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To those who do not know mathematics it is difficult to get across a real
feeling as to the beauty, the deepest beauty, of nature . . . .

If you want to learn about nature, to appreciate nature,
it is necessary to understand the language that she speaks in.

Richard Feynman, 1918 – 1988
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Chapter 1

Differentiation in Rn

1.1 Definitions of the Derivatives

Similarly as we have discussed the rules of differentiation in R1, we will now consider derivatives of
functions going from Rm to Rn. However, there are now several types of derivatives:

• derivatives (in the general sense of the word), also known as Jacobi matrices (Def. 1.1),

• partial derivatives (Def. 1.3),

• derivatives in a certain fixed direction (Def. 1.7).

These three types of derivatives coincide in case of n = m = 1.

Definition 1.1 (Derivative, Jacobi1 matrix). Let G ⊂ Rm be an open set, and f : G → Rn be a
function. We say that this function f is differentiable2 at a point x0 ∈ G if a matrix A ∈ Rn×m exists
with the property that for x in a neighbourhood of x0 we can write

f(x) = f(x0) +A(x− x0) +R(x, x0),

where the remainder term R is o(‖x− x0‖) for x→ x0.

The matrix A is called derivative or Jacobi matrix3.

The set of all functions f : G → Rn that are continuously differentiable everywhere in G is denoted by
C1(G→ Rn). In this case, the derivative A = A(x) depends continuously on x ∈ G.

Lemma 1.2. The derivative is unique.

Proof. Exercise: assume that there were another one, Ã. Subtract both defining equations, etc.

Definition 1.3 (Partial derivative). Let G ⊂ Rm be an open set and f : G → Rn be an arbitrary
function. Write f in the form f = (f1, . . . , fn)>. Fix a point x0 = (x0,1, . . . , x0,m)> ∈ G and indices i, j
with 1 ≤ i ≤ m, 1 ≤ j ≤ n. If the limit

lim
h→0

1

h
(fj(x0,1, . . . , x0,i−1, x0,i + h, x0,i+1, . . . , xn)− fj(x0,1, . . . , x0,i−1, x0,i, x0,i+1, . . . , xn))

exists, then we say that the jth component of f has a partial derivative4 with respect to xi, and this limit
is denoted by

∂fj
∂xi

(x0).

1 Carl Gustav Jakob Jacobi, 1804 – 1851
2differenzierbar
3Ableitung, Jacobi–Matrix
4partielle Ableitung
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8 CHAPTER 1. DIFFERENTIATION IN RN

Proposition 1.4. If a function f has a derivative A = f ′(x0) at a point x0, then all partial derivatives
∂fj
∂xi

exist, and it holds

A =


∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xm

 . (1.1)

Proof. You should be able to do it yourselves.

Warning: The converse of this proposition is wrong, see below.

Example: In case of n = 1, the derivative A = f ′ of a function f : G→ R1 is called the gradient of f ,

grad f = ∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xm

)
.

Pay attention to the fact that grad f is a row vector, not a column vector.

Lemma 1.5. If a function is differentiable at a point, then it is continuous at that point.

Proof. The proof is exactly the same as in the one-dimensional case, which we have studied in the last
semester. Just replace the modulus bars | · | with norm bars ‖·‖ everywhere.

The mere existence of all partial derivatives does not imply the continuity of a function. There are
examples of functions f , whose partial derivatives

∂fj
∂xi

exist everywhere, yet the function f is discontin-
uous.

However, we can prove the equivalence of both types of derivatives if we sharpen the assumptions a bit:

Proposition 1.6. Suppose that a function f : G→ Rn has partial derivatives everywhere in G, and that
these partial derivatives are continuous.

Then the function f is differentiable everywhere in G, and relation (1.1) holds.

Proof. Suppose, for simplicity, that m = 2 and n = 1. The general case can be proved similarly. Fix
x0 = (x0,1, x0,2)> ∈ R2, and write x = (x1, x2)> ∈ R2. We want to show that

f(x) = f(x0) +
∂f

∂x1
(x0) · (x1 − x0,1) +

∂f

∂x2
(x0) · (x2 − x0,2) +R(x, x0), (1.2)

with R(x, x0) = o(‖x− x0‖) for x→ x0. By the mean value theorem (of 1D calculus), we deduce that

f(x) = f(x1, x2) = f(x0,1, x0,2) + (f(x1, x2)− f(x0,1, x2)) + (f(x0,1, x2)− f(x0,1, x0,2))

= f(x0) +
∂f

∂x1
(ξ1, x2) · (x1 − x0,1) +

∂f

∂x2
(x0,1, ξ2) · (x2 − x0,2),

where ξ1 is between x1 and x0,1; and ξ2 is between x2 and x0,2. Now the continuity of the derivatives
comes into play:

∂f

∂x1
(ξ1, x2) =

∂f

∂x1
(x0,1, x0,2) + R̃1(x, x0, ξ1),

∂f

∂x2
(x0,1, ξ2) =

∂f

∂x2
(x0,1, x0,2) + R̃2(x, x0, ξ2),

where limx→x0
R̃j(x, x0, ξj) = 0. This gives us (1.2).

Finally, the derivative of a function in a certain direction can be defined in a very similar way as the
partial derivative.



1.1. DEFINITIONS OF THE DERIVATIVES 9

Definition 1.7 (Directional derivative5). Let G ⊂ Rm be an open set and f : G→ Rn be an arbitrary
function. Choose a unit vector e ∈ Rm, ‖e‖ = 1. If the limit

lim
h→0

1

h
(f(x0 + he)− f(x0))

exists, then we say that the function f has a derivative at the point x0 ∈ G in direction e, and this limit
is denoted by

∂f

∂e
(x0).

The partial derivatives are simply directional derivatives in the directions given by the vectors
(1, 0, . . . , 0)>, (0, 1, 0, . . . , 0)>, . . . , (0, . . . , 0, 1)>.

Proposition 1.8 (Directional derivative). Let f : G→ Rn be a continuously differentiable function,
x0 ∈ G, and e ∈ Rm a unit vector. Then the derivative of f at x0 in direction e can be computed by

∂f

∂e
(x0) = f ′(x0)e,

where the last multiplication is of the form “matrix times vector”.

Proof. The proof requires the so-called chain rule, and therefore we postpone it.

Proposition 1.9. The gradient of f ∈ C1(G→ R1) points into the direction of steepest ascent.

Proof. Fix x0 ∈ G, and let x ∈ G be close to x0. We know that

f(x)− f(x0) = grad f(x0) · (x− x0) + o(‖x− x0‖),

and the remainder term becomes negligible for x→ x0. By the Cauchy–Schwarz inequality, we have

|grad f(x0) · (x− x0)| ≤ ‖grad f(x0)‖ ‖x− x0‖

with equality if the vectors grad f(x0) and x− x0 are parallel.

Proposition 1.10. The gradient of a function is perpendicular to its level sets.

Proof. Exercise.

Examples:

• If x(t) = (x1(t), x2(t), x3(t))> denotes the position of a particle at time t, then

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)


denotes the velocity of that particle at time t.

• If θ = θ(x) = θ(x1, x2, x3)> denotes the temperature at the point x = (x1, x2, x3)>, then

∇θ = grad θ =

(
∂θ

∂x1
,
∂θ

∂x2
,
∂θ

∂x3

)
is the temperature gradient. This row vector describes “how the temperature changes from one
point to the next” via the relation

∆θ = θ(x)− θ(x0) ≈ dθ = (grad θ) · (x− x0).

Note that ∆ (capital Delta) is not the Laplacian 4.

5Richtungsableitung



10 CHAPTER 1. DIFFERENTIATION IN RN

• If u = (u1(x), u2(x), u3(x))> denotes the velocity of a fluid at position x = (x1, x2, x3)>, then

∇u =

∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


describes “how u changes from one point to the next” by

∆u = u(x)− u(x0) ≈ du = (∇u) · dx.

Definition 1.11 (Total differential). Set ∆x = dx = x−x0 and ∆f = f(x)−f(x0), df = f ′(x0)· dx.
The (column) vector df is the (total) differential of f at x0

6.

Differentiability means the following: if ‖dx‖ is small enough, then (in general)

‖∆f − df‖ � ‖df‖ ,

where � means “much smaller than”.

This holds, of course, only in the general case, which is ‖df‖ 6= 0.

1.2 Calculation Rules

How do the above defined derivatives interact with the usual arithmetical operations, that are

• addition of functions and multiplication with scalars,

• multiplication of functions,

• composition of functions ?

The addition and multiplication with scalars are easy:

Proposition 1.12. The mapping that maps a function f ∈ C1(G→ Rn) to its derivative f ′ ∈ C(G→
Rn×m) is a homomorphism.

Proof. We only have to show that

(f + g)′ = f ′ + g′,

(cf)′ = c · f ′.

The proof can be obtained by copying from the one-dimensional case.

Concerning the multiplication of functions, we have to be careful. We cannot copy the old proof blindly,
since the multiplication of matrices is in general not commutative.

Proposition 1.13 (Product rule). Let G ⊂ Rm be an open set, and u, v ∈ C1(G→ Rn) be continuously
differentiable functions. Define a function f : G→ R1 by the formula

f(x) = u(x)>v(x) = v(x)>u(x), x ∈ G.

Then f is continuously differentiable in G, f ∈ C1(G→ R1), and its gradient is given by

grad f(x0) = ∇f(x0) = f ′(x0) = u(x0)>v′(x0) + v(x0)>u′(x0).

6totales Differential von f in x0



1.2. CALCULATION RULES 11

Proof. We start with

u(x) = u(x0) + u′(x0) · (x− x0) +Ru(x, x0),

v(x) = v(x0) + v′(x0) · (x− x0) +Rv(x, x0).

Question: Which format do u, v, u′ and v′ have ?

We want to write down a similar expansion for f(x); the factor in front of (x − x0) will then be the
desired derivative. Remember that u>v = v>u. Here we go:

f(x) = f(x0) + (f(x)− f(x0))

= f(x0) + u(x)>(v(x)− v(x0)) + v(x0)>(u(x)− u(x0))

= f(x0) + u(x)> (v′(x0) · (x− x0) +Rv(x, x0)) + v(x0)> (u′(x0) · (x− x0) +Ru(x, x0))

= f(x0) +
(
u(x)>v′(x0) + v(x0)>u′(x0)

)
· (x− x0) + o(‖x− x0‖)

= f(x0) +
(
u(x0)>v′(x0) + v(x0)>u′(x0)

)
· (x− x0) + o(‖x− x0‖).

Here we have used in the last step that u(x) = u(x0) + O(‖x− x0‖).

Proposition 1.14 (Chain rule). Let G ⊂ Rl and H ⊂ Rm be open sets, and consider 2 functions
u ∈ C1(G → Rm), v ∈ C1(H → Rn) with Wu ⊂ Dv = H. Then the composed function f = f(x) =
(v ◦ u)(x) = v(u(x)) is differentiable, f ∈ C1(G→ Rn), and its derivative is given by

f ′(x) = (v′(u(x))) · u′(x), x ∈ G.

Proof. The proof can be copied from the 1D situation, almost word-by-word. Be careful to not divide
by vectors. Divide by norms of vectors instead.

Question: Which format do the terms f ′(x), v′(u(x)) and u′(x) have ?

Example: If f ∈ C1(Rn → R1) is scalar and x = x(t) ∈ C1(R1 → Rn) is a vector, then g = g(t) =
f(x(t)) ∈ C1(R1 → R1) with the derivative

ġ(t) = (grad f)(x(t)) · ẋ(t) =

n∑
j=1

∂f

∂xj
(x(t)) · ∂xj

∂t
(t).

Example: The position of a moving particle in the plane is given by(
x(t)
y(t)

)
cart.

in Cartesian coordinates. The velocity vector is then (ẋ(t), ẏ(t))>cart.. If you express this in polar coordi-
nates, you have

x(t) = r(t) cosϕ(t) = x(r(t), ϕ(t)),

y(t) = r(t) sinϕ(t) = y(r(t), ϕ(t)),

ẋ =
∂x

∂r
· ∂r
∂t

+
∂x

∂ϕ
· ∂ϕ
∂t

= cos(ϕ)ṙ − r sin(ϕ)ϕ̇,

ẏ =
∂y

∂r
· ∂r
∂t

+
∂y

∂ϕ
· ∂ϕ
∂t

= sin(ϕ)ṙ + r cos(ϕ)ϕ̇,(
ẋ
ẏ

)
cart.

=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)(
ṙ
ϕ̇

)
=:

∂(x, y)

∂(r, ϕ)

(
ṙ
ϕ̇

)
.

The matrix ∂(x,y)
∂(r,ϕ) is also known as fundamental matrix. It is simply the derivative (Jacobi matrix) of

that function, which maps (r, ϕ)> to (x, y)>.

Corollary 1.15 (Proof of Proposition 1.8). Define a function l = l(h) = x0 + h · e, where e ∈ Rm,
‖e‖ = 1, and h ∈ R1. In other words, the function l maps R1 into Rm. Then the directional derivative
can by computed by

∂f

∂e
(x0) =

∂

∂h
f(l(h))∣∣h=0

= f ′(l(0)) · l′(0) = grad f(x0) · e.
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Straight lines in Rm are a useful tool and let us play with them a bit longer. Consider two points
x, y ∈ G. Then the straight line connecting them is the set

l(x, y) = {z ∈ Rm : z = x+ t(y − x), 0 ≤ t ≤ 1}.

The set G is said to be convex7 if, for each pair (x, y) of points of G, the connecting line l(x, y) belongs
completely to G.

Proposition 1.16 (Mean value theorem in Rm). Let G be a convex open set in Rm, and let f ∈
C1(G→ R1).

Then: for each pair (x, y) ∈ G2, there is a point ξ ∈ G on the straight line connecting x and y, such that

f(y)− f(x) = grad f(ξ) · (y − x).

Proof. Define a function l : [0, 1]→ G by l(t) = x+ t(y − x), and put g = g(t) = f(l(t)). Then we have,
from the 1D mean value theorem,

f(y)− f(x) = g(1)− g(0) = g′(τ)(1− 0),

for some 0 < τ < 1. We compute now g′(τ) by the chain rule:

g′(τ) = f ′(l(τ)) · l′(τ) = grad f(ξ) · (y − x),

where we have introduced ξ := l(τ); and the proof is complete.

The Cauchy–Schwarz inequality gives us the convenient estimate

‖f(y)− f(x)‖ ≤M ‖y − x‖ ,

where we have set M = sup{‖grad f(ξ)‖ : ξ ∈ l(x, y)}. Moreover, we can conclude that

grad f(x) ≡ 0 in G =⇒ f ≡ const. in G

provided that the open set G is connected.

Warning: In the above mean value theorem, one cannot replace f ∈ C1(G→ R1) by f ∈ C1(G→ Rn).
You are invited to find counter-examples yourselves. How about looking at the unit circle ?

However, an integrated version of the mean value theorem holds in higher dimensions:

Proposition 1.17 (Integrated mean value theorem). Let G be a convex open set in Rm and
f ∈ C1(G→ Rn). Then we have the following formula for each pair (x, y) ∈ G2:

f(y)− f(x) =

(∫ t=1

t=0

f ′(x+ t(y − x)) dt

)
· (y − x).

Proof. Consider the first component f1 of f . Write g1(t) = f1(x + t(y − x)). By the main theorem of
calculus,

f1(y)− f1(x) = g1(1)− g1(0) =

∫ t=1

t=0

g′1(t) dt =

∫ t=1

t=0

(grad f1(x+ t(y − x))) · (y − x) dt.

You can extract the factor y− x out of the integral, and then consider the other components of f in the
same way.

If we restrict a function f : G → R1 to a straight line connecting two points of G, then we obtain a
function which only depends on a one-dimensional parameter t ∈ [0, 1]. It is interesting to apply the
usual 1D calculus—for instance the Taylor formula—to this restricted function. Then we will obtain
a Taylor formula in higher dimensions. For this, we will need higher order derivatives, which are so
important that they deserve a section of their own.

7konvex
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1.3 Derivatives of Higher Order

Definition 1.18 (Higher order derivatives). Let f ∈ C1(G → R1) be a continuously differentiable
function; and suppose that the partial derivatives of f are again continuously differentiable. Then we say
that f is twice partially differentiable and write f ∈ C2(G → R1). The second order partial derivatives
of f are written as

∂2f

∂xi∂xj
(x).

For the mixed derivatives, the order of differentiation does not matter:

Proposition 1.19 (Theorem of Schwarz8). Let f ∈ C2(G→ R) and x0 ∈ G. Then

∂

∂xi

∂

∂xj
f(x0) =

∂

∂xj

∂

∂xi
f(x0), 1 ≤ i, j ≤ m.

Proof. Assume for simplicity of notation that m = 2 and x0 = 0. We will now show that

∂

∂x

∂

∂y
f(0, 0) =

∂

∂y

∂

∂x
f(0, 0).

Choose small numbers ∆x, ∆y and consider the rectangle with the corners (0, 0), (∆x, 0), (∆x,∆y),
(0,∆y) (draw a picture !). We define a number

S = f(∆x,∆y) + f(0, 0)− f(∆x, 0)− f(0,∆y)

and represent it in two ways. On the one hand, we have

S = (f(∆x,∆y)− f(0,∆y))− (f(∆x, 0)− f(0, 0)) = G(∆y)−G(0),

where we have introduced G(η) = f(∆x, η)− f(0, η). By the 1D mean value theorem, there is a number
τG with 0 < τG < 1 and

S = G′(τG∆y)∆y =

(
∂f

∂y
(∆x, τG∆y)− ∂f

∂y
(0, τG∆y)

)
∆y

=

(
∂

∂x

∂

∂y
f

)
(σG∆x, τG∆y) ·∆x ·∆y,

where we have applied the 1D mean value theorem for the second time.

On the other hand, we have

S = (f(∆x,∆y)− f(∆x, 0))− (f(0,∆y)− f(0, 0)) = H(∆x)−H(0)

with H(ξ) = f(ξ,∆y)− f(ξ, 0). By applying the mean value theorem two times more, we find that

S = H ′(σH∆x)∆x =

(
∂f

∂x
(σH∆x,∆y)− ∂f

∂x
(σH∆x, 0)

)
∆x

=

(
∂

∂y

∂

∂x
f

)
(σH∆x, τH∆y) ·∆x ·∆y.

Both representations of S together give us(
∂

∂x

∂

∂y
f

)
(σG∆x, τG∆y) =

(
∂

∂y

∂

∂x
f

)
(σH∆x, τH∆y).

Now we send ∆x and ∆y to 0. The continuity of the second order derivatives then completes the
proof.

8 Hermann Amandus Schwarz, 1843 – 1921
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The second order derivatives of a function f ∈ C2(G→ R) can be arranged into an m×m matrix, the
so–called Hessian9 10 of f :

Hf(x) =


∂2f
∂x2

1
(x) . . . ∂2f

∂x1∂xm
(x)

...
. . .

...
∂2f

∂xm∂x1
(x) . . . ∂2f

∂x2
m

(x)

 .

By the Schwarz theorem, this matrix is symmetric.

Because the derivations with respect to different directions commute, we are allowed to introduce so–
called multi–indices:

Definition 1.20 (Multi–index). A vector α = (α1, . . . , αm) with αj ∈ N0 is named a multi–index11.
Let h = (h1, . . . , hm)> be a vector of real numbers. Then we define

|α| = α1 + · · ·+ αm,

α! = α1! · . . . · αm!,

hα = hα1
1 · . . . · hαmm ,

∂αx =

(
∂

∂x1

)α1

· . . . ·
(

∂

∂xm

)αm
.

This notation might look a bit complicated at first. However, it enables us to write down a Taylor
formula in exactly the same way as in the 1D case.

Proposition 1.21 (Taylor12–formula). Let G ⊂ Rm be an open and convex set, and suppose that
a function f ∈ CN+1(G → R1) is given. Then there is, for each pair (x0, x) ∈ G2, a point ξ on the
connecting line l(x0, x), such that

f(x) =
∑
|α|≤N

1

α!
(∂αx f) (x0) · (x− x0)α +RN (x, x0),

RN (x, x0) =
∑

|α|=N+1

1

α!
(∂αx f) (ξ) · (x− x0)α.

Proof. Put l = l(t) = x0 + t(x − x0) for 0 ≤ t ≤ 1 and g = g(t) = f(l(t)). Then we have g(0) = f(x0)
and g(1) = f(x). The 1D Taylor formula gives us a number τ , 0 < τ < 1, such that

g(1) =
N∑
k=0

1

k!
g(k)(0) +

1

(N + 1)!
g(N+1)(τ).

Now we compute the terms with k = 1 and k = 2:

g′(t) = f ′(l(t)) · l′(t) =
∑
|α|=1

(∂αx f)(l(t))(x− x0)α,

g′′(t) =
∑
|α|=1

∑
|β|=1

(∂βx∂
α
x f)(l(t))(x− x0)β

 (x− x0)α =
∑
|γ|=2

2!

γ!
(∂γxf)(l(t))(x− x0)γ .

By induction, one can show that

g(k)(t) =
∑
|γ|=k

k!

γ!
(∂γxf)(l(t))(x− x0)γ ,

where we have omitted an explanation how the factor k!
γ! appears. It is just advanced combinatorics . . .

The proof is complete.

9Hesse–Matrix
10 Ludwig Otto Hesse, 1811 – 1874, also known for the Hesse normal form of analytical geometry
11Multiindex
12 Brook Taylor, 1685 – 1731
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Remark 1.22. Observe that we have proved the Taylor formula only for functions f : G → Rn with
n = 1. This formula with the above representation of the remainder term RN will be wrong for higher
n. The reason is that the 1D Taylor formula (which we have used in the proof) needs the mean value

theorem, which is not valid for n ≥ 2. However, if we only need RN = O(‖x− x0‖N+1
), then any n ∈ N

is admissible, as it can be seen from the integrated mean value theorem, for instance.

