is finite for all n. The natural context for the research reported in this paper is
the theory of subgroup growth, a fast developing part of what is nowadays called
‘asymptotic group theory’, which has evolved over the last 15 years in the work
of Grunewald, Lubotzky, Mann, Segal and others, including the first author of
this paper; its principal objects of study are arithmetic properties of the sequence
{sn(Γ)}n>1 or related subgroup counting functions and their connection with the
algebraic structure of the underlying group Γ. The original motivation for the latter
investigations comes from three main sources: the concept of word growth and,
more specifically, Gromov’s characterization in [10] of finitely generated groups
with polynomial word growth, the theory of rings of algebraic integers and their
zeta functions, and the work of Marshall Hall and Tibor Radó in the late 1940s
on Schreier systems in free groups and their associated subgroups; cf., in particular,
[11–13]. An account of most of the major results concerning the function sn(Γ)
obtained prior to 1992 can be found in Lubotzky’s Galway notes [17, 18]. More
recent contributions include (in rough chronological order) [7, 20, 19, 24–26, 8,
27–31].

So far, most of the major developments concerning the theory of subgroup growth
have concentrated on one of two classes of discrete groups: finitely generated nil-
potent groups and finitely generated groups containing a free subgroup of finite
index (that is, fundamental groups of finite graphs of finite groups). On the other
hand, almost nothing appears to be known, for instance, about the subgroup growth
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of one-relator groups, that is, groups Γ having a presentation of the form

Γ ∼=
〈
x1, x2, . . . , xd | w = 1

〉
,

where w = w(x1, . . . , xd) is an element of the free group freely generated by the
symbols x1, . . . , xd. If d > 3, then, by a result of Baumslag and Pride [1], Γ contains a
subgroup of finite index which can be mapped homomorphically onto a non-abelian
free group. Hence, in this case, sn(Γ) grows super-exponentially just like the sequence
of subgroup numbers of a non-abelian free group. One might feel, however, that, at
least generically, the relationship between the subgroup growth of one-relator groups
and that of free groups should be rather more intimate than the latter observation
seems to imply. More specifically, one might ask, as Lubotzky does in [17], whether
the limit

lim
n→∞

sn(Γ)

sn(Fd−1)
(1)

is finite and positive for d > 3, and, if so, what this limit is. A similar type of
relationship ‘almost’ holds when the free subgroup growth of a finitely generated
virtually free group is compared with the subgroup growth of the free group of rank
µ(Γ), where µ(Γ) = 1− mΓχ(Γ) is the free rank of Γ; cf. [22, 23].

The purpose of this paper is to show how the character theory of symmetric
groups can be used to obtain precise asymptotic estimates for the function sn(Γ) as
n → ∞, when Γ is the fundamental group of a closed 2-manifold, that is, when Γ
equals

Γ+
g =

〈
x1, y1, . . . , xg, yg | [x1, y1][x2, y2] . . . [xg, yg] = 1

〉
or

Γ−h =
〈
x1, . . . , xh | x2

1x
2
2 . . . x

2
h = 1

〉
for some g > 2, respectively h > 3. Our main result provides an asymptotic expansion
of the form

sn(Γ) ≈ 2n (n!)d−2

{
1 +

∞∑
ν=d−2

Cν(d) n−ν
}
, n→∞, (2)

with explicitly known coefficients Cν(d) and d = 2g or d = h, respectively; cf.
Theorem 2. Comparing the main term of (2) with the right-hand side of the
asymptotic formula

sn(Fr) ∼ n (n!)r−1, r > 2,

for r = d − 1, we see that Lubotzky’s question as to the existence of limit (1) has,
for the class of groups investigated here, an affirmative answer, and that the value
of this limit is 2. The proof of Theorem 2 depends, among other things, on an
asymptotic estimate for the sum

Φs(n) :=
∑
λ`n

χλ(1)−s

with fixed s > 1, which is of independent interest. Curiously enough, while certain
related character sums have been treated in the literature (cf., for instance, [36]),
nothing appears to be known about the asymptotics of the functions Φs(n). We show
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symmetric groups and surface groups 625

that, for fixed s > 1, Φs(n) has an asymptotic expansion of the form

Φs(n) ≈ 2

{
1 +

∞∑
ρ=s

Aρ(s) n
−ρ
}
, n→∞, (3)

with appropriate (and explicitly computed) coefficients Aρ(s); cf. Theorem 1.
Estimate (3) in conjunction with character-theoretic arguments also allows us to
establish an interesting statistical property of commutators in symmetric groups:
given four random elements x1, x2, x3, x4 ∈ Sn, we show that the probability that
the commutators [x1, x2] and [x3, x4] generate An tends to 1 as n tends to infinity
(Theorem 3).