Generally, one uses the Taylor formula in one of the following forms:

f(x) = f(x0) + O(‖x− x0‖), n ≥ 1, (1.3)

f(x) = f(x0) + f ′(x0)(x− x0) + O(‖x− x0‖2), n ≥ 1,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
(x− x0)>Hf(x0)(x− x0) + O(‖x− x0‖3), n = 1, (1.4)

where Hf(x0) is the Hessian of f at the point x0.

From (1.4), it is clear how to find extremal values of a function f :

necessary condition If a function f has an extremum at a point x0, then f ′(x0) = 0,

sufficient condition If f ′(x0) = 0 and the Hessian of f at x0 is positive definite, then f has a minimum
at x0. If f ′(x0) = 0 and the Hessian of f is negative definite, then f has a maximum at x0.

A real symmetric matrix A is said to be positive definite if η>Aη > 0 for each vector η ∈ Rm \ {0}.
A real symmetric matrix A is called negative definite if η>Aη < 0 for each vector η ∈ Rm \ {0}. An
equivalent description is: a real matrix A is positive definite if A is symmetric and all eigenvalues of
A are positive. A is negative definite if A is symmetric and all eigenvalues of A are negative. If some
eigenvalues of A are positive and some are negative, then A is called indefinite. In this case, the function
f has neither a maximum nor a minimum at the point under consideration, but a so–called saddle-point.
An introduction to the theory of eigenvalues of matrices will be given later, in Section 4.5.

As an example of a Taylor expansion, we wish to study the function f which maps a matrix A ∈ Rm×m
to its inverse A−1. One can imagine that the m×m entries aij of A are written as a super-column with

m2 entries, and then f maps from some subset of Rm2

into Rm2

. Of course, the big challenge is how to
write down the computations without being lost in a jungle of formulas.

One can easily imagine the following: if a matrix A0 is invertible and another matrix A is “close” to A0,
then also A should be invertible; and the inverses A−1

0 and A−1 should also be close to each other. Then
natural questions are:

• what means “A is close to A0” ?

• can we compare the distance of the inverses somehow with the distances of the original matrices ?

The key tool here is a matrix norm, which is the following. Fix a norm on Rm, for instance ‖x‖ :=√
x2

1 + · · ·+ x2
m. Then we define an associated matrix norm on Rm×m via ‖A‖ :=

√∑m
i,j=1 a

2
ij . The

crucial fact is that

‖Ax‖ ≤ ‖A‖ ‖x‖ , ‖AB‖ ≤ ‖A‖ ‖B‖ ,

for each vector x ∈ Rm and all matrices A,B ∈ Rm×m. This is the reason why one calls this matrix
norm associated to the given vector norm. In a sense, the matrix norm is compatible to all the operations
where a matrix is involved (multiplying a matrix by a number, adding two matrices, multiplying a matrix
by a vector, multiplying two matrices). Now our result is the following, and we will use it for proving
the inverse function theorem.

Lemma 1.23. Suppose that A0 is an invertible matrix from Rm×m, and A is close to A0 in the sense
of
∥∥A−1

0 (A0 −A)
∥∥ ≤ 1/2. Then also A is invertible, we have the estimate∥∥A−1 −A−1

0

∥∥ ≤ 2
∥∥A−1

0

∥∥2 ‖A−A0‖ , (1.5)
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as well as the converging Taylor series

A−1 =

( ∞∑
k=0

(A−1
0 (A0 −A))k

)
A−1

0 . (1.6)

Proof. For a start, we take a matrix B with ‖B‖ ≤ 1/2. Then we have
∥∥Bk∥∥ ≤ ‖B‖k ≤ (1/2)k, and

therefore the series

I +B +B2 +B3 + . . .

converges, even absolutely. This is the famous Neumann13 series. The limit of the series is (I − B)−1,
and you can prove this limit in exactly the same way as you proved the formula 1+q+q2 + · · · = 1/(1−q)
(for q ∈ C with |q| < 1) of the geometric series in school.

And you also have
∥∥(I −B)−1

∥∥ ≤∑∞k=0

∥∥Bk∥∥ ≤∑∞k=0 ‖B‖
k ≤

∑∞
k=0 2−k = 2.

Now we take the above matrices A0 and A, and we put B := A−1
0 (A0−A). Then we have ‖B‖ ≤ 1

2 and

A = A0 − (A0 −A) = A0(I −A−1
0 (A0 −A)) = A0(I −B),

which is the product of two invertible matrices, and consequently

A−1 = (I −B)−1A−1
0 =

( ∞∑
k=0

Bk

)
A−1

0 ,

which is just (1.6). This is the desired Taylor expansion of that function f which maps A to A−1 ! The
first term in this Taylor formula is B0A−1

0 = A−1
0 , and therefore

A−1 −A−1
0 =

( ∞∑
k=1

Bk

)
A−1

0 = B

( ∞∑
k=0

Bk

)
A−1

0 = B(I −B)−1A−1
0 ,

which leads us to the estimate∥∥A−1 −A−1
0

∥∥ ≤ ‖B‖ ∥∥(I −B)−1
∥∥ ∥∥A−1

0

∥∥ ≤ ∥∥A−1
0

∥∥ ‖A0 −A‖ · 2 ·
∥∥A−1

0

∥∥ ,
and this is exactly (1.5).

1.4 Differential Operators of Vector Analysis

Definition 1.24 (Laplace–operator, divergence, rotation). Let Ω ⊂ Rn be an open set, and f : Ω→
R3, ϕ : Ω → R1 be functions from C1 or C2. Then we define the operators 4 (Laplace14–operator),
div (divergence–operator) and, in case n = 3, rot (rotation operator):

4ϕ(x) :=

n∑
j=1

∂2ϕ

∂x2
j

(x),

div f(x) :=

n∑
j=1

∂fj
∂xj

(x),

rot f(x) :=


∂f3
∂x2
− ∂f2

∂x3
∂f1
∂x3
− ∂f3

∂x1
∂f2
∂x1
− ∂f1

∂x2

 (x).

13Carl Neumann, 1832 – 1925, not to be confused with John von Neumann, renowned for his contributions to functional
analysis and quantum mechanics.

14 Pierre–Simon Laplace, 1749 – 1827
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The rot–operator is sometimes also written as curlf . Thinking of ∇ as a vector,

∇ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
admissible to scalar product and vector product, we get the convenient notation

4ϕ = ∇2ϕ = div gradϕ,

div f = ∇ · f,
rot f = ∇× f (only if n = 3).

Next, we will list some rules for these operators. But first, we give some notation. For a moment, we do
not distinguish row vectors and column vectors anymore. The Jacobi–matrix of a function f : Ω→ Rn
is denoted by Df ,

Df(x) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn

 .

The Laplace operator can be applied to a vector-valued function component-wise:

4 f = (4 f1,4 f2, . . . ,4 fn) .

Proposition 1.25. Let Ω ⊂ Rn be an open set, and f, g : Ω→ Rn and ϕ : Ω→ R1 be sufficiently smooth.
Then the following formulae hold (if a rot appears, n must be equal to three):

1. rot gradϕ = 0,

2. div rot f = 0,

3. div(ϕf) = 〈gradϕ, f〉+ ϕdiv f ,

4. rot(rot f) = grad div f −4 f ,

5. div(f × g) = 〈rot f, g〉 − 〈f, rot g〉,

6. rot(ϕf) = (gradϕ)× f + ϕ rot f ,

7. rot(f × g) = (div g)f − (div f)g + (Df)g − (Dg)f .

Proof. This is a wonderful exercise.

1.5 Outlook: String Theory and Differential Forms

(Outlook sections are not relevant for exams.)

We play a bit with the formulas rot grad = 0 and div rot = 0, and hopefully an application of this will
become visible after some time. First we make a diagram, to be read from left to right:

C∞(R3 → R)
grad−−−−→ C∞(R3 → R3)

rot−−−−→ C∞(R3 → R3)
div−−−−→ C∞(R3 → R)

The first box is the vector space of smooth scalar functions on R3, which are mapped by grad into the
second box, which is the vector space of smooth vector fields on R3, which are mapped by rot again into
the vector space of smooth vector fields, which are finally mapped by div into the last box, the vector
space of smooth scalar fields.

For simplicity of notation, call these four vector spaces V0, V1, V2, and V3. The differential operators
grad, div and rot are linear mappings from some Vj into the neighbour Vj+1, and then it is possible to
ask for the kernel spaces and image spaces of these homomorphisms.
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To this end, we look at the two vector spaces in the middle. Take V1 first. This space contains img grad
and also ker rot, and both are linear subspaces of V1. The formula rot grad = 0 then simply means

img grad ⊂ ker rot .

Take now V2, which contains img rot and ker div, and again both are linear subspaces of V2. Now the
formula div rot = 0 implies

img rot ⊂ ker div .

Let us formulate this in words: we have a chain of vector spaces, which are linked by linear mappings.
At each vector space (neglecting the left and right end spaces), one mapping comes in from the left,
and one mapping goes out to the right. And the image space of the mapping coming in from the left
is contained in the kernel space of the mapping going out to the right. If you draw a picture, it will
resemble a chain of fisherman’s fykes15.

Next, we wish to describe these image spaces and kernel spaces a bit closer. They are all of infinite
dimension, and writing down a basis for anyone of them seems hopeless. So we settle for something less:
V1 contains img grad and ker rot, and we ask how much do img grad and ker rot differ ? So we hope to
write

ker rot = img grad⊕H1

in the sense of direct sums of subspaces of V1, and wish to know something about H1.

Similarly, in the space V2, we can hopefully write, with some unknown space H2,

ker div = img rot⊕H2.

To make a long story short: Corollary 3.82 will tell us that H1 = {0} is a quite boring vector space, and
you can compute by hand that also H2 = {0}. (The exercise you have to solve here is the following:
given a function ~u with div ~u = 0, seek a function ~v with ~u = rot~v. If you can always find such a
function ~v, then H2 = {0}. You will meet this exercise again in the theory of electrostatics: there are

no magnetic monopoles, and therefore div ~B = 0. Then there is a vector field ~A with ~B = rot ~A, and ~A
is called vector potential of the magnetic field ~B.)

Now we want something less boring: the domain R3, where the variable x lives in, is called universe,
for the moment. Just for the fun, let us drill a hole through the universe. That means, we remove the
infinite cylinder {(x1, x2, x3) : x2

1+x2
2 ≤ 1} from the R3, and we change the spaces V0, . . . , V3 accordingly.

What happens with the spaces H1 and H2 then ? In the language of Corollary 3.82, the universe is no
longer simply connected, and it can be shown (we will not go into the details here), that then H1 and H2

will be function spaces of dimension one. You can also drill some more holes, or cut the universe into
pieces, or connect regions which had been far away before (think of a wormhole), and you will always
have dimH1 = dimH2 (isn’t this amazing ?).

The key idea is now: from the dimensions of H1 and H2 (called Betti numbers) you can draw some
conclusions about the shape of the universe. Assume that you have two universes, and the Betti numbers
of one universe are different from the Betti numbers of the other universe. Then you know that the only
way to transform one universe into the other is by means of “violent action”. If both universes are
“topologically equivalent”, then their Betti numbers are the same; but the converse need not be true.

This approach is one of the many ideas behind the string theory.

Literature: K.Becker, M.Becker, J.H.Schwarz: String theory and M-Theory

The above spaces H1 and H2 are closely related to something which is called deRham-cohomology (we
will not go into the details of this).

And for those who do not have enough, we mention how the above spaces V0, . . . , V3 should be replaced
to make everything (a bit more) precise:

• the space V0 can remain unchanged,

15Reuse
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• the space V1 consists of the one–forms. Here a one-form is a mathematical object “that can be
integrated along a one-dimensional curve in R3”. Each one–form can be written as f(x, y, z) dx+
g(x, y, z) dy + h(h, y, z) dz. We will see these expressions again when we study curve integrals of
second kind.

• the space V2 consists of the two–forms. Here a two–form is a mathematical object “that can be
integrated over a two-dimensional surface in R3”. Each two–form can be written as f(x, y, z) dx∧
dy + g(x, y, z) dy ∧ dz + h(x, y, z) dz ∧ dx, and the wedges shall remember us that commuting
the two differentials next to them requires a sign change. Later we will study surface integrals of
second kind, and they are basically the same integrals as we have here.

• the space V3 consists of the three–forms. Here a three–form is a mathematical object “that can be
integrated over a three-dimensional region in R3”. Each three–form can be written as f(x, y, z) dx∧
dy ∧ dz, and the wedges shall remember us that commuting the two differentials next to them
requires a sign change.

You know already (something like) a three–form: it is the usual determinant of a 3 × 3 matrix, where
you interpret the columns of the matrix as three vectors. And of course you know that commuting two
columns in a matrix leads to a sign change of the determinant.

One of the key advantages of the approach via differential forms is that this works in any space dimension
(recall that the operator rot is only available in R3).

Literature: H. Goenner: Spezielle Relativitätstheorie und die klassische Feldtheorie. 5.2.5. Maxwell-
gleichungen in Differentialformenformulierung

We conclude this outlook with some mathematical mystery.

Take a convex polyhedron like a cube, or a tetrahedron, or an octahedron. Count the number V of
vertices (corners), the number E of edges, and the number F of faces. Then compute the number

χ = V − E + F.

Whatever the convex polyhedron has been, you will always get χ = 2. Therefore this number χ has
become famous, and its name is Euler characteristic. Now take a simple polyhedron like a cube, and
drill a hole of prismatic shape through it, and compute χ again. Drill one more hole, and compute χ
once more. What do you expect for N holes ?

And finally, we look at the angles. For each vertex of a convex polyhedron, sum up the angles which
have their tip at that vertex (for instance, in case of a cube, you get 3× 90◦ = 270◦ at each corner). For
each corner, compute the angle which is missing to 360◦ (in case of a cube, this is 360◦ − 270◦ = 90◦).
Take the sum of all missing angles, for all corners.

Repeat with tetrahedron, octahedron, whatever you like. What do you observe, and what is the reason ?

Now drill a square-shaped hole through a cube (or some other polyhedron), and compute the sum of the
missing angles again (attention: now some missing angles will be negative, the others positive. Respect
the sign !). What will be the result if you drill one more hole ?

1.6 Inverse and Implicit Functions

In transforming polar coordinates into Cartesian coordinates, we had(
x
y

)
=

(
x(r, ϕ)
y(r, ϕ)

)
=

(
r cosϕ
r sinϕ

)
with the derivative ∂(x,y)

∂(r,ϕ) .

How about transforming into the other direction ?

We easily see that r = r(x, y) =
√
x2 + y2. A similar formula for ϕ does not exist, however, we have

tanϕ =
y

x
.

The formula ϕ = arctan y
x might be obvious, but is wrong.
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The partial derivatives then are

∂r

∂x
=

x√
x2 + y2

= cosϕ,

∂r

∂y
=

y√
x2 + y2

= sinϕ,

1

cos2 ϕ

∂ϕ

∂x
=

∂

∂x
tanϕ = − y

x2
= − r sinϕ

r2 cos2 ϕ
, =⇒ ∂ϕ

∂x
= − sinϕ

r
,

1

cos2 ϕ

∂ϕ

∂y
=

∂

∂y
tanϕ =

1

x
=

1

r cosϕ
, =⇒ ∂ϕ

∂y
=

cosϕ

r
.

This gives us the fundamental matrix

∂(r, ϕ)

∂(x, y)
=

(
cosϕ sinϕ

− sinϕ
r

cosϕ
r

)
.

Surprisingly, this is just the inverse matrix to

∂(x, y)

∂(r, ϕ)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
.

We will now see that it is always like this.

Let f ∈ C1(G→ Rm), where G ⊂ Rm is an open and convex set. Pay attention to the fact that n = m.
Let us be given a point x0 ∈ G, and put y0 = f(x0). Suppose that y∗ is a point close to y0. Can we find
an x∗ ∈ G, such that f(x∗) = y∗ ? Is this x∗ unique near x0 ?

The answer to both questions is ‘yes’ provided that y∗ and y0 are close to each other, and that the
Jacobian matrix J0 := f ′(x0) is invertible. This will give us an inverse function x∗ = g(y∗).

Proposition 1.26 (Inverse function theorem). Under the above assumptions, there are positive ε
and δ, with the property that for each y∗ with ‖y∗ − y0‖ < ε, there is a unique x∗ ∈ G with ‖x∗ − x0‖ ≤ δ
and f(x∗) = y∗. The mapping y∗ 7→ g(y∗) = x∗ is differentiable, and its derivative satisfies

g′(y) = (f ′(x))−1, y = f(x), ‖y − y0‖ < ε.

The proof is quite long, but you can learn from it how bigger results can be shown if you have the proper
tools. Our tools are now:

• a modified Newton iteration scheme (note that the Newton iteration which you learned at the end
of the first semester works also for functions f : Rm → Rm),

• the Banach fixed point theorem,

• matrix norms.

To make everything easier, we cheat a bit and assume that even the second derivatives of f exist and are
continuous. As an added bonus, the proof will teach us some tricks how to handle Taylor expansions.

Proof. Step 0: making a todo-list: given are f , x0, y0, f ′(x0) =: J0 and its inverse J−1
0 , and y∗

“near” y0.

We have to find x∗ “near” x0 with f(x∗) = y∗. We have to explain (twice) what “near” means.
We have to show that the map g : y∗ 7→ x∗ is differentiable, and we have to compute the derivative
g′(y∗).

Step 1: setting up an iteration scheme: We have y0 = f(x0), with given x0 and y0. Moreover,
there is a given point y∗ which is very close to y0. We are looking for all x∗ with f(x∗) = y∗. It is
natural to search the x∗ by means of a Newton scheme,

x0 given,

xk := xk−1 − (f ′(xk−1))−1(f(xk−1)− y∗), k = 1, 2, 3, . . . .
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(Draw a picture !) The proof will become easier if we modify this scheme a bit: put J0 := f ′(x0)
and

x0 given,

xk := xk−1 − J−1
0 (f(xk−1)− y∗), k = 1, 2, 3, . . . .

We will show convergence of this sequence (xk)k∈N to some point x∗, using Banach’s fixed point
theorem. This x∗ is then the solution to f(x∗) = y∗. If y0 and y∗ are close together, this solution
x∗ is unique near x0.

Step 2: preparing the Banach fixed point theorem: Write the iteration scheme in the form xk =
T (xk−1). The fixed point theorem requires you to check two assumptions:

• the mapping T maps a closed set M into itself;

• the mapping T is contractive on M . This means ‖T (x)− T (x̃)‖ ≤ γ ‖x− x̃‖ for some constant
γ < 1 and all x, x̃ ∈M . Let us choose γ := 1

4 .

It is reasonable to take a ball for the closed set M :

M := {x ∈ G : ‖x− x0‖ ≤ δ},

with some positive radius δ which we promise to select later.

And to show the two •, we need to know f very precisely. To this end, we write down its Taylor
expansion,

f(x) = f(x0) + f ′(x0) · (x− x0) +R(x)

= y0 + J0 · (x− x0) +R(x),

and the remainder R is quadratically small for x→ x0, since f is C2, hence R(x) = O(‖x− x0‖2).
To make this precise: we have a positive constant C1 with

‖R(x)‖ ≤ C1 ‖x− x0‖2 if ‖x− x0‖ ≤ 1 and x ∈ G.

Let us differentiate the Taylor expansion of f : then

f ′(x) = J0 · I +R′(x),

hence R′(x) = f ′(x)− J0, hence R′(x0) = 0.

Next we discuss the mapping T and bring it into a different formula:

T (x) := x− J−1
0 (f(x)− y∗)

= x− J−1
0 (y0 + J0(x− x0) +R(x)− y∗)

= x0 + J−1
0 (y∗ − y0 −R(x)).

This representation of T has the advantage that it contains many terms which we know very well
(namely all except R(x)).

Step 3: the first condition in the Banach fixed point theorem: to prove that T maps M into
M , we assume x ∈M and intent to show that also T (x) ∈M . So, let us suppose ‖x− x0‖ ≤ δ for
our small δ. Then we have (under the reasonable assumption ‖x− x0‖ ≤ 1)

‖T (x)− x0‖ =
∥∥J−1

0 (y∗ − y0 −R(x))
∥∥ ≤ ∥∥J−1

0

∥∥ ‖y∗ − y0 −R(x)‖
≤
∥∥J−1

0

∥∥ · (‖y∗ − y0‖ + ‖R(x)‖)

≤
∥∥J−1

0

∥∥ · (ε+ C1 ‖x− x0‖2
)

≤
∥∥J−1

0

∥∥ · (ε+ C1δ
2
)
.

We wish this to be smaller than δ, and this can be arranged as follows. First we choose δ so small
that δ ≤ 1 and∥∥J−1

0

∥∥ · C1δ
2 ≤ 1

2
δ,
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and then we choose ε so small that∥∥J−1
0

∥∥ · ε ≤ 1

2
δ.

Step 4: the second condition in the Banach fixed point theorem: to prove that T is contrac-
tive on M , we wish to prove that

‖T (x)− T (x̃)‖ ≤ 1

4
‖x− x̃‖

whenever x, x̃ ∈ M . We know T (x) = x0 + J−1
0 (y∗ − y0 − R(x)), and we have a corresponding

formula for T (x̃). Then we have

‖T (x)− T (x̃)‖ =
∥∥J−1

0 (R(x)−R(x̃))
∥∥ ≤ ∥∥J−1

0

∥∥ · ‖R(x)−R(x̃)‖ ,

and this shall be smaller than 1
4 ‖x− x̃‖.

Step 5: we need more information on R: Suppose x, x̃ ∈ M , hence ‖x− x0‖ ≤ δ and ‖x̃− x0‖ ≤
δ. Then also each point on on the connecting line between x and x̃ is in M , and we can write, by
the integrated mean value theorem,

R(x)−R(x̃) =

(∫ 1

t=0

R′(x̃+ t(x− x̃)) dt

)
· (x− x̃).