The paper is organized as follows. In Section 2 we derive character formulae for
the number of solutions in a finite group G of the equations [x1, y1] . . . [xg, yg] = z,
respectively x2

1 . . . x
2
h = z. Proofs of Theorem 2, respectively Theorem 3, that depend

on estimate (3) are then provided in Section 3, respectively Section 5, while the proof
of Theorem 1 itself occupies Section 6. In Section 4, we use results and formulae
from Sections 2 and 3 to establish a number of further facts concerning surface
groups; for instance, we show that in a surface group of rank d > 3, almost all finite
index subgroups are maximal.

2. Some equations in finite groups

Let G be a finite group. Denote by [x, y] the commutator x−1y−1xy of elements
x and y in G, and, for z ∈ G, let NG(z) be the number of solutions of the equation
[x, y] = z with x, y ∈ G.

Lemma 1. For z ∈ G, we have

NG(z) = |G|∑
χ

χ(z)/χ(1),

where χ runs through the ordinary irreducible characters of G.

Proof. Fix conjugacy classes C1 and C2 of G (not necessarily distinct), and an
element z ∈ G. Then the number of solutions of the equation x · y = z with x ∈ C1

and y ∈ C2 equals

|C1||C2|
|G|

∑
χ

χ(C1)χ(C2)χ(z−1)

χ(1)
. (4)

This result, or some generalization of it, can be found in various places in the
literature; cf., for instance, [3, Proposition 9.33] or [14, Theorem 6.3.1]. Since [x, y] =
x−1 · xy , we can obtain the solutions of the equation [x, y] = z with x in a given
conjugacy class C of G by first solving the equation x̄ · x̄′ = z with x̄ ∈ C−1 and
x̄′ ∈ C , and then choosing y ∈ G in |CG(x)| = |G|/|C| ways to write a given x̄′ as
x̄′ = xy . Applying (4) and noting that |C| = |C−1|, we see that the number of these
solutions equals

|C|∑
χ

χ(C−1)χ(C)χ(z−1)

χ(1)
,
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and hence summing over the conjugacy classes gives

NG(z) =
∑
C

|C|∑
χ

χ(C−1)χ(C)χ(z−1)

χ(1)
.

Changing the order of summation in the latter equation, and using the fact that
characters are class functions plus their orthogonality relations, we find that

NG(z) =
∑
χ

χ(z−1)

χ(1)

∑
C

|C|χ(C−1)χ(C) = |G|∑
χ

χ(z−1)/χ(1).

Our result follows now by conjugation of the last equation, since χ(z) = χ(z−1). q

For z ∈ G, denote by RG(z) the number of solutions of the equation x2 = z with
x ∈ G. It is known that RSn is in fact the model character of Sn, that is,

RSn (z) =
∑
λ`n

χλ(z), z ∈ Sn. (5)

In general, RG need not even be a proper character; it is a virtual character of G,
and the (integral) coefficients cχ(G) in its decomposition

RG(z) =
∑
χ

cχ(G) χ(z), z ∈ G, (6)

satisfy |cχ(G)| 6 1, and are non-zero if and only if the corresponding character χ is
real-valued. The higher root number functions of Sn have more recently also been
shown to be proper characters, but apparently no good estimates are known for their
coefficients; cf. [37] for Scharf’s original proof of the latter result. An alternative
proof of this last result using symmetric function theory is outlined in the solution
to [38, Exercise 7.69 c]. A good account of all the facts on root number functions
mentioned can be found in [14, Chapter 6.2].

For g, h > 1 define

N+
g (G, z) :=

∣∣∣{(x1, y1, . . . , xg, yg) ∈ G2g : [x1, y1][x2, y2] . . . [xg, yg] = z
}∣∣∣

and

N−h (G, z) :=
∣∣∣{(x1, . . . , xh) ∈ Gh : x2

1x
2
2 . . . x

2
h = z

}∣∣∣;
in particular, N+

1 (G, z) = NG(z) and N−1 (G, z) = RG(z).

Proposition 1. Let G be a finite group, and let z ∈ G be a fixed element. Then
we have

N+
g (G, z) = |G|2g−1

∑
χ

χ(z)/(χ(1))2g−1, (7)

and

N−h (G, z) = |G|h−1
∑
χ

chχ(G) χ(z)/(χ(1))h−1, (8)

where the cχ(G) are given by (6).

Proof. We proceed by induction on g, respectively h. If g = 1, then (7) holds by
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virtue of Lemma 1. Suppose that (7) holds for some g > 1. Then

N+
g+1(G, z) =

∑
x∈G

N+
g (G, x)NG(x−1z)

= |G|2g ∑
x∈G

[∑
χ

χ(x)/(χ(1))2g−1

][∑
χ

χ(x−1z)/χ(1)

]
= |G|2g ∑

χ1 ,χ2

(χ1(1))−(2g−1) (χ2(1))−1
∑
x∈G

χ1(x)χ2(x−1z)

= |G|2g+1
∑
χ

χ(z)/(χ(1))2g+1,

as required. Here we have used the inductive hypothesis (7) and Lemma 1, as well
as the orthogonality relation∑

x∈G
χ1(x) χ2((ax)−1) = χ1(a−1) |G| 〈χ1 | χ2〉 /χ1(1); (9)

cf. [4, formula 31.16]. In a similar vein, replacing Lemma 1 by formula (6), we
obtain (8). q

Corollary 1. For a finite group G and integers g, h > 1, we have

|Hom(Γ+
g , G)| = |G|2g−1

∑
χ

(χ(1))−2(g−1)

as well as

|Hom(Γ−h , G)| = |G|h−1
∑
χ

chχ(G) (χ(1))−(h−2);

in particular,

|Hom(Γ, Sn)| = (n!)d−1
∑
λ`n

(χλ(1))−(d−2)

if Γ is a surface group of rank d > 1.

3. Subgroup growth of surface groups

Here, we are going to establish an asymptotic expansion for the function sn(Γ)
in the case where Γ is a surface group of rank d > 3. By [6, Proposition 1], the
functions sn(Γ) and hn(Γ) := |Hom(Γ, Sn)|/(n!) are related via the transformation
formula

n∑
k=1

sk(Γ) hn−k(Γ) = nhn(Γ), n > 1. (10)

Corollary 1 furnishes the explicit formula

hn(Γ) = (n!)d−2 Φd−2(n), (11)

where, for a fixed integer s,

Φs(n) :=
∑
λ`n

(χλ(1))−s.

We shall use the following estimate for the functions Φs(n) with s > 1. Its proof
occupies Section 6.
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Theorem 1. For each fixed integer s > 1, we have the asymptotic expansion

Φs(n) ≈ 2

∞∑
ρ=0

Aρ(s) n
−ρ, n→∞,

where the coefficients Aρ(s) are given by

Aρ(s) :=
∑
r>0

∑
µ`r

H[µ]s
∑
(κν )

∏
ν∈N(µ,r)

[(
s+ κν − 1

κν

)
(2r − ν)κν

]
, ρ > 0.

Here, H[µ] is the hook product of µ,

N(µ, r) := [2r] −
{
j +

j−1∑
i=0

mr−i(µ) : 1 6 j 6 r

}
,

and
∑

(κν )
denotes the sum over the family of discrete variables {κν : ν ∈ N(µ, r)}

satisfying κν > 0 for ν ∈ N(µ, r) and
∑
κν = ρ− rs.

Corollary 2. For fixed s > 1, we have

Φs(n) = 2 + O(n−s), n→∞.
Proof. This is immediate from Theorem 1, since, for 1 6 ρ < s and every r > 0,

the summation over the κν in the definition of the Aρ(s) is empty, while A0(s) = 1.
q

Formula (11), when combined with Theorem 1, provides an explicit asymptotic
expansion for the function hn(Γ), provided that d > 3; however, we are still faced
with the question of how to transfer asymptotic information from hn(Γ) to the
function sn(Γ). To deal with the latter problem, we use an asymptotic method for
divergent power series due to Wright [39] and, in greater generality, to Bender
[2]. Adopt, for a moment, the following more formal point of view. Consider two
sequences 1 = h0, h1, h2, . . . and s1, s2, s3, . . . of real numbers satisfying a relation

n∑
k=1

hn−k sk = cnhn, n > 1, (12)

with some constant c > 0. We require sn > 0 and hn > 0 for all n > 1. Define the
triangle ∆ = (Hn

k )06k6n associated with transformation (12) by

Hn
k :=

hn

hk hn−k
, 0 6 k 6 n,

and, for each fixed integer K > 1, put

S(K)
n :=

n−K∑
k=K

(Hn
k )−1.

If the sequence {hn}n>0 is growing in an appropriately rapid fashion, then the
following criterion can be used to transfer information about the asymptotic
behaviour of the hn to the sequence sk .

Lemma 2. Suppose that, for some integer K > 1 as n→∞,

(i) hn−1 = o(hn);

(ii)K S(K)
n = O(hn−K/hn).
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symmetric groups and surface groups 629

Then the sequence sn satisfies the relation

sn

cn
=

K−1∑
k=0

ck hn−k + O(hn−K ), n→∞,

where ck is the coefficient of zk in the series (
∑

n>0 hn z
n)−1.