Plugging in the representation R′ = f ′ − J0 from Step 2, we then have

R(x)−R(x̃) =

(∫ 1

t=0

f ′(x̃+ t(x− x̃))− f ′(x0) dt

)
· (x− x̃). (1.7)

Now we apply the integrated mean value theorem once more, but now to the difference f ′(. . . )−
f ′(x0) in the integrand (compare (1.3)):

‖f ′(x̃+ t(x− x̃))− f ′(x0)‖ ≤ C2 ‖x̃+ t(x− x̃)− x0‖ ≤ C2δ,

for some constant C2 which is basically computable (for the purpose of our proof it is enough to
know that C2 exists). We insert this inequality into (1.7) and obtain the nice estimate

‖R(x)−R(x̃)‖ ≤ C2δ ‖x− x̃‖ .

Step 6: back to the second condition in the Banach fixed point theorem: we continue where
we stopped in Step 4:

‖T (x)− T (x̃)‖ ≤
∥∥J−1

0

∥∥ · ‖R(x)−R(x̃)‖ ≤
∥∥J−1

0

∥∥ · C2δ ‖x− x̃‖ ,

and now we need
∥∥J−1

0

∥∥ · C2δ ≤ 1
4 .

Step 7: choosing δ and ε: first we select a positive δ with

δ ≤ 1,
∥∥J−1

0

∥∥ · C1δ ≤
1

2
,

∥∥J−1
0

∥∥ · C2δ ≤
1

4
.

Then we select a positive ε with

∥∥J−1
0

∥∥ · ε ≤ 1

2
δ.

Then the Banach fixed point theorem guarantees that there is exactly one fixed point x∗ ∈ M of
the map T ; T (x∗) = x∗. This is equivalent to f(x∗) = y∗.

Call the mapping y∗ 7→ x∗ from now on g.
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Step 8: find the derivative of g: Pick two points x∗, x in M , and set y∗ = f(x∗), y = f(x). The
integrated version of the mean value theorem reads

f(x)− f(x∗) =

(∫ t=1

t=0

f ′(x∗ + t(x− x∗)) dt

)
· (x− x∗) =: Jx,x∗ · (x− x∗).

In (1.7) we have shown that ‖Jx,x∗ − J0‖ ≤ C2δ, and then we have
∥∥J−1

0 (Jx,x∗ − J0)
∥∥ ≤ 1/4, by

our choice of δ in Step 7. Then Lemma 1.23 implies that also Jx,x∗ is invertible, whence

g(y)− g(y∗) = x− x∗ = J−1
x,x∗(f(x)− f(x∗)) = J−1

x,x∗(y − y∗),
g(y) = g(y∗) + J−1

x,x∗(y − y∗).

This is the beginning of a Taylor expansion of g. But J−1
x,x∗ still depends on y, which is not allowed.

We need a dependence on y∗ only.

Put J∗ = f ′(x∗), which is independent of y (and invertible, again by Lemma 1.23). Then we have

g(y) = g(y∗) + J−1
∗ (y − y∗) + (J−1

x,x∗ − J
−1
∗ )(y − y∗).

It suffices to show that the last item is O(‖y − y∗‖2), which will then imply that g′(y∗) = J−1
∗ =

(f ′(x∗))
−1. But (1.5) makes this easy, since∥∥J−1
x,x∗ − J

−1
∗
∥∥ ≤ C ‖Jx,x∗ − J∗‖ ≤ C ‖x− x∗‖ = C

∥∥J−1
x,x∗(y − y∗)

∥∥ ≤ C ‖y − y∗‖ ,
where C denote highly boring computable constants, which do not depend on x, x∗, y, y∗ (different
occurrences of C can have different values).

This finishes the proof (which probably was the hardest proof in the second semester).

Now we play with some functions. Let us be given two functions

y : Rm → Rn, f : Rm+n → Rn,

both continuously differentiable, and assume that

f(x, y(x)) = 0 ∀ x ∈ Rm.

We wish to differentiate this equation with respect to x. To this end, we define a function h : Rm → Rn
by h(x) := f(x, y(x)), and another function g : Rm → Rn+m by

g(x) :=

(
x

y(x)

)
.

Then we clearly have 0 = h(x) = f(g(x)) for all x ∈ Rm, and now the chain rule gives us

h′(x) = f ′(g(x)) · g′(x),

with h′, f ′, and g′ as the Jacobi matrices. The Jacobi matrices of f ′ and g′ have the block matrix form

f ′(g) =
(
∂f
∂x

∂f
∂y

)
∈ Rn×(m+n), g′(x) =

(
Im
y′(x)

)
∈ R(m+n)×m,

and therefore the Jacobi matrix of h becomes

h′(x) =
(
∂f
∂x

∂f
∂y

)( Im
y′(x)

)
=
∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x)) · ∂y

∂x
(x).

Since h(x) = 0 for each x ∈ Rm, we then also have h′(x) = 0 for each x ∈ Rm. Observe that the matrix
∂f
∂y has size n× n, so it could be an invertible matrix (also called a regular matrix). Assuming that x is

a point for which ∂f
∂y (x, y(x)) is invertible, we then have a nice representation of the Jacobi matrix y′(x):

y′(x) =
∂y

∂x
(x) = −

(
∂f

∂y
(x, y(x))

)−1

· ∂f
∂x

(x, y(x)).
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This is nice because on the right-hand side, there are only derivatives of f , but no derivative of y.

Now we take a different point of view. We now longer assume that a differentiable function y exists.
Instead, we start with an equation f(x, y) = 0 in the space Rn, which means that f takes values in the
Rn, and we wish to solve this equation for the vector y, which also shall be in Rn (“n equations for n
unknowns should be a solvable system”). If such a vector y can be found, it will certainly depend on
x, giving us a function y = y(x). Since we have no nice formula for this function (we don’t even know
whether y = y(x) exists at all), it is called an implicit function.

Let us simplify notation and write fy = ∂yf for ∂f
∂y , similarly for fx = ∂xf , and so on.

Proposition 1.27 (Implicit function theorem). Let G ⊂ Rm+n be an open set, (x0, y0) ∈ G, where
x0 ∈ Rm and y0 ∈ Rn. Let f ∈ C1(G→ Rn) be a function satisfying the following two conditions:

• f(x0, y0) = 0 ∈ Rn,

• (∂yf)(x0, y0) is a regular n× n matrix.

Then there is a neighbourhood Um ⊂ Rm of x0, such that for each x∗ ∈ Um there is a y∗ = y∗(x∗), with
the property that

• (x∗, y∗(x∗)) ∈ G,

• f(x∗, y∗(x∗)) = 0.

The derivative of this function y∗ is given by

y′∗(x∗) = − (∂yf(x∗, y∗(x∗)))
−1

(∂xf)(x∗, y∗(x∗)). (1.8)

Proof. This is an easy consequence of the inverse function theorem, but only if we approach it from the
right angle. Namely:

Define a function F ∈ C1(G→ Rm+n) by

F

(
x
y

)
:=

(
x

f(x, y)

)
.

Put

z :=

(
x
y

)
, z0 :=

(
x0

y0

)
, w := F (z), w0 := F (z0) =

(
x0

0

)
.

Then F has the Jacobi matrix (written in block matrix form)

F ′(z) =

(
∂x
∂x

∂x
∂y

∂f
∂x

∂f
∂y

)
=

(
Im 0
∂f
∂x

∂f
∂y

)
.

We see that F ′(z0) is an invertible matrix. By the inverse function theorem, the function F has an
inverse function G = F−1(w) in a neighbourhood of w0. This means that for each w∗ near w0, there is
a (locally unique) z∗ = G(w∗) with F (z∗) = w∗. Since w0 = (x0, 0)>, we are allowed to choose special
w∗, namely w∗ = (x∗, 0)> with x∗ near x0. Write z∗ = G(w∗) as z∗ = (x∗, y∗)

>. Then we obtain y∗ as
a function of w∗, hence as a function of x∗. This vector y∗ is exactly what we are looking for, namely a
function y∗ = y∗(x∗) that solves f(x∗, y∗(x∗)) = 0, because(

x∗
0

)
= w∗ = F (z∗) = F

(
x∗
y∗

)
=

(
x∗

f(x∗, y∗)

)
.

The differentiability of this function y∗ follows from the inverse function theorem; and the value of the
derivatives as given in (1.8) have already be obtained by the chain rule.

Example: Let m = n = 1, f = f(x, y) = x2 + y2 − 100, and (x0, y0) = (8,−6). We have f(x0, y0) = 0
and (∂yf)(x0, y0) = 2y0 = −12 6= 0. In a neighbourhood of x0 = 8, we can write y as a function of x,
namely y = −

√
100− x2.

If you choose (x0, y0) = (−10, 0) instead, you still have f(x0, y0) = 0, but you cannot write y as a
function of x in a neighbourhood of x0.



1.7. EXTREMA UNDER SIDE CONDITIONS 25

1.7 Extrema Under Side Conditions

Example: Suppose we are given a point P = (p1, p2, p3)> in R3, and an ellipsoid

E =

{
(z1, z2, z3)> ∈ R3 :

z2
1

a2
1

+
z2

2

a2
2

+
z2

3

a2
3

= 1

}
.

We want to know the distance from P to E. That is, we look for a minimum of the function

f = f(z1, z2, z3) := (z1 − p1)2 + (z2 − p2)2 + (z3 − p3)2.

But z = (z1, z2, z3)> cannot be an arbitrary point in R3: it must satisfy the side condition z ∈ E, which
means

g(z1, z2, z3) :=
z2

1

a2
1

+
z2

2

a2
2

+
z2

3

a2
3

− 1 = 0.

Now we consider a more general case.

We look for extrema of a function f = f(z), where f ∈ C1(G → R1) and G ⊂ Rm+n. And we have n
side conditions g1(z) = 0, . . . , gn(z) = 0, which we can write as g(z) = 0 where g = (g1, . . . , gn)> is a
column vector as always. The function g maps from Rm+n into Rn. Let us hope for a moment that the
system g(z) = 0 can be resolved in the following sense. Split the variables like

z = (z1, . . . , zm+n)> = (x1, . . . , xm, y1, . . . , yn)>

and assume that g(x, y) = 0 can be written as y = y(x) via the implicit function theorem.

Looking for extrema of f = f(x, y) under the system of side conditions g(x, y) = 0 is then equivalent to
looking for extrema of

h(x) = f(x, y(x))

(without side conditions), where the function h maps from a subset of Rm into R1.

If the function h has an extremum at a point x, then

∇h(x) = h′(x) = 0 ∈ Rm,

where ∇h is a row vector as always. But h′ can be computed as

0 = h′(x) = fx(x, y(x)) + fy(x, y(x)) · y′(x),

by the chain rule. And the derivative y′(x) is given by

y′(x) = −(gy(x, y(x)))−1gx(x, y(x)).

Therefore, looking for extrema of f under the side condition g means solving the system

0 = fx(x, y)− fy(x, y)(gy(x, y))−1gx(x, y).

The factor fy is an n–row, and (gy)−1 is an n × n matrix. Therefore, the product −fy(gy)−1 is an n
row, write it as λ = (λ1, . . . , λn). Then we have the m+ n+ n unknowns x, y, and λ, and the equations

fx(x, y) + λgx(x, y) = 0m,

λ = −fy(x, y)(gy(x, y))−1,

g(x, y) = 0n,

which we rewrite as

fx(x, y) + λgx(x, y) = 0m,

fy(x, y) + λgy(x, y) = 0n,

g(x, y) = 0n.
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These are m+ 2n equations for the m+ 2n unknowns, so there is some hope to find a solution.

Now we should undo the quite artificial splitting of the vector z into x and y. It is custom to introduce
a function

L = L(z, λ) = f(z) + λg(z),

and solve the system

Lz(z, λ) = 0m+n,

Lλ(z, λ) = 0n.

These numbers λj are also known as the Lagrange multipliers16. Remember that we have only
considered necessary conditions. Sufficient conditions are much harder.

Example: Coming back to our example with the ellipsoid, we find:

g = g(x) =
x2

1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

− 1,

f = f(x) = (x1 − p1)2 + (x2 − p2)2 + (x3 − p3)2,

L = f + λg, λ ∈ R,
∂L

∂xj
= 2(xj − pj) + λ

2xj
a2
j

!
= 0,

∂L

∂λ
= g(x)

!
= 0.

From the first condition, we find that

xj =
pja

2
j

a2
j + λ

,

tacitly assuming that the denominator is not 0. Plugging this into the second condition, we then get

1 =

3∑
j=1

(
pjaj
a2
j + λ

)2

.

It seems quite hard to solve this equation with respect to λ analytically. However, we may plot the right–
hand side as a function of λ. Choosing, as an example, (a1, a2, a3) = (1, 2, 3) and (p1, p2, p3) = (7, 4, 5),
this plot tells us that there are exactly two values λ = λ± for which the right–hand side becomes 1. For
the mentioned parameter values, such a plot is given in Figure 1.1. The exact location of these λ± can
be found by Newton’s algorithm, for instance. Then we can compute

xj = xj,± =
pja

2
j

a2
j + λ±

, j = 1, 2, 3.

1.8 Some Remarks Concerning Complex Differentiation

Let G ⊂ C be an open set in the complex plane, and f ∈ C1(G→ C) be a differentiable function. This
means that for each z0 ∈ G the following limit exists:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

It is important to note that the point z can approach the limit z0 in an arbitrary way. It can run along
a straight line, for instance, or along a wildly oscillating curve, or it can jump around heavily. The only
restriction is that z converges to z0. And for each imaginable path of z approaching z0, the above limit
must exist. Moreover, all these limits must coincide.

This is a restriction with deep consequences, as the following result shows.

16 Joseph Louis Lagrange, 1736 – 1813
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Figure 1.1: A plot of the function λ 7→
∑3
j=1(

pjaj
a2j+λ

)2. We clearly see its poles for λ = −9, λ = −4, and

λ = −1.

Proposition 1.28. Let f ∈ C1(G→ C) be a complex continuously differentiable function. Put f = u+iv
and z = x+ iy, where u, v, x and y are real-valued.

Then the functions u and v solve the following partial differential equations at each point of G:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.9)

The derivative f ′ can be computed from the formula

f ′(z0) =
1

2

(
∂

∂x
− i

∂

∂y

)
f(z0). (1.10)

Proof. Let z run to z0 vertically and horizontally; and then compare both limits. You obtain two
expressions for f ′(z0), which must coincide. Their arithmetic mean is the value in (1.10).

Remark 1.29. The equations (1.9) are the famous Cauchy17–Riemann18 differential equations. A
complex differentiable function is also called holomorphic or complex analytic.

The converse of Proposition 1.28 is also true: if a function f with real and imaginary parts u and v
solves the Cauchy–Riemann differential equations everywhere, then it must be holomorphic.

17Augustin Louis Cauchy, 1789 – 1857
18Bernhard Riemann, 1826 – 1866
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Cauchy–Riemann equations might look like academic exercises, but their importance cannot be under-
estimated. Let us list some conclusions of the CR equations:

• each differentiable function has all derivatives of any order; and its Taylor series always converge;

• if a function is defined on C, differentiable everywhere, and bounded, then it must be a constant;

• if you know the values of a differentiable function on the boundary of a disk, then you can compute
the values of that function inside the disk immediately;

• a lot of integrals over the real line, which are impossible to compute if you only know the real
numbers, become quite easy to calculate, after an extension to the complex plane.

Details of holomorphic functions will be presented mainly during the third semester; but we will encounter
some of the above conclusions in the second semester, when it is appropriate.

1.9 Outlook: the Legendre Transform

Literature: Greiner, Neise and Stöcker: Thermodynamik und Statistische Mechanik. Chapter 4.3: Die
Legendre–Transformation

1.9.1 Mathematical Background

Let G ⊂ Rn be an open domain with smooth boundary ∂G. Let us be given a function

f : G→ R

which is (at least) twice continuously differentiable. Our key assumption is that the mapping

ϕ : z 7→ ϕ(z) := f ′(z) ∈ Rn, z ∈ G ⊂ Rn,

maps G onto an open domain G∗ ⊂ Rn and is invertible. By the inverse function theorem, this mapping
ϕ is invertible if the Jacobi matrix ϕ′(z) is an invertible matrix from Rn×n, for all z ∈ G. Note that
the Jacobi matrix ϕ′(z) is equal to the Hessian matrix of the second derivatives of f ; and therefore we
are on the safe side if we assume that f is strictly convex (or strictly concave), which means that the
Hessian of f is always a positive definite (or negative definite) matrix.

Now we define a variable ζ, which is “conjugate” to z:

ζ := ϕ(z) = f ′(z), z ∈ G. (1.11)

Then ζ ∈ G∗. By the assumption of invertibility of the mapping ϕ : G→ G∗, there is an inverse mapping
of ϕ, let us call it ψ:

ψ : G∗ → G, ψ(ζ) = z.

And again by the inverse function theorem, we have

ϕ′(z) · ψ′(ζ) = In if z = ψ(ζ).

Definition 1.30 (Legendre transform). Let a function f with the above properties be given, and fix
ϕ := f ′ and ψ := ϕ−1 as above. Then the Legendre transform f∗ of f is defined as

f∗(ζ) := 〈ζ, z〉 − f(z), ζ ∈ G∗ if z = ψ(ζ). (1.12)

Here 〈ζ, z〉 =
∑n
j=1 ζjzj is the usual scalar product on Rn. The Legendre transform f∗ maps from G∗

into R.

Our interpretation is that we start from a function f , and then we exchange its argument z against
an argument ζ in a quite peculiar way and obtain a new function f∗. Sometimes also this exchange
procedure is called Legendre transform.
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Proposition 1.31. The Legendre transform has the following properties:

f ′∗(ζ) = ψ(ζ) = z, ∀ζ ∈ G∗, (1.13)

f ∈ Cs(G), s ≥ 2 =⇒ f∗ ∈ Cs(G∗), (1.14)

(f∗)∗ = f. (1.15)

Proof. The identities (1.11) and (1.13) are valid if we treat all vectors the same and do no longer
distinguish between rows and columns. For this proof however, we should exercise a little more care and
consider the vectors z, ζ, ψ, ϕ as columns, except the gradients, f ′ and f ′∗, which are rows. And ϕ′ as
well as ψ′ are the usual matrices. Then the product rule and the chain rule give, together with z = ψ(ζ),

f ′∗(ζ) = gradζ
(
ζ> · ψ(ζ)− f(ψ(ζ))

)
= ζ> · ψ′(ζ) + (ψ(ζ))> · In − f ′(ψ(ζ)) · ψ′(ζ)

= ζ> · ψ′(ζ) + (ψ(ζ))> − f ′(z) · ψ′(ζ)

= ζ> · ψ′(ζ) + (ψ(ζ))> − ζ> · ψ′(ζ) = (ψ(ζ))> = z>.

This proves (1.13). Now assume f ∈ Cs(G). Then obviously ϕ ∈ Cs−1(G), since ϕ = f ′. Looking at
the proof of the inverse function theorem, we then find ψ ∈ Cs−1(G∗). And because the first derivative
of f∗ is exactly ψ, the regularity (smoothness) of f∗ must be one order better than the regularity of ψ.
This proves (1.14).

Now we show (1.15). The Legendre transform of f∗ is defined in the same manner, replacing ζ by y:

y := f ′∗(ζ), (f∗)∗(y) := 〈y, ζ〉 − f∗(ζ) if ζ = (f ′∗)
−1(y).

However, from (1.13) we know already that y = f ′∗(ζ) = ψ(ζ) = z, and consequently

(f∗)∗(y) = 〈z, ζ〉 − f∗(ζ) = 〈z, ζ〉 − (〈ζ, z〉 − f(z)) = 0 + f(z) = f(y),

because of z = y.

We can regard f∗ as “dual function” associated to f . This is a reasonable view because transforming
twice gives the original function f back.

There is a nice interpretation of f∗ which makes the concept of Legendre transforms interesting for
questions of optimization:

Lemma 1.32. Assume that G is convex and that f ∈ C2(G) is strictly convex. Then

f∗(ζ) = max
z∈G
{〈ζ, z〉 − f(z)}

for all ζ ∈ G∗.

Proof. We fix some ζ ∈ G∗, set g(z) := 〈ζ, z〉 − f(z), and search for maxima of g. The maximal value of
g is attained either at an interior point z0 ∈ G with g′(z0) = 0, or at a point on the boundary ∂G. Note
that the Hessians of f and g satisfy

(Hg)(z) = −(Hf)(z),

and therefore Hg is always negative definite, and g is a concave function. The gradient of g is

g′(z) = ζ> − f ′(z),

and indeed, for z = z0 := ψ(ζ) we have g′(z0) = 0, and this is the only point in G where g′ vanishes,
because f ′ has an inverse function, namely ψ. Therefore, we have found a point z0 ∈ G which is a
candidate for the maximum of g. This point z0 is in the interior of G, because ζ is in the interior of G∗,
since G∗ is open.

Pick some arbitrary z ∈ G. Then we perform a Taylor expansion of g at z0:

g(z) = g(z0) + g′(z0) · (z − z0) +
1

2
(z − z0)>(Hg)(z̃) · (z − z0)

= g(z0) + 0 +
1

2
(z − z0)>(Hg)(z̃) · (z − z0),
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where z̃ is an unknown point on the connecting line between z and z0. This connecting line runs inside
G, since G is a convex domain. Therefore we find g(z) < g(z0) if z 6= z0, and it turns out that the
maximal value of g is attained at z0, and never on the boundary ∂G.

On the other hand, we have g(z0) = 〈ζ, z0〉 − f(z0) with ζ = ϕ(z0), hence g(z0) = f∗(ζ).

Corollary 1.33. Under the assumptions of the previous Lemma, we have

〈ζ, z〉 ≤ f(z) + f∗(ζ),

for arbitrary z ∈ G and ζ ∈ G∗.

Now we are slowly approaching applications in physics. We start with some function L depending on
variables (t, x, v), and only v is getting exchanged. The variables (t, x) are just parameters.