This is a consequence of the main results in [2]; cf. also [23, Section 2]. Now
assume that d > 3, so that Γ contains a subgroup of finite index which maps
homomorphically onto a non-abelian free group. The sequences {hn(Γ)}n>0 and
{sn(Γ)}n>1 are related via the transformation formula (12) with c = 1, and (11) in
conjunction with Corollary 2 implies in particular that

hn−1(Γ)/hn(Γ) ∼ n−(d−2), n→∞.
Hence, under the assumption d > 3, Lemma 2(i) is satisfied. Also, for fixed K > 1,

hn−K (Γ)/hn(Γ) =

K∏
k=1

hn−K+k−1(Γ)/hn−K+k(Γ) ∼ n−K(d−2),

and condition (ii)K takes the (equivalent) form

S(K)
n (Γ) :=

n−K∑
k=K

hk(Γ)hn−k(Γ)

hn(Γ)
= O(n−K(d−2)), n→∞.

However, as our next result shows, the latter estimate holds for every fixed positive
integer K , provided that d > 3.

Lemma 3. For d > 3 and fixed K > 1, we have

S(K)
n (Γ) = O(n−K(d−2)), n→∞.

Proof. By Corollary 2, there exists a constant C > 1 such that

1 6 Φd−2(n) 6 C, n > 1.

Taking n > 2K , we find from the unimodal property of Pascal’s triangle that for
d > 3 and fixed K ,

0 6S(K)
n (Γ) 6 C2

n−K∑
k=K

(
n

k

)−(d−2)

6 2C2

(
n

K

)−(d−2)

+ C2 (n− 2K − 1)

(
n

K + 1

)−(d−2)

= 2C2

(
n

K

)−(d−2)

+ C2 (n− 2K − 1)

(
n−K
K + 1

)−(d−2) (
n

K

)−(d−2)

6 2C2

(
n

K

)−(d−2)

+ C2 (n− 2K − 1)

(
n−K
K + 1

)−1(
n

K

)−(d−2)

< C2 (K + 3)

(
n

K

)−(d−2)

= O(n−K(d−2)). q

In view of Lemma 3 and the previous discussion, Lemma 2 applies in our situation
for every K > 1, and we get the following.
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Proposition 2. For Γ as above, we have the asymptotic expansion

sn(Γ) ≈ nhn(Γ)

{
1 +

∞∑
k=1

ck(d)
hn−k(Γ)

hn(Γ)

}
, n→∞,

where the ck(d) are the coefficients of the series
(∑

n>0 (n!)d−2 Φd−2(n)zn
)−1

.

Combining formula (11) with Theorem 1 and Proposition 2, we obtain, after some
trivial manipulations, the main result of this paper.

Theorem 2. Let Γ be a surface group of rank d > 3. Then the function sn(Γ)
satisfies the asymptotic expansion

sn(Γ) ≈ 2 n (n!)d−2

{
1 +

∞∑
ν=1

Cν(d) n−ν
}
, n→∞, (13)

where, for ν > 1,

Cν(d) =

bν/(d−2)c∑
k=1

∑
η1+...+ηk−1+η+ρ+k(d−2)=ν

ck(d)k
η

(
η + ρ− 1

η

)
Aρ(d− 2)

×
k−1∏
i=1

[
iηi
(
d+ ηi − 3

ηi

)]
.

Corollary 3. For Γ as in Theorem 2, we have

sn(Γ) = 2 n (n!)d−2
{

1 + O(n−(d−2))
}

; (14)

in particular, limn→∞(sn(Γ)/sn(Fd−1)) = 2.

Proof. The first assertion is immediate from Theorem 2, while the second state-
ment, concerning the quotient sn(Γ)/sn(Fd−1), follows from (14) and the fact that for
r > 2,

sn(Fr) ∼ n (n!)r−1, n→∞;

cf. [33, Theorem 2]. q

4. Miscellaneous results

4.1. A representation-theoretic formula for sn(Γ)

Rewriting equation (10), which holds for every finitely generated group Γ, in terms
of generating functions, we find that

d

dz

(
log

(
1 +

∑
n>1

hn(Γ)zn

))
=
∑
n>0

sn+1(Γ)zn.

Integrating the latter equation, expanding the logarithm, and comparing coefficients,
we find that

sn(Γ) = n

n∑
ν=1

(−1)ν+1

ν

∑
n1 ,... ,nν>1
n1+...+nν=n

hn1
(Γ) . . . hnν (Γ).
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If we now take Γ to be a surface group of rank d > 1, then the last equation, when
combined with (11), yields the identity

sn(Γ) = n

n∑
ν=1

(−1)ν+1

ν

∑
n1 ,... ,nν>1
n1+...+nν=n

ν∏
j=1

[
(nj!)

d−2 Φd−2(nj)

]
, (15)

which explicitly expresses the subgroup numbers of Γ in representation-theoretic
terms.

4.2. Fundamental groups of torus and Klein bottle

It follows immediately from Corollary 1 and formula (10) that the groups Γ+
g

and Γ−2g , while not isomorphic, are isospectral, that is, they have the same number

of index n subgroups for every n; in particular, the torus group Γ+
1
∼= Z2 and the

fundamental group of the Klein bottle

Γ−2 ∼= Z ∗
2Z
Z

have the same subgroup numbers. However,

|Hom(Γ+
1 , Sn)| =

∑
π∈Sn
|CSn (π)| = ∑

π∈Sn/∼

(
Sn : CSn (π)

) · |CSn (π)| = n! p(n),

where p(n) is the number of partitions of n. Comparing equation (10) for Γ+
1 with

the well known identity (cf., for instance, [16, Satz 7.3])

np(n) =

n∑
k=1

σ(k)p(n− k)

relating the partition function to the arithmetic function σ(n) =
∑

ν|n ν, we find that

sn(Γ
+
1 ) = sn(Γ

−
2 ) = σ(n), n > 1. (16)

Formulae (15) and (16) are due to Mednykh; cf. [21, Theorem A, Theorem 1,
Theorem 2].

4.3. Uniform asymptotics

If we restrict attention to the main term in Theorem 2, then uniformity in d and
n can be achieved. Indeed, if Γd is a surface group of rank d, then for n > 1 and
d > 2,

hn(Γd)

(n!)d−2
=
∑
λ`n

(
χλ(1)

)−(d−2)

= 2 + O
([ ∑

λ`n
λ6=(1n),(n)

(
χλ(1)

)−1
][

max
λ`n

λ6=(1n),(n)

(
χλ(1)

)−(d−3)
])

= 2 + O(n−12−(d−3)
)
,

and

nhn(Γd) − sn(Γd) 6
n−1∑
k=1

khk(Γd)hn−k(Γd)

6 C n
n−1∑
k=1

(k!)d−2
(
(n− k)!)d−2

,
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where

C :=

(
sup
n,d

hn(Γd)

(n!)d−2

)2

,

the supremum existing by the previous computation. Hence, dividing by nhn(Γd), we
find that ∣∣∣∣ sn(Γd)

nhn(Γd)
− 1

∣∣∣∣ 6 C

n−1∑
k=1

(
n

k

)−(d−2)

= O(n−(d−2)
)
.

Consequently,

sn(Γd)

2n (n!)d−2
=

sn(Γd)

nhn(Γd)

hn(Γd)

2(n!)d−2
= 1 + O(n−12−(d−3)

)
. (17)

In particular, we find from (17) that, for n > 1 fixed and d→∞,

sn(Γd) ∼ 2n (n!)d−2.

The latter result can also be obtained by combining formula (15) with the
observation that Φs(n) = 2 + O(1)O(n−s) → 2 for n > 1 fixed and s → ∞; cf.
[21, Corollary D].

4.4. Maximal subgroups

For a finitely generated group Γ, let mn(Γ) be the number of maximal subgroups
of index n in Γ. Here we will use (17) to prove that for a surface group Γ = Γd of
rank d > 3,

mn(Γ)

sn(Γ)
= 1 + O(e−cn)

with some constant c > 0; that is, almost all finite index subgroups of a ‘large’
surface group are maximal. As is well known, a subgroup of index n in Γd is
isomorphic to a surface group of rank n(d − 2) + 2. The number of non-maximal
subgroups of index n in Γ is bounded above by the number of pairs of subgroups
(∆,∆′) with ∆ < ∆′ < Γ and (Γ : ∆) = n. Hence, using (17), we find that

sn(Γ) − mn(Γ) 6
∑
ν|n

1<ν<n

sν(Γ) sn/ν(Γν(d−2)+2)

6 C n
∑
ν|n

1<ν<n

(ν!)d−2
(
(n/ν)!

)ν(d−2)
.

Approximating the factorials occurring in the latter expression by Stirling’s formula,
dividing by sn(Γ), and using (17) again, we find that

1 − mn(Γd)

sn(Γd)
6 C ′

∑
ν|n

1<ν<n

((
2π

e2

)ν/2
ν(ν+1)/2 n(ν−1)/2

νn

)d−2

6 C ′
∑
ν|n

1<ν<n

(
nν/n

ν

)n(d−2)
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with some constant C ′ > 0. Hence it suffices to show that

nν/n

ν
6

2

3
, ν | n, 1 < ν < n, n > n0.