Suppose that a function L = L(t, x, v) is given on R × Rn × Rn, we call it Lagrange function, and the
values of L are real numbers. Our key assumption is that the mapping

Φ: (t, x, v) 7→ Φ(t, x, v) := (t, x, Lv(t, x, v))

is an invertible mapping of Rt × Rnx × Rnv onto Rt × Rnx × Rnp , where, following the spirit of (1.11),

p := Lv(t, x, v), (1.16)

and Lv denotes the partial derivative. The inverse mapping of Φ is called Ψ, and we have

(t, x, v) = Ψ(t, x, p) if (t, x, p) = Φ(t, x, v).

We set z := v, f(z) := L(t, x, z) and f∗ =: H. Then we have ζ = Lv = p, and (1.12) turns into

H(t, x, p) := 〈p, v〉 − L(t, x, v) if (t, x, v) = Ψ(t, x, p). (1.17)

Proposition 1.34. If (t, x, v) = Ψ(t, x, p), then we have:

L(t, x, v) +H(t, x, p) = 〈p, v〉 , (1.18)

Lt(t, x, v) +Ht(t, x, p) = 0, (1.19)

Lx(t, x, v) +Hx(t, x, p) = 0, (1.20)

p = Lv(t, x, v), (1.21)

v = Hp(t, x, p). (1.22)

Proof. The identity (1.18) is just the definition (1.17) of H. Differentiating (1.18) with respect to t
gives (1.19), differentiating with respect to x implies (1.20). And (1.21) is only a repetition of the
definition (1.16). Finally, (1.22) is a reformulation of (1.13).

1.9.2 The Legendre Transform in Classical Mechanics

Consider a physical system, whose state at time t is described by a vector of real numbers x(t) =
(x1(t), . . . , xn(t)), which can be understood as something like “position variables”, not necessarily of
Cartesian type.

We also have ẋ(t) = (ẋ1(t), . . . , ẋn(t)), to be understood as something like “velocity variables”.

Next, we select a Lagrange function L = L(t, x, ẋ). Physical principles recommend to choose L =
Ekin − Epot, the difference between kinetic and potential energies.

Choose an arbitrary time interval [t0, t1] and consider the so-called action integral

W (x) :=

∫ t=t1

t=t0

L(t, x(t), ẋ(t)) dt.
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This mapping W takes a function x (which describes the state of the system during the time interval
[t0, t1]) and maps this function x to a real number W (x). The vector space of all admissible functions x
is infinite-dimensional, because function vector spaces are almost always infinite-dimensional.

The Hamilton principle demands that the variation of W must vanish, which is a physicist’s formulation
of the condition that all directional derivatives (in the sense of Definition 1.7, but now for x coming from
a space of infinite dimension) must be zero.

In the physics lectures, it is shown that this Hamilton principle then implies that the function x is obliged
to satisfy the Euler–Lagrange equations:

d

dt
Lv(t, x(t), ẋ(t))− Lx(t, x(t), ẋ(t)) = 0,

where we have introduced v = ẋ. This is a nonlinear system of differential equations of second order. It
can be transformed to the equivalent first order system

dx

dt
= v,

d

dt
Lv(t, x, v) = Lx(t, x, v).

However, this system is not so beautiful: the second equation looks quite different from the first, it is
hard to see what the conserved quantities are, and it seems impossible to find a quantum mechanical
equivalent of that approach.

The good news is that the Legendre transform improves the situation in all three aspects: we go from
the variables (t, x, v) to the variables (t, x, p), where p := Lv(t, x, v) are called the canonical momentum
variables. Next we fix the Legendre transform of L,

H(t, x, p) := 〈p, v〉 − L(t, x, v)

as usual, and this function H is called the Hamiltonian of the system.

Lemma 1.35. The functions x = x(t) and p = p(t) are solutions to the system

dx

dt
= Hp(t, x, p),

dp

dt
= −Hx(t, x, p). (1.23)

Proof. First we exploit (1.22):

dx

dt
= v = Hp(t, x, p).

Second we make use of (1.21) and (1.20):

dp

dt
=

d

dt
p =

d

dt
Lv(t, x, v) = Lx(t, x, v) = −Hx(t, x, p).

We observe that the Legendre transform converts the Euler-Lagrange system into the Hamiltonian system
(1.23), which looks much more symmetrical.

And it keeps getting better:

Lemma 1.36. If the Hamiltonian H does itself not depend on the time t, then the function t 7→
H(x(t), p(t)) is constant.

Physicists call this phenomenon conservation of energy.

Proof. This is an exercise of the chain rule:

d

dt
H(x(t), p(t)) = Hxẋ+Hpṗ = Hx ·Hp +Hp · (−Hx) = 0.
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There is one more conserved quantity, albeit not so easy to recognize—the phase space volume. The
phase space is the domain of the x and p variables together. Take a domain Ω0 ⊂ Rnx×Rnp which is open
and bounded. The temporal evolution over a time interval [0, t] transports (x(0), p(0)) ∈ Ω0 to a point
(x(t), p(t)) ∈ Ωt ⊂ Rnx × Rnp , and the key result is:

The subsets Ω0 and Ωt of the phase space have the same volume.

This conservation of the phase space volume is only visible in the Hamiltonian picture. In theoretical
mechanics, this is known as Liouville’s Theorem.

As an example, we consider a pendulum: there is a point mass m hanging at a massless wire of length
l, and it is swinging frictionless in a plane. Our first step is to choose a state variable x, which will be
the angle of the wire versus the vertical axis:

x(t) = θ(t).

Attention: this is not a Cartesian coordinate. Then the “velocity” is

v(t) = ẋ(t) = θ̇(t).

Attention again: this is not the usual velocity which would have a unit of “meters per second”.

The kinetic energy is

T = T (v) =
m

2
l2v2,

and the potential energy is

V = V (x) = mgl(1− cos θ) = mgl(1− cosx).

The Lagrangian then is

L = L(x, v) = T (v)− V (x) =
m

2
l2v2 −mgl +mgl cosx.

We have the derivatives

Lv = ml2v, Lx = −mgl sinx,

and the Euler–Lagrange equations turn into

ml2v̇ +mgl sinx = 0,

which can be written as ẍ+ g
l sinx = 0. This was the Lagrangian approach.

Now we come to the Hamiltonian approach. The canonical momentum variable is p = Lv, hence

p = ml2v, v =
p

ml2
.

The (time-independent) Hamiltonian H then is the Legendre transform of L,

H(t, x, p) = pv − L(x, v) = pv − (T (v)− V (x)) = p · p

ml2
−
(m

2
l2v2 −mgl +mgl cosx

)
=

p2

ml2
−
(
m

2
l2 · p2

m2l4
−mgl +mgl cosx

)
=

p2

2ml2
+mgl(1− cosx).

This is exactly the mechanical energy of the system, and the Hamiltonian system (1.23) becomes

ẋ = Hp =
p

ml2
, ṗ = −Hx = −mgl sinx.
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Finally, we have a (very deep, admittedly) look at the geometrical meanings of the Lagrangian and
Hamiltonian approaches.

The position of the pendulum has been characterized by one real variable, the angle θ. But we can also
take Cartesian coordinates (x1, x2) ∈ R2 which have their origin at the anchor point of the pendulum.
Of course not all positions (x1, x2) ∈ R2 are admissible: only those with x2

1 + x2
2 = l2 can be positions

of the pendulum. This arc of a circle with radius l is a one-dimensional manifold19 contained in the
two-dimensional space R2. The space variable x lives on M , and now we tell where the velocity variable
v and the generalized momentum p can be found. At each point x ∈ M , we attach the tangent line,
which can be understood as a one-dimensional vector space with origin at the contact point x. This
vector space is denoted by TxM , it is called the tangential space at x ∈M , and the length of its elements
is measured in a certain unit. If the pendulum is at position x and has velocity v, then this velocity can
be found in the space TxM .

Now we let x vary through M and build the union of all the sets {x} × TxM . This union is a two-
dimensional manifold TM , the so–called tangential bundle20 of M . This is the domain where the
variables (x, v) live, and the Lagrangian approach consists of differential equations on the tangential
bundle.

Another possibility is to attach at the point x ∈ M the dual space to the vector space TxM . This dual
space is denoted by T ∗xM , called the cotangential space at x ∈ M , it is also one-dimensional, and the
length of its elements is measured in the reciprocal unit, compared to TxM . Constructing the union of all
the {x}×T ∗xM for x running through M gives the cotangential bundle T ∗M , which is a two-dimensional
manifold, where the variables (x, p) live. Then the Hamiltonian differential equations are differential
equations on the cotangent bundle.

As a summary: the Legendre transform translates between the tangential bundle TM and the cotan-
gential bundle T ∗M .

1.9.3 The Legendre Transform in Thermodynamics

Consider a system with n kinds of particles. For air you might choose n = 3 and consider nitrogen,
oxygen and water vapour. The state of this system is described by the variables

particle numbers: these are N = (N1, . . . , Nn) ∈ Rn. Here we are cheating a bit, because these
numbers should be natural, but . . .

absolute temperature: this is T , measured in Kelvin,

volume: this is V ,

pressure: p,

entropy: S,

chemical potentials: these are numbers µj with j = 1, . . . , n.

As base variables we could choose T , V and N , and then all the other variables p, S, µ would depend
on (T, V,N).

It is custom to distinguish between extensive and intensive variables. The intensive ones do not change if
you “double the system”, but the extensive variables will change. In our setting, the extensive variables
are S, V,N , and the intensive variables are T, p, µ.

The total energy of the system is called inner energy. This energy measures all the energy in the system,
it is denoted by U , and its natural variables are (S, V,N), by definition. Note that these are exactly the
extensive variables. In the physics lectures, the following identities will be proved/mentioned:

∂U(S, V,N)

∂S
= T,

∂U(S, V,N)

∂V
= −p, ∂U(S, V,N)

∂Nj
= µj .

19Mannigfaltigkeit
20Tangentialbündel



34 CHAPTER 1. DIFFERENTIATION IN RN

Observe that the right-hand sides are intensive variables. These identities can be summarized in the
following formula for the total differential of U :

dU = T dS − p dV +

n∑
j=1

µj dNj .

This identity is called Gibbs relation, and it is no overstatement to claim that this is one of THE key
relations of thermodynamics. For instance, the first law of thermodynamics (the conservation of energy)
can be deduced from the Gibbs relation.

In the sequel, we will replace extensive variables by intensive variables via the Legendre transform,
leading to a bunch of new thermodynamic potentials. Each thermodynamic potential has its own set of
natural variables. These natural variables are fixed by definition; and if you choose the wrong ones you
can produce an arbitrary amount of incorrect formulas.

the free energy: we replace (S, V,N) 7→ (T, V,N). Set z = S and f(z) := U(z, V,N). Then we have

ζ :=
∂U

∂z
=
∂U

∂S
= T,

and therefore the Legendre transform of f becomes

f∗(ζ) = ζz − f(z) = TS − U(S, V,N),

which suggests to set F := U − TS with natural variables (T, V,N). This is called the free energy,
and it counts how much energy of the system is accessible to us (roughly spoken). We compute
the derivatives of F : by (1.13), we have

∂F

∂T
(T, V,N) = −∂f∗

∂ζ
(ζ, V,N) = −z = −S,

and the other derivatives are unchanged:

∂F

∂V
=
∂U

∂V
,

∂F

∂Nj
=

∂U

∂Nj
.

Then we arrive at the total differential of F :

dF = −S dT − p dV +

n∑
j=1

µj dNj .

the enthalpy: we replace (S, V,N) 7→ (S, p,N). Set z = V and f(z) := U(S, z,N). Then we have

ζ :=
∂U

∂z
=
∂U

∂V
= −p,

and therefore the Legendre transform of f becomes

f∗(ζ) = ζz − f(z) = −pV − U(S, V,N),

which suggests to set H := U + pV with natural variables (S, p,N). This is called the enthalpy of
the system. We compute the derivatives of H: by (1.13), we have

∂H

∂p
(S, p,N) = − ∂

∂p
f∗(ζ) =

∂

∂ζ
f∗(ζ) = z = V,

and the other derivatives are unchanged:

∂H

∂S
=
∂U

∂S
,

∂H

∂Nj
=

∂U

∂Nj
.

Then we arrive at the total differential of H:

dH = T dS + V dp+

n∑
j=1

µj dNj .
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the free enthalpy: we replace (T, V,N) 7→ (T, p,N). Set z = V and f(z) := F (T, z,N). Then we have

ζ :=
∂F

∂z
=
∂F

∂V
= −p,

and therefore the Legendre transform of f becomes

f∗(ζ) = ζz − f(z) = −pV − F (T, V,N),

which suggests to set G := F +pV with natural variables (T, p,N). This is called the free enthalpy
or Gibbs potential of the system. We compute the derivatives of G: by (1.13), we have

∂G

∂p
(T, p,N) = − ∂

∂p
f∗(ζ) =

∂

∂ζ
f∗(ζ) = z = V,

and the other derivatives are unchanged:

∂G

∂T
=
∂F

∂T
= −S, ∂G

∂Nj
=

∂F

∂Nj
.

Then we arrive at the total differential of G:

dG = −S dT + V dp+

n∑
j=1

µj dNj .

the Landau potential: we replace (T, V,N) 7→ (T, V, µ). Set z = N and f(z) := F (T, V, z). Then we
have

ζ :=
∂F

∂z
=
∂F

∂N
= µ,

and therefore the Legendre transform of f becomes

f∗(ζ) = 〈ζ, z〉 − f(z) =

n∑
j=1

µjNj − F (T, V,N),

which suggests to set Ω := F −
∑n
j=1 µjNj with natural variables (T, V, µ). This is called the

Landau potential or Grand potential of the system. We compute the derivatives of Ω: by (1.13),
we have

∂Ω

∂µ
(T, V, µ) = − ∂

∂ζ
f∗(ζ) = −z = −N,

and the other derivatives are unchanged:

∂Ω

∂T
=
∂F

∂T
= −S, ∂Ω

∂V
=
∂F

∂V
= −p.

Then we arrive at the total differential of Ω:

dΩ = −S dT − p dV −
n∑
j=1

Nj dµj .

1.10 Keywords

• derivative, Jacobi matrix,

• calculation rules,

• Theorem of Schwarz, Taylor formula,

• determination of extrema,

• implicit function theorem,

• Cauchy-Riemann differential equations.
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Chapter 2

Determinants

In the introductory chapter, we have considered the determinants of 3 vectors in R3 and their geometric
properties. Now we will do the same for n vectors in Rn, and we will do it more generally. The purpose
of the determinants is multiple; they are exploited

• when investigating the inverse matrix,

• during the study of linear systems,

• in the theory of eigenvalues of matrices,

• when integrating functions of several variables.

Let us go back to the R2 for a moment, and consider the area of a parallelogram.

y

x

It is easy to verify that

A = A(x, y) = 2

(
(x1 + y1)(x2 + y2)

2
− x1x2

2
− (x2 + (x2 + y2))y1

2

)
= x1y2 − y1x2.

We know a similar formula for the volume of three-dimensional parallelepipedon.

Let us look at these formulae a bit closer:

1. A = A(x, y) is a linear function in x as well as y, in the sense of A(λx, y) = λA(x, y) and A(x +
x̃, y) = A(x, y) +A(x̃, y); and similarly for the second variable.

2. If the vectors x and y are linearly dependent, then A(x, y) = 0.

3. The area of a unit square is one: A(e1, e2) = 1.

These three properties will be the foundations of our definition of determinant functions.

37
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2.1 Determinant Functions

For K being a field1, in general, K = R or K = C, the vector space of vectors with n components from K
is denoted by Kn. A determinant function is a function that takes n vectors of this kind and maps them
to a number from K; and has to satisfy some additional conditions as listed in the following definition.

Definition 2.1 (Determinant function). Let (Kn)n denote the set of n–tuples of vectors from Kn.
A function ∆: (Kn)n → K is a normalised determinant function2 if the following conditions hold:

D1 The function ∆ is linear in each of its n arguments, i.e.,

∆(α1x1+β1y1, x2, . . . , xn) = α1∆(x1, x2, . . . , xn)+β1∆(y1, x2, . . . , xn), xj , y1 ∈ Kn, α1, β1 ∈ K,

and accordingly for the other components.

D2 If the vectors x1, . . . , xn are linearly dependent, then ∆(x1, . . . , xn) = 0.

D3 If e1, . . . , en denote the canonic basis vectors of Kn, then ∆(e1, . . . , en) = 1.

If only D1 and D2 hold then ∆ is said to be a determinant function.

Soon we will see that there is exactly one normalised determinant function on Kn.

First, we derive some computing rules.

Proposition 2.2 (Computing rules). Let ∆ be a determinant function, not necessarily normalised.

• Adding a multiple of one argument to another argument of ∆ does not change the value, which
means,

∆(x1, . . . , xn) = ∆(x1, . . . , xi−1, xi + λxj , xi+1, . . . , xn), i 6= j.

• Exchanging two arguments is equivalent to multiplying ∆ with −1:

∆(. . . , xi, . . . , xj , . . . ) = −∆(. . . , xj , . . . , xi, . . . )

Proof. The first claim follows from D1 and D2:

∆(x1, . . . , xi−1, xi + λxj , xi+1, . . . , xn)

= ∆(x1, . . . , xi−1, xi, xi+1, . . . , xn) + λ∆(x1, . . . , xi−1, xj , xi+1, . . . , xn)

= ∆(x1, . . . , xi−1, xi, xi+1, . . . , xn) + 0.

Repeated application of the first claim gives the second as follows.

∆(x1, x2, . . . ) = ∆(x1, x2 − x1, . . . ) = ∆(x1 + (x2 − x1), x2 − x1, . . . )

= ∆(x2, x2 − x1, . . . ) = ∆(x2, (x2 − x1)− x2, . . . ) = ∆(x2,−x1, . . . )

= −∆(x2, x1, . . . ).

Here we have chosen i = 1 and j = 2 to keep the notations easy.

Remark 2.3. Take n = 2. Then the identity ∆(x1, x2 + λx1) = ∆(x1, x2) corresponds to the fact that
all parallelograms with same base line and same height have the same area. And the identity ∆(x2, x1) =
−∆(x1, x2) expresses the convention that flipping the two spanning edges of the parallelogram changes
the sign of the area.

Now we are ready to show that there is exactly one normalised determinant function on (Kn)n.

Proposition 2.4 (Uniqueness of the normalised determinant function). There is at most one
normalised determinant function on (Kn)n.

1Körper
2 normierte Determinantenfunktion
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Proof. We show the following: if there is a normalised determinant function ∆, then its values can be
computed using a procedure, which will be presented now.

Let us be given n vectors x1, . . . , xn from Kn. If they are linearly dependent, then ∆ must take the
value zero on them. Therefore, let these vectors be linearly independent.

We can write these vectors as row vectors, one below the other, so that they form a matrix from Kn×n.
This matrix has full rank, since the vectors are linearly independent. Then we execute the Gauss–Jordan
algorithm of triangulising a matrix, repeatedly applying one of the following steps:

• adding a multiple of one row to another row (this does not change the value of ∆);

• exchanging two rows (this changes only the sign of ∆).

After several steps, we end up with a matrix of the form
a11 0 · · · 0
0 a22 · · · 0
...

... · · ·
...

0 0 · · · ann

 ,

where we have to remember how often we have exchanged two rows—an even number of times or an odd
number of times. According to D1 and D3, the value of ∆ is then

∆(x1, . . . , xn) = ±a11 · . . . · ann.

This completes the proof.

Up to now, the existence of a determinant function has not been established: maybe there is a contra-
diction which can be deduced from D1, D2 and D3; but we just haven’t found it yet ?

Proposition 2.5 (Existence of a normalised determinant function). For each n ∈ N+, there is
a normalised determinant function.

Proof. If n = 1 then (K1)1 = K and a determinant function is given by

∆1 : (K1)1 → K,

∆1 : (x1) 7→ x11,

where x11 is the first (and only) component of the vector x1 from K1 = K.

Let n = 2, and put x1 = (x11, x21)>, x2 = (x12, x22)>. Then

∆2 : (K2)2 → K,

∆2 : (x1, x2) =

((
x11

x21

)
,

(
x12

x22

))
7→ x11x22 − x12x21

is a normalised determinant function.

Let now n ∈ N, n ≥ 3 be arbitrary. We define ∆n by induction. For this, we need a notation: if x ∈ Kn

with x = (ξ1, . . . , ξn), then x(i) is that vector from Kn−1, which can be obtained by crossing out the ith
component of x.

Let now 1 ≤ i ≤ n be arbitrary. Then we set

∆n : (Kn)n → K,

∆n : (x1, . . . , xn) =


x11

...
xn1

 , . . . ,

x1n

...
xnn


 7→ n∑

j=1

(−1)i+jxij∆n−1(x
(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
n ),

where xij is the ith component of the vector xj .

We skip the proof that this function satisfies D1, D2 and D3.
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As an example, we take x1 = (1, 2, 3)>, x2 = (4, 5, 6)>, x3 = (7, 8, 9)> and i = 2. Then

∆3

1
2
3

 ,

4
5
6

 ,

7
8
9

 = −2∆2

((
4
6

)
,

(
7
9

))
+ 5∆2

((
1
3

)
,

(
7
9

))
− 8∆2

((
1
3

)
,

(
4
6

))
,

and the three determinants ∆2 on the right–hand side can be evaluated in the same way as above. You
could choose i = 1 or i = 3 and obtain the same value of ∆3(x1, x2, x3).

For each i, we obtain one normalised determinant function. Since there can be only one of them, they
must all coincide. The following formula gives some more representations of that ∆n:

∆n(x1, . . . , xn) =

n∑
i=1

(−1)i+jxij∆n−1(x
(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
n ), j = 1, . . . , n.

Similarly we obtain:

Corollary 2.6. For each λ ∈ K, there is exactly one determinant function ∆ (satisfying D1, D2) with

∆(e1, . . . , en) = λ.

This determinant function is given by ∆(x1, . . . , xn) := λ∆norm.(x1, . . . , xn).