In order to see this, we distinguish the cases 2 6 ν 6 2
√
n and 2

√
n < ν 6 n/2.

In the first case,

nν/n

ν
6
n2/
√
n

2
→ 1

2
as n→∞,

while in the second case,

nν/n

ν
6
n1/2

2
√
n

=
1

2
.

4.5. Parity patterns of surface groups

Formula (11) is sufficiently explicit to yield information about the parity
patterns of surface groups, that is, the sequences (sn(Γ) mod 2)n>1 ∈ GF(2)N. Call
an irreducible character χ of Sn a 2-core character if n!/χ(1) is odd. By the hook for-
mula, this condition is equivalent to requiring that all hook lengths of the partition
associated with χ are odd. It is easy to see from this that an irreducible character χλ
is 2-core if and only if λ is of the form λ = (k, k− 1, . . . , 1) for some k > 1; hence Sn
has a 2-core character if and only if n is triangular, that is, n = k(k + 1)/2 for some
positive integer k, in which case there is precisely one such character.

Proposition 3. For a surface group Γ of rank d > 3, we have the recurrence
relation

sn(Γ) ≡ ∑
k>1

k(k+1)<2n

sn−k(k+1)/2(Γ) + δ(n) mod 2, n > 1,

where

δ(n) :=

{
1 n odd and triangular

0 otherwise.

In particular, the parity of sn(Γ) does not depend on Γ.

Proof. Rewrite formula (11) as

hn(Γ) =
∑
λ`n

(
n!

χλ(1)

)d−2

.

Then, by the definition of a 2-core character, the fact that d > 3, and the remarks
above, we find that hn(Γ) is odd if and only if n is triangular. Using this information
in equation (10), we obtain our claim, the contribution δ(n) coming from the term
nhn(Γ). q

Combining Proposition 3 with classical results of Legendre and Gauss concerning
representation numbers of binary quadratic forms, it can be deduced, for instance,
that for a surface group Γ of rank at least 3, the function sn(Γ) is odd if and only if
n is a square or twice a square; cf. [32].
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5. A statistical property of commutators in symmetric groups

For z ∈ Sn, denote by N(z) the number of solutions of the equation [x, y] = z

with x, y ∈ Sn, that is, N(z) = NSn (z). For z ∈ An, define R(z) via the equation

N(z) = 2n! + R(z).

The key property of this remainder term R(z) turns out to be the following.

Lemma 4. We have ∑
z∈An
|R(z)| � n−1 (n!)2. (18)

Proof. By Lemma 1, we have

N(z) = n!
∑
λ`n

χλ(z)/χλ(1).

An orthogonality argument similar to those occurring in the proof of Proposition 1
now shows that ∑

z∈An
(N(z))2 = (n!)3

∑
λ`n

(χλ(1))−2,

which, when combined with Corollary 2, yields the estimate∑
z∈An

(N(z))2 = 2(n!)3 {1 + O(n−2)}, n→∞. (19)

It follows that ∑
z∈An

(R(z))2 =
∑
z∈An

(
N(z)− 2n!

)2

=
∑
z∈An

(N(z))2 − 4n!
∑
z∈An

N(z) + 2(n!)3

� n−2 (n!)3.

Here, we have estimated the first sum via (19), while the second sum equals (n!)2,
since every pair (x, y) ∈ S2

n gives rise to a solution of the equation [x, y] = z for
some z ∈ An. An application of the Cauchy–Schwarz inequality now gives(∑

z∈An
|R(z)|

)2

6
n!

2

∑
z∈An

(R(z))2 � n−2 (n!)4,

whence the lemma. q

In order to get some feeling for the quality of the estimate provided by Lemma 4,
note that for individual z the quantity R(z) can be quite large in modulus, for
instance

R(1) = n!
(
p(n)− 2

)
,

which is roughly by a factor ec
√
n larger than the average obtained from (18).

With Lemma 4 in hand, we can now establish the following statistical property of
commutators in Sn.
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Theorem 3. Choose four elements x1, x2, x3, x4 from Sn at random. Then the prob-
ability that the commutators [x1, x2] and [x3, x4] generate An tends to 1 as n tends to
infinity.

Proof. It is well known that two randomly chosen elements of An generate An
with probability tending to 1 as n tends to infinity; cf., for instance, [5]. Choose
δ > 0. Then, for sufficiently large n,

|{(σ, τ) ∈ An × An : 〈σ, τ〉 6= An}| 6
(
δ

2
n!