Remark 2.7. We note that another popular way of writing is x1 ∧ x2 ∧ . . . ∧ xn = ∆n(x1, . . . , xn),
sometimes called the exterior (outer) product, in contrast to the inner product (which is the scalar
product of two vectors). This wedge symbol ∧ has the same meaning as in the differential forms, by the
way.

2.2 The Determinant of a Matrix

From now on, ∆ denotes the one and only normalised determinant function on (Kn)n.

Definition 2.8 (Determinant). Let A ∈ Kn×n be a matrix with columns a1, . . . , an. Then

detA := ∆(a1, . . . , an)

is called determinant of the matrix A3.

Next comes the key result concerning determinants: they are compatible to the matrix-matrix-
multiplication.

Proposition 2.9. Let A, B ∈ Kn×n. Then det(BA) = det(B) · det(A).

Proof. We define a function

∆B(x1, . . . , xn) := ∆(Bx1, . . . , Bxn).

It is easy to check that this function fulfils D1 and D2. Then it must be a determinant function. We fix
a number λ ∈ K by

λ := ∆B(e1, . . . , en).

By the second part of Corollary 2.6, we have ∆B(x1, . . . , xn) = λ∆(x1, . . . , xn). Now we compute the
number λ:

λ = ∆B(e1, . . . , en) = ∆(Be1, . . . , Ben) = ∆(b1, . . . , bn) = detB,

where b1, . . . , bn are the columns of B. Then we obtain

det(BA) = ∆(Ba1, . . . , Ban) = ∆B(a1, . . . , an) = λ∆(a1, . . . , an) = detB · detA.

3Determinante der Matrix A
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This compatibility can be expressed as a commutative diagram,

(B,A) −−−−→ BA

det

y det

y
(det(B),det(A)) −−−−→

·

det(B) · det(A)
= det(BA)

and the following proposition lists direct consequences of the compatibility identity:

Proposition 2.10. Let A,B ∈ Kn×n and In the n× n unit matrix.

1. It holds det In = 1.

2. If A is invertible, then det(A−1) = (detA)−1.

3. The rank of A is less than n if and only if detA = 0.

4. If B is invertible, then det(B−1AB) = detA.

Proof. 1. This is D3.

2. Follows from A−1 ·A = In for invertible A and Proposition 2.9.

3. If rankA < n, then the columns of A are linearly dependent, and detA = 0 because of D2. If
rankA = n, then A is invertible, and detA 6= 0 because of part 2.

4. Follows from Proposition 2.9 and part 2.

The next result will give a method, which will show how to compute a determinant recursively.

Proposition 2.11 (Expansion Theorem of Laplace). Let A ∈ Kn×n be a matrix with entries akl.
We write Aij for that matrix from K(n−1)×(n−1), which can be obtained from A by omitting row i and
column j. Then we have for each 1 ≤ i ≤ n:

detA =

n∑
j=1

(−1)i+jaij detAij .

Moreover, we have for each 1 ≤ j ≤ n:

detA =

n∑
i=1

(−1)i+jaij detAij .

Proof. See the end of the proof of Proposition 2.5.

Question: What do you obtain for n = 3 ? What is the name of this object ?

Proposition 2.12 (Computing rules). Let A ∈ Kn×n. Then we have:

• detA = detA>.

• If A has two equal rows or two equal columns, then detA = 0.

• Adding a multiple of one row to another row preserves the determinant. Similarly for columns.

• Exchanging two rows multiplies the determinant by −1, so does exchanging two columns.

• The determinant of a triangular matrix equals the product of the entries on the diagonal.

Proof. These are more or less direct consequences of the Laplace expansion theorem and the Gauss–
Jordan algorithm for computing determinant functions.
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2.3 Applications to Linear Systems

Determinants can be utilised for inverting matrices and solving linear systems, as we will see soon.

Definition 2.13 (Algebraic Complement). For A ∈ Kn×n, we write Akl for that matrix, which is
obtained by omitting row k and column l. Then the numbers

Dij(A) := (−1)i+j detAij

are the algebraic complements4 of the matrix A.

Lemma 2.14. Take A ∈ Kn×n and a column vector x = (x1, . . . , xn)> ∈ Kn. Write Aj,x for that
matrix, which you get after replacing the jth column of A by the vector x. Then we have

detAj,x =

n∑
i=1

xiDij(A).

Proof. Just expand Aj,x along the jth column, using the Laplace expansion theorem.

Especially, we can choose the kth column of A for the vector x. Then the following result is easy:

Lemma 2.15. Let A ∈ Kn×n with entries aij. Then the following identity holds for all j, k with
1 ≤ j, k ≤ n:

n∑
i=1

aikDij(A) = δkj detA.

Here δkj is the Kronecker5 symbol.

Note the positions of the two indices i on the left–hand side ! They do not stand next to each other.

Transposing the matrix of the Dij and dividing by detA then gives you a formula for the inverse matrix:

Lemma 2.16 (Formula for the inverse matrix). Let A ∈ Kn×n be an invertible matrix. Then the
inverse matrix A−1 with entries (A−1)ij is given by

(A−1)ij =
Dji(A)

detA
, 1 ≤ i, j ≤ n.

Proof. Should be clear (try it with a 2× 2 matrix A).

Then you immediately get a formula for the solution of a linear system:

Proposition 2.17 (Cramer’s6 rule). Let A ∈ Kn×n be invertible and b ∈ Kn. Then the solution
x = (x1, . . . , xn)> ∈ Kn to the linear system Ax = b can be found by

xi =
detAi,b
detA

, 1 ≤ i ≤ n,

where Ai,b is the matrix which you get by replacing the ith column of A by b.

Proof. The assertion follows immediately from

xi =

n∑
j=1

(A−1)ijbj =
1

detA

n∑
j=1

bjDji(A).

Cramer’s rule is quite handy in the case n = 2 and maybe for n = 3 as well.

4algebraische Komplemente
5 Leopold Kronecker, 1823 – 1891
6Gabriel Cramer, 1704 – 1752
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You should never use Cramer’s rule for n ≥ 4.
The effort becomes quickly huge as n increases;

and the solution formulas are not numerically stable.

Instead, you should use one of the following:

• Gauss–Jordan algorithm with pivotisation,

• LR factorisation with pivotisation,

• QR factorisation,

• special iterative algorithms for large n, say, n ≥ 103.

Remark 2.18. The QR factorisation means: let us be given a matrix A ∈ Rn×n. Then we search for
matrices Q and R such that QQ> = In, R is an upper triangular matrix, and A = QR. Such a matrix
Q is called orthogonal, and its columns form an orthonormal system. Applying the Gram–Schmidt
orthonormalisation procedure to the columns of A is equivalent to a QR factorisation of A. Finally, we
mention that decompositions A = QR even exist when A has non-quadratic shape, for instance A ∈ Rm×n
with m 6= n.

2.4 Determinants and Permutations

Literature: Greiner and Müller: Quantenmechanik. Symmetrien. Chapter IX: Darstellungen der
Permutationsgruppe und Young–Tableaux

We have formulas for determinants in the cases n = 2 and n = 3 which involve sums of products of the
matrix elements. Now we would like to generalise these formulas to higher n. For this, we need some
new concepts.

Definition 2.19 (Permutation). For n ∈ N+, denote by Sn the set of all bijective mappings

π : {1, . . . , n} → {1, . . . , n}.

These mappings are called permutations7 of {1, . . . , n}.

A permutation is just a reshuffling of the (ordered) numbers from 1 to n.

Proposition 2.20. The set Sn, together with the composition as an operation, is a group.

Proof. You have to check that the composition of two permutations is again a permutation, that the
composition is associative, that there is a unit element, and that for each permutation, there is an inverse
permutation. The details are left to the student.

This group is the so–called symmetric group8.

Question: How many elements does Sn have ?

Next we connect the structure given by the group (Sn, ◦) to the structure of matrices and their products.

Definition 2.21 (Permutation matrix). Let e1, . . . , en ∈ Kn be the canonical basis vectors in Kn

and π ∈ Sn. Then

Pπ := (eπ(1), . . . , eπ(n)) ∈ Kn×n

is the permutation matrix associated to π9. The kth column of Pπ is just the π(k)th basis vector.

There is a compatibility relation between the group operation ◦ and the matrix product:

7Permutationen
8symmetrische Gruppe
9 Permutationsmatrix zur Permutation π
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Lemma 2.22. For any two permutations σ, π ∈ Sn we have

Pσ◦π = PσPπ.

Proof. The columns are the images of the unit basis vectors. Denoting the jth column of PσPπ by
(PσPπ)j , we then have

(PσPπ)j = (PσPπ)ej = Pσ(Pπej) = Pσeπ(j) = e(σ◦π)(j) = (Pσ◦π)j .

We can do this for each column index j, which completes the proof.

Let us express this compatibility in terms of a commutative diagram:

(σ, π)
◦−−−−→ σ ◦ πy y

(Pσ, Pπ) −−−−→ PσPπ
= Pσ◦π

We introduce one more structure:

Definition 2.23 (Sign of a permutation). The sign of a permutation π is defined by

sign(π) := detPπ.

And this sign structure induces a compatibility between the group operation ◦ in Sn and the multipli-
cation in R:

Lemma 2.24. For any two permutations σ, π ∈ Sn we have

sign(σ ◦ π) = sign(σ) · sign(π).

Proof. This is a direct consequence of the two compatibility relations from Proposition 2.9 and
Lemma 2.22:

sign(σ ◦ π) = det(Pσ◦π) = det(PσPπ) = det(Pσ) · det(Pπ) = sign(σ) · sign(π).

This is what we wanted to show.

For completeness, we draw one more commutative diagram:

(σ, π)
◦−−−−→ σ ◦ π

sign

y ysign

(sign(σ), sign(π)) −−−−→
·

sign(σ) · sign(π)
= sign(σ ◦ π)

Now assume the following problem to solve. Given a permutation π, how to evaluate sign(π) with little
effort, without handling det(Pπ) ?

To this end, we consider the most simple permutations (except the identical permutation), which are
those that only exchange two elements, the so–called transpositions10 τij , i 6= j:

τij(k) :=


j : k = i,

i : k = j,

k : else.

Obviously, each transposition is its own inverse. Mappings of a set onto the same set that are their own
inverses are so–called involutions11.

We then quickly find:

10Transpositionen
11Involutionen
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• the sign of each transposition is −1,

• each permutation from Sn is a composition of at most n− 1 transpositions,

• if π = τ1 ◦ τ2 ◦ · · · ◦ τK with each τj being a transposition, then sign(π) = (−1)K .

Permutations π with sign(π) = +1 are called even, and permutations π with sign(π) = −1 are called
odd. By the way, we have shown that the composition of two even permutations is always an even
permutation, and the composition of an even permutation with an odd permutation is always odd. We
can even say that the subset of even permutations in Sn forms a sub-group of Sn.

Now we are in a position to give the final formula for a general determinant:

Proposition 2.25 (Leibniz12 formula for determinants). For each A ∈ Kn×n with entries ai,j, we
have

detA =
∑
π∈Sn

sign(π)aπ(1),1 · . . . · aπ(n),n.

Proof. The determinant is a linear function with respect to each column. Denote the columns of A by
a1, . . . , an. We can decompose each column as aj =

∑n
i=1 aijei. Then we have, by separate linearity in

each argument of ∆,

detA = ∆(a1, . . . , an) = ∆

(
n∑

i1=1

ai11ei1 ,

n∑
i2=1

ai22ei2 , . . . ,

n∑
in=1

ainnein

)

=

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

ai11ai22 · . . . · ainn∆(ei1 , ei2 , . . . , ein).

If two of the indices i1, . . . , in coincide, then the determinant on the right–hand side vanishes, since its
arguments are linearly dependent then. Therefore, the numbers i1, . . . , in must be the values of a certain
permutation π ∈ Sn; i1 = π(1), . . . , in = π(n). This completes the proof.

2.5 Outlook: Many Particle Schrödinger Functions

Consider an ensemble of N electrons. Their wave function is a function ψ : R3N → C, and we write it
as ψ = ψ(x1, . . . , xN ), with xj ∈ R3 taking care of electron number j. Then |ψ(x1, . . . , xN )|2 describes
the probability density of finding the electron ensemble at the location (x1, . . . , xN ). Since the ensemble
must be somewhere, we then have∫

x∈R3N

|ψ(x)|2 dx = 1.

Here we are cheating a bit and ignore the spins of the electrons.

The electrons can not be distinguished. Swapping the arguments x2 and x3 of ψ can be seen two ways:
first, we can say that the electron 2 and electron 3 have exchanged their positions. Second, we can say
that both have remained at their places, and only their names have been exchanged. In any case, a
permutation of the electrons can not change the physical situation, hence we have, for each permutation
π ∈ SN ,

|ψ(xπ(1), xπ(2), . . . , xπ(N))|2 = |ψ(x1, x2, . . . , xN )|2.

Now the Pauli13 principle comes in: there are never two electrons in the same state. In particular, two
electrons can not be at the same place (we tacitly ignore the spins). This implies that we should have
ψ(x1, . . . , xN ) = 0 whenever two of the xj are equal (say x2 = x3, to have something specific).

And the Pauli principle can be guaranteed if we demand that

ψ(xπ(1), xπ(2), . . . , xπ(N)) = sign(π)ψ(x1, x2, . . . , xN ),

for each permutation π ∈ SN . This indeed implies ψ(x1, x2, x3, . . . , xN ) = 0 whenever x2 = x3. Just
choose for the permutation π the transposition τ23, for which we have sign(τ23) = −1.

12 Gottfried Wilhelm von Leibniz, 1646 – 1716
13Wolfgang Pauli, 1900 – 1958
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2.6 Keywords

• calculation rules as in the Propositions 2.9, 2.10, and 2.12,

• formula for the inverse matrix,

• permutations.



Chapter 3

Integration in One Dimension, and
Curves

There are several kinds of integrals in one dimension (later we will also consider integrals in higher
dimensions):

Definite integrals: these are integrals over an interval of R (which may be unbounded); and the integral
is a number from R or C. This number is equal to “the area below the graph of the function”. We
will have to make this more precise.

Indefinite integrals or antiderivatives: a function F is the indefinite integral of a function f if
F ′ = f everywhere. We will learn how to find all such F for some given f .

Path integrals or line integrals: they are similar to the definite integrals; however, now you do not
integrate over an interval of R, but over some “path” in Rn or C. We should make this more precise
and study the properties of such integrals. Be careful—there are several kinds of path integrals,
with sometimes completely different properties.

3.1 Definition of the Definite Integral

Before we begin, we have to make a remark on the philosophy of our approach. When we construct a
theory, we have to define a lot of terms, and typically terms are defined using other terms that had been
defined earlier. This way, a full genealogical tree of term definitions grows up. A naive approach to the
definite integrals could be to

• first, define the term area “somehow”,

• second, define the definite integral
∫ b
a
f(x) dx as the area under the graph.

This approach has the drawback that it is surprisingly hard to define rigorously the term area. Instead,
our approach will go the opposite direction:

• first, we define the definite integral
∫ b
a
f(x) dx as a certain limit,

• second, we define the term area using definite integrals.

Now we start. In this section, [a, b] always stands for a bounded and closed interval in R.

Definition 3.1 (Step function). A function f : [a, b]→ R or f : [a, b]→ C is a step function1 if there
are points x0, x1, . . . , xn with

a = x0 < x1 < x2 < · · · < xn = b

1Treppenfunktion

47
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with the property that the function f is constant on the open intervals (xj , xj+1). Nothing is said about
the values of f at the endpoints xj of the sub–intervals. The points {x0, . . . , xn} are called associated
partition of [a, b]2.

Note that we do not demand that the values of f “left of” xj and “right of” xj differ.

Proposition 3.2. The set of all step functions is a linear space over the field R or C, respectively.

Proof. The only tricky part is to show that the sum of two step functions is again a step function. For
this, you will have to unite the two partitions of the interval.

It is obvious how the value of a definite integral of a step function should be defined:

If f is a step function over [a, b] and {x0, . . . , xn} its associated partition, then we define∫ x=b

x=a

f(x) dx :=

n−1∑
k=0

f

(
xk + xk+1

2

)
· (xk+1 − xk).

Proposition 3.3. This integral is a homomorphism from the set of all step functions to the real or
complex numbers.

Proof. Exercise.

Integrals over step functions are very easy to define; but the step functions are ugly. The functions which
we need the most are not step functions. Consequently, we should extend the definition of integral to
some more reasonable functions.

For this purpose, we first need some norms.

f step function: ‖f‖L1(a,b) :=

∫ x=b

x=a

|f(x)|dx,

f bounded function: ‖f‖L∞(a,b) := sup
x∈[a,b]

|f(x)|.

Each step function is bounded. The step function space becomes a normed space if we endow it with
the L1–norm or the L∞–norm; but it will be not become a Banach space that way.

The two norms are related via

‖f‖L1(a,b) ≤ |b− a| ‖f‖L∞(a,b) (3.1)

for each step function, but you cannot reverse this inequality.

We will extend the integrals to the following class of functions:

Definition 3.4 (Tame function). We call a function f : [a, b]→ R or f : [a, b]→ C tame3 if it satisfies
the following conditions:

• it is bounded,

• there is a sequence (ϕn)n∈N of step functions which converges to f in the L∞–norm:

lim
n→∞

‖ϕn − f‖L∞(a,b) = 0.

It should be obvious to you that the set of tame functions is a vector space (take the sub-vector-space
criterion to verify this).

Then it is almost clear how to define the definite integral for tame functions:

If f is a tame function which can be approximated by a sequence (ϕn)n∈N of step functions, then we
define∫ x=b

x=a

f(x) dx := lim
n→∞

∫ x=b

x=a

ϕn(x) dx.

2zugehörige Zerlegung von [a, b]
3wörtlich: zahm, inhaltlich: Regelfunktion
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The limit on the right–hand side exists, because the sequence of numbers
∫ b
a
ϕn(x) dx is a Cauchy

sequence in R (or C), and this can be seen as follows:∣∣∣∣∣
∫ x=b

x=a

ϕn(x) dx−
∫ x=b

x=a

ϕm(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x=b

x=a

ϕn(x)− ϕm(x) dx

∣∣∣∣∣
≤
∫ x=b

x=a

|ϕn(x)− ϕm(x)| dx = ‖ϕn − ϕm‖L1(a,b) ≤ |b− a| · ‖ϕn − ϕm‖L∞(a,b)

≤ |b− a| · ‖ϕn − f‖L∞(a,b) + |b− a| · ‖f − ϕm‖L∞(a,b) ,

by (3.1) and the triangle inequality. Therefore: if a tame function is approximated by a sequence (ϕn)n∈N
of step functions then this sequence (ϕn)n∈N is a Cauchy sequence in the space L1(a, b).

Question: Let (ψn)n∈N be another sequence of step functions that approximates f . Can you achieve

another value for
∫ x=b

x=a
f(x) dx by replacing the ϕn with ψn ?

The class of tame functions is now sufficiently large:

Proposition 3.5 (Criterion for tame functions). A function is tame if and only if at every point the
limit of the function from the left exists, as well as the limit from the right (with obvious modifications
for the endpoints of the interval).

We should drop the proof, since it is rather nasty. We prove something weaker instead:

Proposition 3.6. Continuous functions are tame.

The proof is a bit long, but insightful for later purposes, as well.

Recall that a function is continuous at a point x∗ if for each ε > 0, there is a δ = δ(ε, x∗), such that
|x− x∗| < δ implies |f(x)− f(x∗)| < ε.

Definition 3.7 (Uniformly continuous). A function is uniformly continuous4 if it is continuous, and
the above δ depends only on ε, but not on x∗. This means: for each positive ε, there is a positive δ = δ(ε)
such that for all x and x∗ in the domain of f with |x− x∗| < δ, we have |f(x)− f(x∗)| < ε.

We will now prove two things:

• uniformly continuous functions are tame,

• continuous functions over a compact interval are uniformly continuous.

Proof that uniformly continuous functions are tame. Fix ε = 1
n . Then there is a number δ > 0, such

that |x−x∗| < δ and x, x∗ ∈ [a, b] imply |f(x)−f(x∗)| < 1
n . Partition the interval [a, b] into sub–intervals

of length ≤ δ. Define a step function ϕn by

ϕn(x) := f

(
xk + xk+1

2

)
, a ≤ xk < x < xk+1 ≤ b.

Then we have ‖f − ϕn‖L∞(a,b) ≤
1
n . Therefore, these step functions converge to f , measured in the

L∞–norm.

Proposition 3.8. A continuous function f on a compact set M is uniformly continuous.

Proof. Assume the opposite, the function f is not uniformly continuous. Then there is an exceptional
positive ε0 with the following property:

For every positive δ, you can find xδ, x
′
δ ∈M with ‖xδ − x′δ‖ < δ but ‖f(xδ)− f(x′δ)‖ ≥ ε0.

Put δ = 1
n , and let n tend to infinity. Then you have two sequences (xδ)δ→0 and (x′δ)δ→0 with the

property that ‖xδ − x′δ‖ < δ, however ‖f(xδ)− f(x′δ)‖ ≥ ε0. Each of them must have a converging
subsequence, because of the compactness of the set M . Call the (common !) limit of such a converging
subsequence x∗. By continuity of f , the sequences (f(xδ))δ→0 and (f(x′δ))δ→0 must converge to the
same limit f(x∗), since limδ→0 f(xδ) = f(limδ→0 xδ) = f(x∗) and limδ→0 f(x′δ) = f(limδ→0 x

′
δ) = f(x∗).

Consequently, the differences f(xδ) − f(x′δ) must become small. On the other hand, these differences
must have norm greater than or equal to ε0. This is impossible.

4gleichmäßig stetig
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Let us list some properties of integrable (tame) functions:

Proposition 3.9 (Properties of tame functions).

• if f and g are tame functions over [a, b] and f ≤ g everywhere, then
∫ x=b

x=a
f(x) dx ≤

∫ x=b

x=a
g(x) dx;

• if f is tame, then so is |f |;

• if f and g are tame, then also f · g is tame;

• a complex–valued function is tame if and only if its real part is tame and its imaginary part is also
tame.

We omit the (short) proof and only mention the general strategy: first you show similar properties
for step functions (which is really easy), and second you show that these properties survive the limit
procedure which defines tame functions from sequences of step functions. From now on we will use the
terms “tame” and “integrable” as synonyms.

Sometimes it is useful to consider integrals, where the “upper end” of the integral is smaller than the
“lower end” of the integral:

Definition 3.10. Let a function f be tame on the interval [a, b] ⊂ R with a < b. Then we define∫ x=a

x=b

f(x) dx := −
∫ x=b

x=a

f(x) dx.

In a similar spirit, we define
∫ x=a

x=a
f(x) dx = 0.

We conclude this section with some estimates of integrals.

Proposition 3.11 (Properties of the integral). Let a < b and f : [a, b]→ R be tame. Then we have:

1. ∣∣∣∣∣
∫ x=b

x=a

f(x) dx

∣∣∣∣∣ ≤
∫ x=b

x=a

|f(x)|dx.

2. For M = sup{f(x) : a ≤ x ≤ b} and m = inf{f(x) : a ≤ x ≤ b} we have

m(b− a) ≤
∫ x=b

x=a

f(x) dx ≤M(b− a).

3. (Mean value theorem of integration)

If f and g ≥ 0 are continuous, then there is a point ξ ∈ (a, b) with∫ x=b

x=a

f(x)g(x) dx = f(ξ)

∫ x=b

x=a

g(x) dx.

In particular, choosing g(x) ≡ 1 we get∫ x=b

x=a

f(x) dx = f(ξ)(b− a)

for a certain ξ ∈ (a, b).

The first assertion also holds for complex–valued f .

Proof. The first claim follows from −|f(x)| ≤ f(x) ≤ |f(x)| and Proposition 3.9, first • . The second
claim is deduced from m ≤ f(x) ≤M in a very similar way.

For the third part, define m and M as above. Then we have (because the function g is never negative)

mg(x) ≤ f(x)g(x) ≤Mg(x),
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from which we conclude, employing Proposition 3.9 once more, that

m

∫ x=b

x=a

g(x) dx ≤
∫ x=b

x=a

f(x)g(x) dx ≤M
∫ x=b

x=a

g(x) dx.

The integral over g cannot be negative. Therefore, a number µ ∈ [m,M ] exists with the property that∫ x=b

x=a

f(x)g(x) dx = µ

∫ x=b

x=a

g(x) dx.

According to the intermediate value theorem for continuous functions, this number µ can be written as
µ = f(ξ) for some ξ ∈ (a, b).

Exercise: draw pictures.

3.2 The Indefinite Integral or Antiderivative

In the previous section, all functions were real–valued or complex–valued. Now complex–valued functions
are forbidden. We will come back to them later.

Definition 3.12 (Antiderivative). A function F ∈ C1([a, b] → R) is called indefinite integral or
antiderivative or primitive function of a function f5 if F ′(x) = f(x) for all x ∈ [a, b].

We need a little result:

Lemma 3.13. Let F ∈ C1([a, b] → R) be a function with F ′(x) = 0 for all x ∈ [a, b]. Then F is a
constant.

Proof. Pick two points x1, x2 ∈ [a, b]. Then, by the mean value theorem of differentiation, a number ξ
exists (between x1 and x2), with F (x1)−F (x2) = F ′(ξ) · (x1 − x2), hence F (x1) = F (x2). Since x1 and
x2 had been chosen arbitrarily, we get F ≡ const..

Then the antiderivatives are unique up to constants:

Proposition 3.14. If F1 and F2 are indefinite integrals of a function f , then the difference F1(x)−F2(x)
is constant on [a, b].

Proof. We have (F1 − F2)′(x) = f(x)− f(x) = 0 for all x ∈ [a, b]. Now apply the previous lemma.

The Fundamental Theorem of Calculus tells us that definite integrals with varying right endpoint are
antiderivatives:

Theorem 3.15 (Fundamental Theorem of Calculus6). If f : [a, b] → R is continuous, then it has
an antiderivative F which is given by

F (x) :=

∫ t=x

t=a

f(t) dt, a ≤ x ≤ b.

Proof. The existence of the integral is clear because f is continuous, and continuous functions are tame
(integrable). The mean value theorem of integration yields

F (x)− F (x0)

x− x0
=

1

x− x0

∫ t=x

t=x0

f(t) dt =
1

x− x0
f(ξ)(x− x0) = f(ξ),

with some ξ between x and x0. If x converges to x0, then ξ also must converge to x0, due to the sandwich
principle. The continuity of f then shows

lim
x→x0

F (x)− F (x0)

x− x0
= f(x0).

5unbestimmtes Integral oder Stammfunktion einer Funktion f
6Hauptsatz der Differential– und Integralrechnung
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For another choice of the lower endpoint a of the definite integral, you will get another antiderivative.
However, it can happen that not each antiderivative can be written as such an “integral function”. For
instance, the function x 7→ 47 + sin(x) is an antiderivative of the Cosine function. But there is no a ∈ R
with 47 + sin(x) =

∫ x
t=a

cos(t) dt for all x ∈ R.

Corollary 3.16. If f : [a, b]→ R is continuous and F is any antiderivative of f , then∫ x=b

x=a

f(x) dx = F (b)− F (a).

Proof. Theorem 3.15 gives us a special antiderivative F0 of f , namely F0(x) =
∫ t=x
t=a

f(t) dt. Then
Proposition 3.14 tells us that there must be a constant C, such that F0(x) = F (x) + C for every x.
Finally, we have (because of F0(a) = 0)∫ x=b

x=a

f(x) dx = F0(b) = F0(b)− F0(a) = (F (b) + C)− (F (a) + C) = F (b)− F (a).

It is custom to denote the antiderivatives of a function f by
∫
f(x) dx; but you should be sure which

one of the many antiderivatives you mean, and in which interval the variable x is running.

In the older literature, you may also find notations like∫ x

a

f(x) dx or

∫ x

f(x) dx,

but you should not use such expressions in this millennium anymore, for obvious reasons.

3.2.1 Antiderivatives of Elementary Functions

If you have to differentiate a given function, you can follow a fixed algorithm. You have at hand a list
of derivatives of the elementary functions, as well as a set of rules how to differentiate functions which
are composed of those elementary functions. Going this way, you are able to differentiate any function
which is composed of known functions.

This is no longer true for the integration. There is no standard algorithm, only some heuristic techniques
which are sometimes helpful, and sometimes not. As an example, one can prove that it is impossible to
represent the indefinite integrals∫

e−x
2

dx or

∫
sin(x)

x
dx

by means of a finite number of terms built from elementary functions (polynomials, roots, logarithms,
exponential functions, trigonometric functions).

However, quite a lot of important integrals can be evaluated.

For a start, the fundamental theorem of calculus gives us several antiderivatives right away. The proofs
are skipped.

Lemma 3.17. Let α ∈ R. The antiderivatives of f = f(x) = xα are

F = F (x) = C +

{
xα+1

α+1 : α 6= −1,

ln |x| : α = −1.

If α ∈ N0, then arbitrary x ∈ R are allowed. If α ∈ Z \N0, then x can be from either R− or R+, but not
both. If α is not an integer, then x must be from R+.

Lemma 3.18. Let a > 0 with a 6= 1 and f = f(x) = ax, x ∈ R. Then the antiderivatives of f are

F = F (x) =
1

ln a
ax + C.
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Further antiderivatives can be found in the following list:∫
cos(x) dx = sin(x) + C, x ∈ R,∫
sin(x) dx = − cos(x) + C, x ∈ R,∫

dx

cos2 x
= tan(x) + C, x ∈

(
−π

2
+ kπ,

π

2
+ kπ

)
, k ∈ Z,∫

dx√
1− x2

= arcsin(x) + C, x ∈ (−1, 1),∫
dx

1 + x2
= arctan(x) + C, x ∈ R,∫

sinh(x) dx = cosh(x) + C, x ∈ R,∫
cosh(x) dx = sinh(x) + C, x ∈ R,∫

dx

cosh2(x)
= tanh(x) + C, x ∈ R,∫

dx√
1 + x2

= Arsinh(x) + C, x ∈ R,∫
dx√
x2 − 1

= Arcosh(x) + C, |x| > 1,∫
dx

1− x2
= Artanh(x) + C, |x| < 1.

3.2.2 The Partial Integration

Partial integration is another name for integrating the product rule.

Proposition 3.19 (Partial integration). If f and g belong to C1([a, b]→ R), then∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx, x ∈ [a, b],∫ x=b

x=a

f(x)g′(x) dx = f(x)g(x)
∣∣∣x=b

x=a
−
∫ x=b

x=a

f ′(x)g(x) dx.

Proof. Product rule of differentiation and fundamental theorem of calculus.

Example: For certain x (which ?) the following holds:∫
ln(x) dx = x ln(x)− x+ C,∫
xex dx = . . . ,∫
x2ex dx = . . . ,∫
x sin(x) dx = . . . .

Fill in the blanks yourselves and figure out which values of x are allowed.

We will need the following result later, when we will study the Fourier series:

Proposition 3.20. For all n,m ∈ N the following identities are valid:∫ x=2π

x=0

cos(nx) cos(mx) dx =

∫ =2π

x=0

sin(nx) sin(mx) dx = πδnm, (m,n) 6= (0, 0),∫ x=2π

x=0

cos(nx) sin(mx) dx = 0.
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We say that the functions sin(n·) and cos(m·) are orthogonal in L2([0, 2π]).

Proof. Partial integration twice. As an example, we show
∫ 2π

x=0
cos(nx) cos(mx) dx = 0 for m 6= n 6= 0.

We have∫ 2π

x=0

cos(nx) cos(mx) dx =

∫ 2π

x=0

(
1

n
sin(nx)

)′
cos(mx) dx

=
1

n
sin(nx) cos(mx)

∣∣∣∣∣
x=2π

x=0

−
∫ 2π

x=0

1

n
sin(nx) · (−m) sin(mx) dx

= 0 +
m

n

∫ 2π

x=0

sin(nx) sin(mx) dx

=
m

n

∫ 2π

x=0

(
−1

n
cos(nx)

)′
sin(mx) dx

=
m

n
· −1

n
cos(nx) sin(mx)

∣∣∣∣∣
2π

x=0

− m

n
·
∫ 2π

x=0

−1

n
cos(nx) ·m sin(mx) dx

= 0 +
m2

n2

∫ 2π

x=0

cos(nx) cos(mx) dx,

which is the same integral as before, but now with a factor m2

n2 , which is not equal to one.

You really should remember this method of proof ! By a very similar idea, we will see (in the near and
middle future) that

• eigenvectors of a self-adjoint matrix to different eigenvalues are orthogonal to each other (second
semester),

• wave functions to different energy levels of a quantum mechanical system are orthogonal to each
other (fourth semester).

The connection between both • comes from the fact that the wave functions are eigenfunctions to the
Hamilton operator of that mentioned quantum mechanical system, and the Hamilton operator (which is
a differential operator acting in the Hilbert space L2(R3 → C)) is self-adjoint.

Finally, we show how clever use of the partial integration helps in proving the Taylor expansion theorem

once again. The cleverness lies in the choice of the integration constants (−x and −x
2

2 ) in the definition
of the functions g1 and g2 below. Let u ∈ C3([a, b]→ R) and x, x0 ∈ [a, b]. Then we have

u(x) = u(x0) +

∫ x

t=x0

u′(t) dt = u(x0) +

∫ x

t=x0

u′(t) · 1 dt

∣∣∣∣∣ f1(t) := u′(t), g1(t) := t− x

= u(x0) + u′(t) · (t− x)

∣∣∣∣∣
t=x

t=x0

−
∫ x

t=x0

u′′(t)(t− x) dt

= u(x0) + 0− u′(x0)(x0 − x) +

∫ x

t=x0

u′′(t)(x− t) dt

∣∣∣∣∣ f2(t) := u′′(t), g2(t) := xt− t2

2
− x2

2

= u(x0) + u′(x0)(x− x0) + u′′(t)
(x− t)2

−2

∣∣∣∣∣
t=x

t=x0

−
∫ x

t=x0

u′′′(t)
(x− t)2

−2
dt

=

2∑
k=0

1

k!
u(k)(x0)(x− x0)k +

1

2

∫ x

t=x0

u′′′(t)(x− t)2 dt,
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and this prodecure could be continued several times. To handle the last integral on the right, we exploit
the mean value theorem of integration (Proposition 3.11), now with g(t) = (x − t)2 and f(t) = u′′′(t),
hence there is a number ξ between x and x0 with

1

2

∫ x

t=x0

u′′′(t)(x− t)2 dt =
1

2
u′′′(ξ)

∫ x

t=x0

(t− x)2 dt =
1

2
u′′′(ξ)

∫ 0

t=x0−x
t2 dt =

1

2
u′′′(ξ) · −1

3
(x0− x)3,

which equals 1
3!u
′′′(ξ)(x− x0)3, and this is the well-known Lagrange form of the remainder term in the

Taylor expansion. Other versions (like the Cauchy form or even the Schlömilch form) of the remainder
term can be proved similarly.

3.2.3 The Substitution Rule

Proposition 3.21 (Substitution). Let f : [α, β] → R be continuous with primitive function F , and
ϕ : [a, b]→ [α, β] continuously differentiable. Then we have∫

f(ϕ(x))ϕ′(x) dx = F (ϕ(x)) + C, x ∈ [a, b],∫ x=b

x=a

f(ϕ(x))ϕ′(x) dx =

∫ t=ϕ(b)

t=ϕ(a)

f(t) dt = F (ϕ(b))− F (ϕ(a)).

Proof. The chain rule implies

(F ◦ ϕ)′(x) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).

Integrating this identity and the fundamental theorem of calculus conclude the proof.

When you change the variable of integration, be sure to change it everywhere:

• in the integrand,

• in the differential,

• at the endpoints of the integration interval.

Example: Let F be a primitive function to f . Then you have∫ x=b

x=a

f(x+ c) dx =

∫ t=b+c

t=a+c

f(t) dt = F (b+ c)− F (a+ c),∫ x=b

x=a

f(cx) dx =
1

c

∫ t=cb

t=ca

f(t) dt =
1

c
(F (cb)− F (ca)), c 6= 0,∫ x=b

x=a

xn−1f(xn) dx = . . . ,∫ x=b

x=a

x exp(−x2) dx = . . . ,∫ x=b

x=a

f ′(x)

f(x)
dx = . . . , f(x) 6= 0 on [a, b].

Fill in the blanks yourselves and figure out the admissible values of the variables and parameters.

3.2.4 Partial Fractions

Partial fractions7 are the standard tool for integrating rational functions.

The fundamental theorem of algebra (to be proved later) shows us that a polynomial q of degree n
has exactly n zeroes (if you count multiple zeroes according to their multiplicity). Suppose that the

7Partialbrüche
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coefficients of this polynomial q are all real, and the highest coefficient is one. If q has a zero at a point
c ∈ R, then you can divide q by the factor (x − c) and obtain a polynomial of degree n − 1. If q has a
zero at the complex number a+ bi with b 6= 0, then also a− bi is a zero of q (why is that so ?). In this
case, you can divide q by the factor (x− (a+ bi))(x− (a− bi)) = (x− a)2 + b2, and get a polynomial of
degree n− 2. Continuing in this fashion, we can write q as a product of linear or quadratic polynomials
of the above structure:

q(x) =

r∏
i=1

(x− ci)
s∏
j=1

((x− aj)2 + b2j ).

Let us be given additionally a polynomial p and consider the rational function p(x)
q(x) under the following

two (non–essential) assumptions:

• the degree of p is strictly less than the degree of q,

• q has only zeroes of multiplicity 1.

Then the quotient p(x)
q(x) can be decomposed like this:

p(x)

q(x)
=

r∑
i=1

γi
x− ci

+

s∑
j=1

αjx+ βj
(x− aj)2 + b2j

.

This formula holds—which we will not prove—for all points x ∈ C except the zeroes of q.

The terms on the right–hand side can be integrated easily:∫
γ

x− c
dx = γ ln |x− c|+ C,

αx+ β

(x− a)2 + b2
=
α

2

2(x− a)

(x− a)2 + b2
+

β + αa

(x− a)2 + b2
,∫

2(x− a)

(x− a)2 + b2
dx = ln |(x− a)2 + b2|+ C,∫

1

(x− a)2 + b2
dx =

1

b
arctan

(
x− a
b

)
+ C.

Here we have set t = x−a
b and have applied the substitution rule in the last step.

Example: The fraction 4
1−x4 can be decomposed into

4

1− x4
=

1

1− x
+

1

1 + x
+

2

1 + x2
,

giving us the antiderivative∫
4

1− x4
dx =

∫
dx

1− x
+

∫
dx

1 + x
+

∫
2 dx

1 + x2

= − ln |1− x|+ ln |1 + x|+ 2 arctan(x) + C.

Example: How to do the decomposition ? Take the function

f = f(x) =
3x+ 7

x(x− 1)2(x+ 2)

as an example. We then make the ansatz

3x+ 7

x(x− 1)2(x+ 2)
=
A

x
+

B

x− 1
+

C

(x− 1)2
+

D

x+ 2
, x 6= 0, x 6= 1, x 6= −2

The terms with B and C are both needed, since the left-hand side has a double pole at x = 1. We multiply
both sides by x and get

3x+ 7

(x− 1)2(x+ 2)
= A+

Bx

x− 1
+

Cx

(x− 1)2
+

Dx

x+ 2
, x 6= 0, x 6= 1, x 6= −2.
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Now we perform the limit x→ 0 and find

7

2
= A+B · 0 + C · 0 +D · 0,

hence A = 7
2 . We multiply both sides of our ansatz by (x− 1)2 and get

3x+ 7

x(x+ 2)
=
A(x− 1)2

x
+B(x− 1) + C +

D(x− 1)2

x+ 2
, x 6= 0, x 6= 1, x 6= −2

and now the limit x→ +1 gives us 10
3 = C. And we multiply both sides of our ansatz by (x+ 2), hence

3x+ 7

x(x− 1)2
=
A(x+ 2)

x
+
B(x+ 2)

x− 1
+
C(x+ 2)

(x− 1)2
+D, x 6= 0, x 6= 1, x 6= −2,

and sending x to −2 implies − 1
18 = D. Hence, only B is still to be found. One approach is: we multiply

our ansatz by x(x − 1)2(x + 2) and compare equal powers of x on both sides. Another approach is to
subtract the known terms:

B

x− 1
=

3x+ 7

x(x− 1)2(x+ 2)
−

7
2

x
−

10
3

(x− 1)2
+

1
18

x+ 2

=
3x+ 7− 7

2 (x− 1)2(x+ 2)− 10
3 x(x+ 2) + 1

18x(x− 1)2

x(x− 1)2(x+ 2)

=
3x+ 7− 7

2 (x2 − 2x+ 1)(x+ 2)− 10
3 (x2 + 2x) + 1

18 (x3 − 2x2 + x)

x(x− 1)2(x+ 2)

=
1
18x

3 − 31
9 x

2 − 65
18x+ 7− 7

2 (x3 − 3x+ 2)

x(x− 1)2(x+ 2)

=
− 62

18x
3 − 31

9 x
2 + 124

18 x

x(x− 1)2(x+ 2)
=
−31

9
· x2 + x− 2

(x− 1)2(x+ 2)
=
−31

9
· (x− 1)(x+ 2)

(x− 1)2(x+ 2)
,

and therefore B = −31
9 .

3.2.5 The Half Angle Method

The half angle method enables us to integrate any rational function of sin(x) and cos(x), provided that
we can find the zeroes of the denominator of a certain rational function which arises in that process. We
put

u = tan
x

2
,

from which it follows that

du =
du

dx
dx =

1

2

(
1 +

(
tan

x

2

)2)
dx =

1

2
(1 + u2) dx,

sinx = 2 sin
x

2
cos

x

2
= 2 tan

x

2
cos2 x

2
=

2 tan x
2

1 + tan2 x
2

=
2u

1 + u2
,

cosx = cos2 x

2
− sin2 x

2
= cos2 x

2

(
1− tan2 x

2

)
=

1− u2

1 + u2
.

Example: Let 0 < a < b < π and A = tan a
2 , B = tan b

2 . Then we have

∫ x=b

x=a

dx

sinx
=

∫ u=B

u=A

1 + u2

2u
· 2 du

1 + u2
=

∫ u=B

u=A

du

u
= ln

∣∣∣∣∣ tan a
2

tan b
2

∣∣∣∣∣ .
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3.2.6 Numerical Methods

You will not always succeed in finding an explicit formula for the antiderivative. It can also happen that
you do not have a formula for the integrand, but just some values at some points. Then the following
numerical formulae can be helpful.

The main idea is as follows: you want to compute approximately the definite integral
∫ x=b

x=a
f(x) dx.

First, you split the interval into parts of equal length. This gives you points xj = a+ jh with h = b−a
n

and 0 ≤ j ≤ n. You take one of these sub-intervals (or maybe several adjacent of them), and on these
union of sub-intervals, you take a polynomial that approximates f . Instead of f , you integrate this
polynomial. Then you sum up over all possible unions of subintervals.

One of the most simple rules is obtained by piecewise linear approximation on each sub-interval.

Proposition 3.22 (Trapezoidal rule). Suppose that f ∈ C2([a, b]→ R) with |f ′′(x)| ≤M for x ∈ [a, b].
Then the following approximation holds:

∫ x=b

x=a

f(x) dx =

1

2
f(a) +

n−1∑
j=1

f(a+ jh) +
1

2
f(b)

h+R, h =
b− a
n

,

where |R| ≤ 1
12 (b− a)Mh2.