)2

.

Consequently, there exists a set M0 ⊆ An such that (i) |M0| 6 (δ/2)n!, and (ii) for
every σ ∈ An −M0 there are at most (δ/2)n! elements τ ∈ An with 〈σ, τ〉 6= An.
Moreover, if M ⊆ An is any set of size at most (δ/2)n!, then, by Lemma 4,∑

z∈M
N(z) 6 δ (n!)2 +

∑
z∈An
|R(z)| = (

δ + O(n−1)
)
(n!)2 6 2δ (n!)2.

Hence the number of quadruples (x1, x2, x3, x4) ∈ S4
n such that the commutators

[x1, x2] and [x3, x4] do not generate An is at most 4δ (n!)4, that is, the probability pn
that four elements x1, x2, x3, x4 chosen from Sn at random have the property that

〈[x1, x2], [x3, x4]〉 = An

satisfies pn > 1− 4δ for n sufficiently large. q

6. Proof of Theorem 1

Recall that the irreducible representations of Sn and their associated characters
are explicitly parametrized by the partitions of n, that is, sequences

λ = (λ1, λ2, . . . , λ`)

of positive integers such that λ1 > λ2 > . . . > λ` and λ1 + λ2 + . . . + λ` = n.
The number ` = ||λ|| of summands is called the length or norm of λ, and, as
usual, we write λ ` n to indicate that λ is a partition of n. Denote by χλ the
irreducible character corresponding to the partition λ. Then χλ(1), the dimension of
the irreducible representation associated with λ, can be computed via the formula

χλ(1) =
n!∏

(i,j)∈[λ]

hi,j
, (20)

where hi,j is the hook length determined by the node (i, j) in the Ferrers diagram [λ]
of λ, that is, the number of points contained in the hook

Hi,j := {(i, j ′) ∈ [λ] : j ′ > j} ∪ {(i′, j) ∈ [λ] : i′ > i}
corresponding to (i, j). The quantity

∏
(i,j) hi,j is called the hook product of λ, and

is denoted as H[λ]. Formula (20) is the celebrated hook length formula of Frame,
Robinson and Thrall, first established in [9], and subsequently re-proved in a number
of different ways; cf., for instance, [15, 34, 35].

In order to prove Theorem 1, it suffices (by symmetry) to establish, for every fixed
integer R > 1, the following two facts:
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(i)
∑
λ`n

λ1>n−R/s

χλ(1)−s = 1 +

R−1∑
ρ=1

Aρ(s)n
−ρ + O(n−R), n→∞,

(ii)
∑
λ`n

||λ||6λ16n−R/s

χλ(1)−s = O(n−R), n→∞.

In order to prove (i), consider a partition λ of n with λ1 = n− r for some fixed r > 0.
By the hook formula (20), we have

χλ(1) = H[µ]−1
∏

ν∈N(µ,r)

(n− 2r + ν),

where µ = (λ2, λ3, . . . , λ`) is the partition of r obtained by deleting the first part of λ,
and where N(µ, r) is as defined in Theorem 1. Hence, by the binomial theorem,∑

λ`n
λ1=n−r

χλ(1)−s = n−rs
∑
µ`r

H[µ]s
∏

ν∈N(µ,r)

[ ∞∑
κ=0

(
s+ κ− 1

κ

)
(2r − ν)κ n−κ

]
,

and the right-hand side of this equation, being a convergent series, also provides
an asymptotic expansion for the left-hand side as n→∞. Summing this asymptotic
expansion over 0 6 r < R/s, we obtain (i).

The proof of (ii) proceeds in several steps. We begin by providing three different
bounds for χλ(1), valid for various ranges of λ1. We then estimate the left-hand side
of (ii) as ∑

λ`n
||λ||6λ16n−R/s

χλ(1)−s 6 S1 + S2 + S3,

where

S1 :=
∑
λ`n

2n/36λ16n−R/s

χλ(1)−s,

S2 :=
∑
λ`n

n/46λ162n/3

χλ(1)−s,

and

S3 :=
∑
λ`n

||λ||6λ16n/4

χλ(1)−s,

and use the previously established inequalities to estimate the sums S1, S2, and S3.

Claim 1. We have

χλ(1) >

(
λ1

n− λ1

)
, λ1 > n/2. (21)

Proof. Consider the hook numbers h1,j corresponding to the nodes in the first
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row of [λ]. These numbers are mutually distinct, h1,j 6 n for all 1 6 j 6 λ1, and
λ1∏

j=n−λ1+1

h1,j = (2λ1 − n)!.