Proof. We consider a sub-interval [xj , xj+1]. On this sub-interval, we define the auxiliary function
ϕ(x) = 1

2 (x− xj)(xj+1 − x). We observe that

ϕ(xj) = ϕ(xj+1) = 0,

ϕ(x) ≥ 0, x ∈ [xj , xj+1],

ϕ′(x) =
h

2
− (x− xj),

ϕ′′(x) = −1.

Performing partial integration twice then gives us∫ x=xj+1

x=xj

f(x) dx = −
∫ x=xj+1

x=xj

ϕ′′(x)f(x) dx

= −ϕ′(x)f(x)
∣∣∣x=xj+1

x=xj
+

∫ x=xj+1

x=xj

ϕ′(x)f ′(x) dx

=
h

2
(f(xj) + f(xj+1)) +

∫ x=xj+1

x=xj

ϕ′(x)f ′(x) dx

=
h

2
(f(xj) + f(xj+1)) + ϕ(x)f ′(x)

∣∣∣x=xj+1

x=xj
−
∫ x=xj+1

x=xj

ϕ(x)f ′′(x) dx

=
h

2
(f(xj) + f(xj+1))− f ′′(ξj)

∫ x=xj+1

x=xj

ϕ(x) dx

=
h

2
(f(xj) + f(xj+1))− h3

12
f ′′(ξj),

where we have used the mean value theorem of integration, giving us an (unknown) point ξj ∈ (xj , xj+1).
Summing over j = 0, . . . , n− 1 completes the proof.

If the function f that has to be integrated is a polynomial of degree ≤ 1, then the trapezoidal rule will
give the exact value.

If one can find other rules which can integrate polynomials of higher degree than 1 exactly and which
have a better estimate of the error term R (the exponent of h should be higher), then one can get a
numerical approximation of the value of the integral with the same precision but requiring less effort.
One of such rules is the famous Kepler8 rule.

8Johannes Kepler, 1571 – 1630
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Proposition 3.23 (Kepler’s barrel rule9). Suppose f ∈ C4([a, b] → R) with |f ′′′′(x)| ≤ M . Let
n ∈ N be even, and set

h =
b− a
n

, xj = a+ jh, j = 0, 1, 2, . . . , n.

Then the following approximation holds:∫ x=b

x=a

f(x) dx =
h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)) +R,

where |R| ≤ 1
180 (b− a)Mh4.

We omit the proof and only remark that the function f is piecewise approximated by quadratic poly-
nomials, which are integrated instead of f . Therefore, it is natural to expect that Kepler’s rule can
integrate quadratic functions without error. Surprisingly, even cubic functions can be integrated exactly,
and also the bound on R has one power of h more than expected. Consequently, the Kepler’s rule usually
achieves the same precision as the trapezoidal rule, but with fewer evaluations of the integrand f . This
is an important advantage if the evaluation of f is costly, e.g., if f itself is given as a definite integral.

The trapezoidal rule is based on piecewise linear interpolation of the integrand, and Kepler’s rule is
based on piecewise quadratic interpolation. You can continue in this manner, interpolating the function
f piecewise by polynomials of higher and higher degree. The formulas which you will obtain are the
so–called Newton10–Cotes11 quadrature formulas. The highest useful polynomial degree is 6. For
higher degrees, the interpolating polynomials oscillate heavily near the ends of the interval, giving a lot
of trouble. Furthermore, some coefficients in the formula will become negative, leading to numerical
instabilities because of cancellation effects.

There is another approach to numerical integration. Let us be given a function f on the interval [−1, 1].

We would like to find an approximate value of the integral
∫ x=1

x=−1
f(x) dx like this:

∫ x=1

x=−1

f(x) dx ≈
n∑
j=1

wjf(xj),

where the xj are certain points in the interval [−1, 1] (not necessarily equidistant), and the wj are
so–called weights.

Is it possible to choose the xj and wj in such a way that all polynomials up to a certain degree are
integrated exactly ? How high can that degree be ?

We have 2n free parameters (namely the xj and the wj) available, so we hope to integrate all polynomials
of degree less than or equal to 2n− 1 exactly. This leads us to the Gauss quadrature formulas. The xj
must be chosen as the zeroes of the Legendre12 polynomial Pn = Pn(x), which is defined as being the
(only) polynomial solution to the differential equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0

with Pn(1) = 1. The functions P0, P1, P2, . . . , Pn form an L2(−1, 1)–orthogonal basis of the space of all
polynomials of degree at most n. All the n zeroes of Pn are in the interval [−1, 1]. And the weights wk
must be chosen as

wk =

∫ x=1

x=−1

 n∏
j=1,j 6=k

x− xj
xk − xj

 dx =

∫ x=1

x=−1

 n∏
j=1,j 6=k

x− xj
xk − xj

2

dx.

For the convenience of the reader, we list the data for the case n = 7:

More parameters for the Gaussian quadrature (up to n = 96) can be found in [1].

9 Keplersche Faßregel
10 Sir Isaac Newton, 1642 – 1727
11 Roger Cotes, 1682 – 1716
12 Adrien–Marie Legendre, 1752 – 1833
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i xi wi
1 −0.949107912342759 0.129484966168870
2 −0.741531185599384 0.279705391489277
3 −0.405845151377397 0.381830050505119
4 0 0.417959183673469
5 +0.405845151377397 0.381830050505119
6 +0.741531185599384 0.279705391489277
7 +0.949107912342759 0.129484966168870

As an example, we use this to evaluate ln 5 =
∫ x=5

x=1
1
x dx. The exact value is

ln 5 ≈ 1.6094379124341002818 . . . .

First, we shift the interval [1, 5] to [−1, 1]:

t =
x− 3

2
, x = 2t+ 3, ln 5 =

∫ x=5

x=1

dx

x
=

∫ t=1

t=−1

2 dt

2t+ 3
.

Evaluating this last integral with Gaussian quadrature with n = 7 and with one or two sub-divisions,
as well as with the trapezoidal rule (n = 6) and Kepler’s rule (n = 6), we obtain the following numbers:

sub-division value error
0 1.6094346840305430703 3.228e− 06
1 1.6094378965041162519 1.592e− 08
2 1.6094379124141617306 1.993e− 11

Table 3.1: Gauss quadrature

sub-division value error
0 1.6436008436008436009 3.416e− 02
1 1.6182289932289932289 8.791e− 03
2 1.611653797587057737 2.215e− 03

Table 3.2: Trapezoidal rule

sub-division value error
0 1.6131128131128131129 3.675e− 03
1 1.6097717097717097716 3.338e− 04
2 1.6094620657064125734 2.415e− 05

Table 3.3: Kepler’s rule

More on Legendre Polyomials can be found here:

Literature: Greiner: Klassische Elektrodynamik. Chapter I.3: Entwicklung beliebiger Funktionen in
vollständige Funktionssysteme

3.2.7 Improper Integrals

Our definite integral as defined in Section 3.1 suffers from several restrictions. Two of them are that:

• the interval of integration must be bounded,

• the function to be integrated (the integrand) must be bounded.

Now we will overcome these restrictions, as much as possible.



3.2. THE INDEFINITE INTEGRAL OR ANTIDERIVATIVE 61

Unbounded Interval of Integration

Definition 3.24. Let f : [a,∞)→∞ be a function that is integrable on every interval [a,R] with a < R.
If the limit

lim
R→∞

∫ x=R

x=a

f(x) dx

exists, then this limit is denoted by
∫ x=∞
x=a

f(x) dx.

Example 3.25. For which values of α does the integral∫ x=∞

x=1

1

xα
dx

exist ? Compare with series of real numbers.

After defining integrals (−∞, b] in a very similar way, we then define∫ x=∞

x=−∞
f(x) dx :=

∫ x=0

x=−∞
f(x) dx+

∫ x=∞

x=0

f(x) dx,

under the assumption that the right–hand side exists. Or, equivalently,∫ x=∞

x=−∞
f(x) dx := lim

R−→−∞,R+→+∞

∫ x=R+

x=R−

f(x) dx.

The important thing to note here is that R− and R+ do not depend on each other. Each one can
approach its limit at its own preferred pace.

Question: How about the integrals
∫ x=∞
x=−∞ sin(x) dx and

∫ x=∞
x=−∞ cos(x) dx ?

Unbounded Integrand

Definition 3.26. Let f : [a, b] → R be a function which is integrable on every interval [a + ε, b] with
ε > 0. If the limit

lim
ε→+0

∫ x=b

x=a+ε

f(x) dx

exists, then this limit is denoted by
∫ x=b

x=a
f(x) dx.

Example: For which value of α does the integral∫ x=1

x=0

1

xα
dx

exist ? Compare with Example 3.25.

Integrals over the interval [a, b] with an unbounded integrand at the right endpoint b are defined similarly.
Next we will define integrals with an integrand having the one and only pole at a point c inside the interval
(a, b) by splitting the interval;∫ x=b

x=a

f(x) dx := lim
ε1→+0

∫ x=c−ε1

x=a

f(x) dx+ lim
ε2→+0

∫ x=b

x=c+ε2

f(x) dx

provided that the right–hand side exists.

Note that the ε1 and ε2 do not depend on each other.

Sometimes this restriction is considered too severe; and one wants to take advantage from cancellation
properties. In this case, one could use the Cauchy principal value13:

p.v.

∫ x=b

x=a

f(x) dx = lim
ε→+0

(∫ x=c−ε

x=a

f(x) dx+

∫ x=b

x=c+ε

f(x) dx

)
.

13Cauchy–Hauptwert
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Unfortunately, often the “p.v.” is omitted, leading to two different meanings of the same symbol.

Question: How about the integral
∫ x=1

x=−2
1
x dx ? Consider the usual integral and the Cauchy principal

value.

There is a nice criterion, connecting the convergence of a series of real numbers and the existence of an
improper integral.

Proposition 3.27. Let f : [1,∞)→ R be a monotonically decreasing function, taking only non–negative
values. Then the series

∑∞
n=1 f(n) converges if and only if the improper integral

∫ x=∞
x=1

f(x) dx exists.

Proof. Due to the monotonicity of f , we deduce for all n that

f(n) ≤
∫ x=n

x=n−1

f(x) dx ≤ f(n− 1),

hence
m∑
n=2

f(n) ≤
∫ x=m

x=1

f(x) dx ≤
m∑
n=1

f(n).

Then the convergence of the series implies the convergence of the improper integral, and vice versa.

The proof yields the following estimates from above and below:∫ x=∞

x=1

f(x) dx ≤
∞∑
n=1

f(n) ≤
∫ x=∞

x=1

f(x) dx+ f(1).

For instance,
∑∞
n=1 n

−2 can be estimated by

1 ≤
∞∑
n=1

1

n2
≤ 2.

The theory of Fourier series will give us as a by–product that
∑∞
n=1 n

−2 = π2/6.

3.3 Commuting Limit Processes

Now we have a sequence of functions (fn)n∈N that converges (in whichever sense of the word) to a limit
function f . We would like to know whether∫ x=b

x=a

lim
n→∞

fn(x) dx
?
= lim
n→∞

∫ x=b

x=a

fn(x) dx,

d

dx
lim
n→∞

fn(x)
?
= lim
n→∞

d

dx
fn(x), a ≤ x ≤ b.

Just as a warning example, consider the functions fn : [0, 1]→ R defined by

fn(x) :=


0 : x = 0,

n : 0 < x < 1
n ,

0 : 1
n ≤ x ≤ 1.

We see that limn→∞ fn(x) = 0 for each x ∈ [0, 1], but

1 = lim
n→∞

1 = lim
n→∞

∫ x=1

x=0

fn(x) dx 6=
∫ x=1

x=0

lim
n→∞

fn(x) dx =

∫ x=1

x=0

0 dx = 0.

Or choose functions gn : R→ R with

gn(x) :=
1

n
sin(nx),

which go to zero for n→∞, but the derivatives g′n(x) = cos(nx) do not converge for n→∞ to the zero
function.

These two examples teach us that we need more conditions than just convergence for each point x.
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Remark 3.28. Remember that the integrals and derivatives are defined as limits, namely limits over a
sequence of step functions, and limits of quotients of differences, respectively. From examples we learn
that limits, in general, cannot be commuted, e.g.,

lim
n→∞

lim
m→∞

an,m 6= lim
m→∞

lim
n→∞

an,m, an,m =
n

n+m
.

Seen from this point of view, the above two examples do not come as a surprise. As another example
(showing that the limit function of a sequence of continuous functions might be discontinuous),

lim
n→∞

lim
x→1−0

xn 6= lim
x→1−0

lim
n→∞

xn.

The situation becomes even more complicated if you ask whether∫ x=∞

x=a

lim
n→∞

fn(x) dx
?
= lim
n→∞

∫ x=∞

x=a

fn(x) dx,

because now three limit symbols appear on each side.

We should distinguish several types of convergence of a sequence of functions to a limit function.

Definition 3.29 (Pointwise convergence). We say that a sequence (fn)n∈N of functions mapping [a, b]
into R converges pointwise14 to a function f : [a, b] → R if, for each x ∈ [a, b], the sequence (fn(x))n∈N
of real numbers converges to fn(x). Written symbolically:

∀x ∈ [a, b] ∀ε > 0 : ∃N0(x, ε) : ∀n ≥ N0(x, ε) : |fn(x)− f(x)| < ε.

Definition 3.30 (Uniform convergence). We say that a sequence (fn)n∈N of functions mapping
[a, b] into R converges uniformly15 to a function f : [a, b] → R if it converges pointwise and the above–
mentioned N0 can be chosen independent of x ∈ [a, b]. Written symbolically:

∀ε > 0 : ∃N0(ε) : ∀x ∈ [a, b] ∀n ≥ N0(ε) : |fn(x)− f(x)| < ε.

The uniform convergence is the same as the convergence in the L∞–norm or sup–norm.

As we have seen in the above examples, pointwise convergence does not enable us to commute the integral
symbol and the limit symbol. However, the uniform convergence does.

Now we show that:

• uniform convergence preserves continuity,

• uniform convergence preserves integrability, and you can commute
∫

and limn,

• uniform convergence of the sequence of derivatives (f ′n)n∈N and pointwise convergence of the se-
quence (fn)n∈N together allow to commute d

dx and limn.

Proposition 3.31. Let (fn)n∈N ⊂ C([a, b] → R) be a sequence of continuous functions, uniformly
converging to a function f : [a, b]→ R. Then f is continuous.

By obvious changes of the notation, you can prove much more. Let U, V be Banach spaces and M ⊂ U
be a closed set. If a sequence (fn)n∈N ⊂ C(M → V ) converges to a function f : M → V , then f is
continuous. This is the missing proof to Satz 5.15 from the first term.

Proof. Fix x0 ∈ [a, b] and choose a positive ε. Then there is an n = n(ε) ∈ N, such that

|fn(x)− f(x)| < ε

3

for all x ∈ [a, b]. Keep this n. Since fn is continuous, there is a δ0 = δ0(ε, x0, n), such that for all
x ∈ [a, b] with |x− x0| < δ0, we have

|fn(x)− fn(x0)| < ε

3
.

14punktweise
15gleichmäßig
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For such n and x, we then can write

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)| < ε

3
+
ε

3
+
ε

3
.

Proposition 3.32. Let (fn)n∈N be a sequence of integrable functions, mapping [a, b] to R and converging
uniformly to a function f : [a, b]→ R.

Then the function f is integrable, and

lim
n→∞

∫ x=b

x=a

fn(x) dx =

∫ x=b

x=a

lim
n→∞

fn(x) dx =

∫ x=b

x=a

f(x) dx.

Proof. By definition of integrability, the functions fn are tame. That means: for each n ∈ N, we have a
sequence (ϕn,m)m∈N of step functions with

lim
m→∞

‖ϕn,m − fn‖L∞(a,b) = 0,

or, equivalently, the sequence (ϕn,m)m∈N converges uniformly to fn.

Choose a positive ε. Then there is an fn with

‖fn − f‖L∞(a,b) <
ε

2
,

by the uniform convergence of the fn to f . For this fn, we find a step function ϕn,m with

‖ϕn,m − fn‖L∞(a,b) <
ε

2
.

Hence we have found a step function ϕn,m with

‖ϕn,m − f‖L∞(a,b) < ε.

Consequently, the function f is tame. The second claim follows from∣∣∣∣∣
∫ x=b

x=a

fn(x) dx−
∫ x=b

x=a

f(x) dx

∣∣∣∣∣ ≤
∫ x=b

x=a

|fn(x)− f(x)|dx

= ‖fn − f‖L1(a,b) ≤ |b− a| ‖fn − f‖L∞(a,b) → 0 for n→∞.

The situation is more delicate for the derivatives. Uniform convergence of a sequence of functions (fn)n∈N
does not ensure differentiability of the limit function. Take fn = 1

n sin(nx), for instance. You need
uniform convergence of the sequence of the derivatives (f ′n)n∈N instead, and additionally convergence
of the sequence (fn)n∈N, at least in one point.

Question: Why is this additional condition necessary ?

Proposition 3.33. Let (fn)n∈N ⊂ C1([a, b] → R) be a sequence of differentiable functions with the
following properties:

• (f ′n)n∈N converges uniformly to a function g : [a, b]→ R,

• limn→∞ fn(c) exists, for at least one c ∈ [a, b].

Then the limit limn→∞ fn(x) =: f(x) exists for each x ∈ [a, b], this convergence is uniform, the limit
function f is continuously differentiable, and

f ′(x) = g(x), x ∈ [a, b].
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Proof. The functions f ′n are continuous, and the sequence (f ′n)n∈N converges uniformly, hence g is con-
tinuous, too. For each x ∈ [a, b], we have

fn(x) = fn(c) +

∫ t=x

t=c

f ′n(t) dt.

According to Proposition 3.32, the limit of the right–hand side exists and has the value f(c)+
∫ t=x
t=c

g(t) dt,
which is a continuously differentiable function on [a, b] (why ?).

Then the limit of the left–hand side must exist, too; and it must be a continuously differentiable function.
Call it f(x).

Let us now apply the above results, starting with power series.

We consider a power series f = f(x) =
∑∞
j=0 aj(x−x0)j . It is known that this series converges in a ball

of the complex plane with centre x0. It especially converges in an interval (x0 − R, x0 + R) of the real
axis, and the convergence is uniform in any compactly contained interval.

Question: Why ?

We put fn(x) =
∑n
j=0 aj(x− x0)j , which is obviously continuously differentiable and converges to f(x)

for n→∞.

Question: Check that the sequence (f ′n)n∈N converges uniformly in any interval (x0−R′, x0 +R′) with
R′ < R.

Since the sequence (fn(x0))n∈N trivially converges to f(x0), we find that the limit function f is differ-
entiable, and the derivative is

f ′(x) =

∞∑
j=0

ajj(x− x0)j−1, x ∈ (x0 −R, x0 +R).

Question: Why can we write R instead of R′ ?

Power series can be differentiated term-wise,
and the power series of the derivative has the same radius of convergence.

Examples:

• Prove that the power series of ln(1 + x) from last term converges for −1 < x ≤ 1.

• Give power series for arctan and arcsin. For which values of the argument do they converge ?

We conclude this section with some more results on commuting limit processes. We do not possess the
tools to prove them and refer the reader to [4, Vol. 2, Nr. 127].

Proposition 3.34 (Theorem of Arzela16). Let (fn)n∈N be a sequence of tame functions over a
bounded interval [a, b] that converges pointwise to a function f . We assume:

• the limit f is tame,

• the fn are uniformly bounded: there is a constant M , such that for all n and all x ∈ [a, b], the
inequality |fn(x)| ≤M holds.

Then limn→∞
∫ x=b

x=a
fn(x) dx =

∫ x=b

x=a
f(x) dx.

Proposition 3.35. Let I be an interval of the form [a,+∞) or (−∞, a], and let us be given a sequence
of functions (fn)n∈N. We assume:

• each function fn is continuous on I and improperly integrable on I,

• on each compact sub-interval of I, the sequence (fn)n∈N converges uniformly to a limit function f ,

16 Cesare Arzela, 1847 – 1912
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• there is a continuous function g : I → R, such that |fn(x)| ≤ g(x) for all n and all x ∈ I,

• this majorising function g is improperly integrable on I.

Then the limit function f is improperly integrable on I, and we can commute:

lim
n→∞

∫
I

fn(x) dx =

∫
I

f(x) dx.

Note that in the first proposition, we had to assume that the limit function is integrable; however, this
was not necessary in the second proposition.

The next result permits us to “differentiate under the integral”.

Proposition 3.36 (Differentiation with respect to parameters). Let Λ ⊂ R be a compact interval
and −∞ < a < b < +∞. Let α = α(λ), β = β(λ) be C1 functions from Λ into (a, b), and consider a
continuous function f : [a, b]× Λ→ R with continuous derivative ∂f

∂λ . Then the function

g = g(λ) =

∫ x=β(λ)

x=α(λ)

f(x, λ) dx

maps Λ into R, is continuously differentiable there, and has derivative

g′(λ) = f(β(λ), λ) · β′(λ)− f(α(λ), λ) · α′(λ) +

∫ x=β(λ)

x=α(λ)

∂f

∂λ
(x, λ) dx.

Differentiation under the integral sign is tricky if the interval of integration is unbounded and the integral
is improper. You will need an integrable majorant for the derivative ∂λf .

3.4 Fourier Series

Literature: Greiner: Klassische Elektrodynamik. Chaper I.3: Fourierreihen

Literature: Greiner: Klassische Mechanik II. Chapter III: Schwingende Systeme

Imagine a physical system that can “oscillate” at various frequencies simultaneously. For instance

• an electrical current in a metal wire and carrying a sound signal,

• a vibrating violine string,

• a quantum mechanical system that can take on various (discrete) states simultaneously, with certain
(complex) probabilities.

At least for the first two examples it is known that the system has a fundamental frequency17 and a large
number of harmonics18 which are integer multiples of the fundamental frequency. Writing a periodic
function as a Fourier series means to decompose it into a collection of oscillations, each being a pure
tone19 with its own frequency.