Hence
λ1∏
j=1

h1,j 6 (2λ1 − n)! (n)n−λ1
=
n! (2λ1 − n)!

λ1!
.

Combining the latter inequality with the trivial estimate

H[(λ2, . . . , λ`)] 6 (n− λ1)!

for the remaining nodes, our claim follows from the hook formula (20). q

Claim 2. We have

χλ(1) >
(n+ bn/8c − λ1)!

(n− λ1)! (bn/8c+ 5)!
, λ1 > n/4. (22)

Proof. Consider the bn/8c nodes in the first row of [λ] which are farthest to the
right. Below each of these nodes there are at most five other nodes; hence

λ1∏
j=λ1−bn/8c+1

h1,j 6 (bn/8c+ 5)!,

while for the remaining nodes in the first row we use the estimate
λ1−bn/8c∏
j=1

h1,j 6 (n)λ1−bn/8c =
n!

(n+ bn/8c − λ1)!
.

Combining these inequalities with the trivial bound

H[λ′] 6 (n− λ1)!

for the hook product of the partition λ′ = (λ2, . . . , λ`), our claim follows from the
hook formula (20). q

Claim 3. We have

χλ(1) >
(

3
2

)n/4
, ||λ|| 6 λ1 6 n/4. (23)

Proof. Think of the hook lengths hi,j with (i, j) ∈ [λ] as written down in increasing
order (with multiplicities), and denote by h(i) the ith member of this sequence. Then
h(i) 6 i for all 1 6 i 6 n. To see this, consider a node of [λ] representing h(i). The
hook corresponding to this node contains h(i)− 1 nodes of hook length strictly less
than h(i). Thus there are at least h(i)− 1 entries preceding h(i). For ||λ|| 6 λ1 6 n/4,
the number h1,1, the largest hook length associated with [λ], satisfies h1,1 6 n/2.
Hence

H[λ] =

n∏
i=1

h(i) 6
n∏
i=1

min(i, n/2),

and therefore, by (20),

χλ(1) >
n∏
i=1

i

min(i, n/2)
=

n∏
i=bn/2c+1

i

n/2
>

n∏
i=d3n/4e

i

n/2
>

(
3

2

)n/4
. q
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Claim 4. We have S1 = O(n−R), n→∞.

Proof. Consider a partition λ ` n with greatest part λ1 satisfying 2n/3 6 λ1 6
n− R/s. Then we have(

λ1

n− λ1

)
> 2n−λ1−dR/se

(
n

3

)dR/se
/dR/se!,

and hence, by (21),

χλ(1)−s 6 6sdR/se (dR/se!)s 2−s(n−λ1) n−R. (24)

We now make use of the estimate

p(n) 6 2 ec0

√
n, c0 := π

√
2/3,

for the partition function, which holds for all n > 1, and can be proved by elementary
means; cf., for instance, [16, Satz 7.6]. Multiplying the right-hand side of (24) by
2ec0

√
n−λ1 and summing over 2n/3 6 λ1 6 n− R/s, we find that

0 6 S1 6 2 · 6sdR/se (dR/se!)s n−R S̃ ,
where

S̃ :=
∑

2n/36λ16n−R/s
ec0

√
n−λ1 2−s(n−λ1).

For λ1 6 n − (2c0/(s log 2))2, the summands of S̃ are bounded above by 2−s(n−λ1)/2;
hence, splitting S̃ accordingly, we obtain the inequality

S̃ 6 2−R e2c2
0/(s log 2)

[(
2c0

s log 2

)2

− R/s
]

+
1− (2−s/2)bn/3c+1

1− 2−s/2
,

whose right-hand side remains bounded as n→∞. q

Claim 5. We have S2 = O(e−sn/8), n→∞.

Proof. Consider a partition λ with largest part λ1 satisfying n/4 6 λ1 6 2n/3.
Observe that the right-hand side of (22) decreases as λ1 increases, that is, the estimate
(22) becomes worst at the upper limit. Hence, for n > 6477,

χλ(1) >
(n+ bn/8c − b2n/3c)!

(n− b2n/3c)! (bn/8c+ 5)!
> 3bn/8c, n/4 6 λ1 6 2n/3.

Consequently, for sufficiently large n,

S2 6 2 ec0

√
n 3−sbn/8c = O(e−sn/8). q

Claim 6. We have S3 = O(e−cn), n→∞, with some constant c > 0.

Proof. By (23),

S3 6 2 ec0

√
n
(

3
2

)−sn/4
= O(e−cn). q

Assertion (ii) follows from Claims 4–6, and the proof of Theorem 1 is complete. q
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