We say that a function f : R→ C is periodic20 with period ω ∈ R if for all t ∈ R the identity

f(t+ ω) = f(t)

holds. Typical examples of periodic functions are the trigonometric functions and their linear combi-
nations. The goal of this section is to show that every periodic function (with reasonable smoothness)
can be written (in a certain sense) as a series of trigonometric functions, so-called Fourier21 series. By

17Grundfrequenz
18Oberschwingungen, Obertöne
19Sinuston
20periodisch
21 Jean Baptiste Joseph Fourier, 1768 – 1830
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scaling the variable t, we may assume that ω = 2π. Then we would like to show that for a 2π–periodic
function f , there are constants an, bn, such that for all x ∈ R, we have

f(x) =
a0

2
+

∞∑
n=1

(an cos(nx) + bn sin(nx)) .

Another possibility to write f could be

f(x) =

+∞∑
n=−∞

cn exp(inx).

Unfortunately, it turns out that this is too much to ask from the poor function f . There are many
important 2π–periodic functions for which these identities are not always true, i.e., not for all x.

We have to be more careful and find answers to the following questions:

• do the series on the right–hand sides converge ?

• if yes, do they converge to f(x) ?

• is this convergence pointwise, or uniform, or something else ?

The most beautiful convergence result refers to the L2 norm, as we will see later.

We start with some basic result which avoids the delicate issue of the convergence of the series since we
add up only a finite number of terms:

Proposition 3.37 (Formulas for the Fourier coefficients). Let the function f be a so–called trigono-
metric polynomial, i.e., a function of the form

f(x) =

n=N∑
n=−N

cn exp(inx), x ∈ R.

Then f can be written as

f(x) =
a0

2
+

N∑
n=1

(an cos(nx) + bn sin(nx)) , x ∈ R,

where the two sets of coefficients can be converted into each other via

an = cn + c−n, bn = i(cn− c−n), cn =
1

2
(an− ibn), c−n =

1

2
(an + ibn), n ≥ 0, b0 := 0.

Moreover, these coefficients can be computed from the function f as follows:

an =
1

π

∫ x=2π

x=0

f(x) cos(nx) dx, n ≥ 0,

bn =
1

π

∫ x=2π

x=0

f(x) sin(nx) dx, n ≥ 1,

cn =
1

2π

∫ x=2π

x=0

f(x) exp(−inx) dx, n ∈ Z.

Proof. Multiply f by the appropriate trigonometric function and integrate over [0, 2π], exploiting Propo-
sition 3.20.

Question: Consider an abstract unitary vector space U of dimension k with orthonormal basis
(u1, . . . , uk). How can you determine the coefficients of a vector u ∈ U with respect to that basis ?

From now on, all functions can be complex-valued, and we will formulate most of the results in terms of
the exponential functions

en = en(x) := exp(inx), n ∈ Z, x ∈ R.
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You can rewrite all these results in terms of the Sine and Cosine functions yourselves.

The above integrals make sense not only for trigonometric polynomials f , but also for general 2π–periodic
tame functions. Consequently, we set

f̂n :=
1

2π

∫ x=2π

x=0

f(x) exp(−inx) dx, n ∈ Z, (3.2)

commonly known as the nth Fourier coefficient22, and write

f(x) ∼
∞∑

n=−∞
f̂nen(x).

Nothing has been said about the convergence of the series on the right; for this reason we write ∼ instead
of =. Additionally, we introduce the notation

(SNf)(x) :=

N∑
n=−N

f̂nen(x),

and we would like to know under which conditions and in which sense we have f = limN→∞ SNf .

This partial sum SNf is closely related to approximation problems, which we have studied in the last
term. Let us define a scalar product on the space of 2π–periodic tame functions:

〈f, g〉L2 :=

∫ x=2π

x=0

f(x)g(x) dx.

Then we have a nice formula for the Fourier coefficients f̂n for the function f :

f̂n =
〈f, en〉
〈en, en〉

.

As usual, we define a norm ‖f‖L2 :=
√
〈f, f〉. The space of tame functions, together with this norm,

becomes a normed space (which is, unfortunately, not a Banach space).

Denote VN := span(e−N , e−N+1, . . . , eN ), which is a vector space over C with dimension 2N + 1. The
elements of VN are called trigonometric polynomials23 of degree less than or equal to N . If f is a tame
function, then clearly SNf ∈ VN .

Proposition 3.38 (Best approximation). Let f be a 2π–periodic tame function and N ∈ N0. Define
SNf ∈ VN as above; and let gN 6= SNf be an arbitrary function from VN . Then

‖f − SNf‖L2 < ‖f − gN‖L2 , ‖f‖2L2 = ‖SNf‖2L2 + ‖f − SNf‖2L2 .

If you have a complicated function f and are looking for an approximation to f in the space VN , your
best choice is SNf .

Proof. This is Satz 2.31 from the first term in disguise. See Figure 3.1.

3.4.1 General Approximation Results

The proof of limN→∞ SNf = f requires some more tools. We start with the representation

(SNf)(x) =
1

2π

∫ t=2π

t=0

f(t)

(
n=N∑
n=−N

exp(in(x− t))

)
dt.

22Fourierkoeffizient
23trigonometrische Polynome
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Figure 3.1: In the sub-space VN , SNf is the best approximation to the given f . Any other element
gN ∈ VN is a worse approximation to f .

Introducing the Dirichlet24 kernel

DN (x) :=

n=N∑
n=−N

exp(inx),

we then can also write

(SNf)(x) =
1

2π

∫ t=2π

t=0

f(t)DN (x− t) dt,

which is a typical example of a convolution.

Definition 3.39 (Convolution on R1). Let f and g be tame functions from R1 to C, one of them
identically vanishing for large values of the argument. Then the convolution25 f ∗ g = (f ∗ g)(x) is the
function mapping R1 to C defined by

(f ∗ g)(x) :=

∫ t=+∞

t=−∞
f(t)g(x− t) dt.

Definition 3.40 (Convolution of periodic functions). Let f and g be 2π–periodic tame functions
from R to C. Then the convolution f ∗ g = (f ∗ g)(x) is the 2π–periodic function mapping R1 to C
defined by

(f ∗ g)(x) :=
1

2π

∫ t=2π

t=0

f(t)g(x− t) dt.

24 Peter Gustav Lejeune Dirichlet, 1805 – 1859
25Faltung
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Question: Instead of the interval [0, 2π], you can take any other interval of length 2π as interval of
integration, and will always get the same value of (f ∗ g)(x). Why ?

Question: Show the following:

• the convolution is commutative: f ∗ g = g ∗ f ,

• the convolution is linear in the first factor: (α1f1 + α2f2) ∗ g = α1(f1 ∗ g) + α2(f2 ∗ g).

Clearly, (SNf)(x) = (f ∗ DN )(x). We want this to be an approximation of f(x). To prove this, we
introduce so–called Dirac26 sequences, proposed by the physicist Paul Dirac.

Definition 3.41 (Dirac sequence). A sequence (δn)n∈N of real-valued tame functions is a Dirac se-
quence if the following conditions are fulfilled:

• δn(x) ≥ 0 for all x ∈ R and all n ∈ N,

•
∫ t=∞
t=−∞ δn(t) dt = 1 for all n ∈ N,

• For every ε > 0 and every r > 0, there is an N0(ε, r), such that for all n ≥ N0(ε, r), we have∫
R\[−r,r]

δn(t) dt < ε.

The functions δn have a peak at t = 0, which gets higher and higher as n grows.

Under the assumption that the function f behaves not too bad, the sequence of convolutions (δn ∗ f)n∈N
converges to f . We consider only the R1–version of the convolution; the periodic case can be proved
similarly.

Proposition 3.42 (General approximation result). Let f : R → C be a tame function, vanishing
identically for large arguments; and (δn)n∈N be a Dirac sequence. Put fn := f ∗ δn. Then the following
holds:

1. if f is continuous at a point x0, then the sequence (fn(x0))n∈N converges to f(x0);

2. if f is uniformly continuous on R, then the sequence (fn)n∈N converges uniformly on R,

3. if the functions δn are even, then the sequence (fn(x0))n∈N converges to 1
2 (f(x0 − 0) + f(x0 + 0)),

the arithmetic mean of the left and right limits, for all x0 ∈ R.

Proof. 1. Fix a positive ε. Since the function f is continuous at x0, there is a positive r, such that
|f(x0)− f(x0 − t)| < ε for |t| < r. Let n ≥ N0(ε, r) be arbitrary. Then we can write

|f(x0)− fn(x0)| =
∣∣∣∣f(x0) · 1−

∫ t=∞

t=−∞
f(x0 − t)δn(t) dt

∣∣∣∣
=

∣∣∣∣f(x0) ·
∫ ∞
t=−∞

δn(t) dt−
∫ t=∞

t=−∞
f(x0 − t)δn(t) dt

∣∣∣∣ =

∣∣∣∣∫ t=∞

t=−∞
(f(x0)− f(x0 − t))δn(t) dt

∣∣∣∣
≤
∫ t=∞

t=−∞
|(f(x0)− f(x0 − t)) · δn(t)| dt =

∫ t=∞

t=−∞
|(f(x0)− f(x0 − t))| · δn(t) dt

=

∫ t=r

t=−r
|f(x0)− f(x0 − t)| · δn(t) dt+

∫
R\[−r,r]

|f(x0)− f(x0 − t)| · δn(t) dt

≤
∫ t=r

t=−r
ε · δn(t) dt+

∫
R\[−r,r]

2 ‖f‖L∞(R) · δn(t) dt

≤ ε · 1 + 2 ‖f‖L∞(R) · ε

= ε(1 + 2 ‖f‖L∞(R)).

Here we have exploited all the three defining properties of the Dirac sequences. Therefore, the
difference |f(x0)− fn(x0)| can be made arbitrarily small.

26 Paul Adrien Maurice Dirac, 1902 – 1984
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2. If f is uniformly continuous, you can choose the above number r independent of x0. Then also the
number N0(ε, r) does not depend on x0.

3. For even δn, we have
∫ t=∞
t=0

δn(t) dt =
∫ t=0

t=−∞ δn(t) dt = 1
2 . Then we can write∣∣∣∣f(x0 − 0) + f(x0 + 0)

2
− fn(x0)

∣∣∣∣
≤
∫ t=0

t=−∞
|f(x0 − 0)− f(x0 − t)|δn(t) dt+

∫ t=∞

t=0

|f(x0 + 0)− f(x0 − t)|δn(t) dt,

and continue in a similar way as in part 1.

Corollary 3.43 (Weierstrass27 Approximation Theorem). For each continuous function on a
compact interval, there is a sequence of polynomials converging uniformly to that continuous function.

Sketch of proof. Choose

δn(t) :=


0 : t ≤ −1,

cn(1− t2)n : − 1 < t < 1,

0 : t ≥ 1,

where the constant cn is determined by the condition
∫ t=+∞
t=−∞ δn(t) dt = 1. Dive into some details and

then apply Proposition 3.42.

Corollary 3.44. For each 2π–periodic continuous function, there is a sequence of trigonometric poly-
nomials converging uniformly to that periodic continuous function.

Sketch of proof. A trigonometric polynomial is a linear combination of terms exp(int), hence the nth
power of z := exp(it). All that remains is to apply a variant of the Weierstrass approximation theorem.

3.4.2 Pointwise Convergence

Now we determine the pointwise limit of the Fourier approximations, limN→∞ SNf .

We have (SNf)(x) = (f ∗ DN )(x), so our first try is take advantage from Proposition 3.42. However,
this does not work, because DN can become negative, due to

DN (x) =
sin
(
N + 1

2

)
x

sin 1
2x

, x 6∈ 2πZ. (3.3)

Question: Show (3.3).

In this situation, the following brilliant lemma saves us.

Lemma 3.45. Let (an)n∈N+ be an arbitrary sequence, and put

αn =
1

n
(a1 + a2 + · · ·+ an−1 + an).

If the sequence (an)n∈N+ converges to a limit A, then also the sequence (αn)n∈N+ converges to the same
limit A.

Proof. We know that limn→∞ an = A, which means

∀ ε > 0 ∃ N0,a(ε) : ∀ n ≥ N0,a(ε) : |an −A| < ε,

27 Karl Theodor Wilhelm Weierstrass, 1815 – 1897
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Figure 3.2: The Dirichlet kernel for N = 10

and we wish to show that

∀ ε > 0 ∃ N0,α(ε) : ∀ n ≥ N0,α(ε) : |αn −A| < ε.

If we succeed in constructing N0,α(ε), then we are done. The following N0,α(ε) will give us what we
need:

N0,α(ε) :=

⌈
N0,a(ε/3)

ε/3
· (C + |A|)

⌉
, C := sup

n∈N
|an|,

with d. . . e denoting the rounding up. This works, because, for n ≥ N0,α(ε), we have

|αn −A| ≤
N0,a(ε/3)∑
j=1

1

n
|an −A|+

n∑
j=N0,a(ε/3)+1

1

n
|an −A|

≤
N0,a(ε/3)∑
j=1

C + |A|
n

+

n∑
j=N0,a(ε/3)+1

ε/3

n

=
N0,a(ε/3)

n
· (C + |A|) +

n−N0,a(ε/3)

n
· ε

3

≤ N0,a(ε/3)

N0,α(ε)
· (C + |A|) +

ε

3

=

(
N0,a(ε/3)

ε/3
· (C + |A|)

)
· ε/3

N0,α(ε)
+
ε

3

≤ N0,α(ε) · ε/3

N0,α(ε)
+
ε

3
=

2

3
ε.

This was our goal.

In the spirit of this lemma, we define

(σnf)(x) :=
1

n
((S0f)(x) + (S1f)(x) + · · ·+ (Sn−1f)(x)) , n ∈ N+.
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Clearly, we have the integral representation (by the linearity of the convolution and the identity
2 sinα sinβ = cos(β − α)− cos(β + α))

(σnf)(x) = (Fn ∗ f)(x),

Fn(x) :=
1

n
(D0(x) +D1(x) + · · ·+Dn−1(x)) =

1

n sin 1
2x

n−1∑
j=0

sin

(
j +

1

2

)
x

=
1

n(sin 1
2x)2

n−1∑
j=0

sin
1

2
x sin

(
j +

1

2

)
x

=
1

2n(sin 1
2x)2

n−1∑
j=0

(cos(jx)− cos((j + 1)x)) =
1

2n(sin 1
2x)2

(1− cos(nx))

=
1

n

(
sin n

2x

sin 1
2x

)2
,

from which we easily get that the Fn form a Dirac sequence in the following sense:

Lemma 3.46. The Fejer28 kernels Fn are even functions; and additionally,

• Fn(x) ≥ 0 for all x and n ∈ N+,

• 1
2π

∫ t=π
t=−π Fn(t) dt = 1,

• For every ε > 0 and r > 0, there is an N0(ε, r), such that for all n ≥ N0(ε, r), we have∫
[−π,π]\[−r,r]

Fn(t) dt < ε.
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Figure 3.3: The Fejer kernel for n = 10

Then the periodic version of Proposition 3.42 immediately yields the following result:

28Lipot Fejer, 1880 – 1959
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Proposition 3.47. If f is a 2π–periodic tame function, then:

1. if f is continuous at x0, then the sequence ((σnf)(x0))n∈N converges to f(x0);

2. if f is continuous on R, then the sequence (σnf)n∈N converges to f uniformly on [0, 2π],

3. the sequence ((σnf)(x0))n∈N always converges to 1
2 (f(x0 − 0) + f(x0 + 0)).

Going back to the original Fourier polynomials Snf , we then find, by the aid of Lemma 3.45:

Proposition 3.48. Let f be a 2π–periodic tame function. If the sequence ((Snf)(x0))n∈N converges, then
it must converge to 1

2 (f(x0−0)+f(x0−0)). If, additionally, f is continuous at x0, then ((Snf)(x0))n∈N
can only converge to f(x0).

This is the best result we can get, for there are continuous 2π–periodic functions f , whose sequence of
Fourier approximations (Snf)n∈N does not converge everywhere.

3.4.3 Convergence in L2

Our above result on pointwise convergence is not completely satisfactory. We did not succeed in showing
that the Fourier series of a tame function (or continuous function) converges everywhere.

The situation is better if we ask for a weaker convergence, namely the convergence in the L2–norm. As
an added bonus: the L2 convergence is physically highly meaningful.

Proposition 3.49 (Convergence in L2). Let f be a 2π–periodic tame function. Then the Fourier
series converges in the L2–norm:

lim
n→∞

‖f − Snf‖L2(0,2π) = 0.

Proof. Step 1: strengthen the assumption; let f be continuous on R.

By Proposition 3.47, part 2, the sequence (σnf)n→∞ converges uniformly to f :

lim
n→∞

‖f − σnf‖L∞(0,2π) = 0.

Note that each function u ∈ L∞(0, 2π) satisfies

‖u‖L2(0,2π) =

√∫ 2π

x=0

|u(x)|2 dx ≤

√∫ 2π

x=0

‖u‖2L∞(0,2π) dx = ‖u‖L∞(0,2π) ·

√∫ 2π

x=0

1 · dx

=
√

2π ‖u‖L∞(0,2π) .

Therefore, we have, by Proposition 3.38,

‖f − Snf‖L2(0,2π) ≤ ‖f − σnf‖L2(0,2π) ≤
√

2π ‖f − σnf‖L∞(0,2π) ,

and this implies limn→∞ ‖f − Snf‖L2(0,2π) = 0.

Step 2: going back to the original assumption; f is just tame.

For each positive ε, you can find a continuous function fε with ‖f − fε‖L2 < ε.

Question: Build such an fε, drawing a picture if necessary.

We can always write, by the triangle inequality,

‖f − Snf‖L2(0,2π) ≤ ‖f − fε‖L2(0,2π) + ‖fε − Snfε‖L2(0,2π) + ‖Sn(fε − f)‖L2(0,2π) .

Note that ‖Snu‖L2(0,2π) ≤ ‖u‖L2(0,2π), which is plausible from a picture like Figure 3.1, and a
rigorous proof is in Proposition 3.38. Then we get

‖f − Snf‖L2(0,2π) ≤ ‖f − fε‖L2(0,2π) + ‖fε − Snfε‖L2(0,2π) + ‖fε − f‖L2(0,2π)

≤ ε+ ‖fε − Snfε‖L2(0,2π) + ε.

Note that the second item can be made arbitrarily small for large n; this follows from Step 1 of
this proof. All together we obtain ‖f − Snf‖L2(0,2π) < 3ε for n ≥ N0(ε, f).
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This beautiful result can be even improved: for the L2–convergence of the Fourier series, it is not necessary
to assume that the function be tame. Recall what tame means: the function has to be bounded, and at
every point, the limit from the left and the limit from the right must exist. We do not need this for the
L2–convergence of the Fourier series. It suffices to assume that the function to be approximated belongs
to the Lebesgue–space L2(0, 2π).

Definition 3.50 (Lp space). A function f belongs to the Lebesgue space Lp(0, 2π) for 1 ≤ p < ∞ if
there is a sequence (ϕn)n∈N of step functions with the following properties:

• the sequence (ϕn)n∈N is a Cauchy sequence in the Lp(0, 2π)–norm:

‖g‖Lp(0,2π) =

(∫ t=2π

t=0

|g(t)|p dt

)1/p
;

• the sequence (ϕn(x))n∈N converges almost everywhere to f(x).

“Almost everywhere” means “everywhere with the exception of a set of Lebesgue measure29 zero”. A
subset A of R has the Lebesgue measure zero if, for every ε > 0, you can find a countable30 collection of
intervals that cover A, and whose sum of lengths is at most ε.

A function from such a Lebesgue space may be continuous nowhere; and its limits from left or right may
exist nowhere; and it can have (soft) poles. A function belongs to Lp(0, 2π) if its Lp–norm is finite.

Proposition 3.51 (Convergence in L2). The Fourier series of a 2π–periodic function from L2(0, 2π)
converges in the L2–norm.

The proof of this nice result is very similar to the proof of Proposition 3.49.

You can generalise this result a bit more:

Proposition 3.52 (Convergence in Lp). The Fourier series of a 2π–periodic function from Lp(0, 2π)
with 1 < p <∞ converges in the Lp–norm.

The convergence in the Lp–norm for p > 2 is stronger than the L2–convergence.

The proof is insightful and amazing; we could learn a lot from it. Regrettably, the shortness of this term
(only 14 weeks) and the length of the proof (about 20 pages) force us to omit it.

We conclude the section on Fourier series with a famous result, which you can consider as “splitting of
energy” if you would like.

Proposition 3.53 (Bessel’s31 Identity). Let f ∈ L2(0, 2π) be a 2π–periodic function, and let f̂n be
its Fourier coefficients as defined in (3.2). Then we have

‖f‖2L2(0,2π) =

∫ t=2π

t=0

|f(t)|2 dt = 2π

+∞∑
n=−∞

|f̂n|2.

Proof. We know that

f(x) =

∞∑
n=−∞

f̂nen(x),

where we understand the equality sign as “convergence in the L2–norm”. Rewrite this as f =∑N
n=−N f̂nen + RN . The functions en are orthogonal to each other (why ?) and to RN . Then the

Pythagoras theorem yields

‖f‖2L2 =

N∑
n=−N

|f̂n|2 ‖en‖2L2 + ‖RN‖2L2 = 2π

N∑
n=−N

|f̂n|2 + ‖RN‖2L2 .

The last term goes to zero for N →∞.

29Lebesgue–Maß
30abzählbar
31 Friedrich Wilhelm Bessel, 1784 – 1846
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We should explain why Bessel’s identity can be seen as a splitting of the energy. Typically, kinetic
energies are quadratic functionals. Suppose that a particle of mass m performs at the same time two
linear motions with the velocity vectors ~v1 and ~v2. Then the kinetic energy associated to the motion ~v1

and ~v2, respectively, are

E1 =
m

2
‖~v1‖2 , E2 =

m

2
‖~v2‖2 .

And the total energy is

Etotal =
m

2
‖~v1 + ~v2‖2 .

Since ‖~v1 + ~v2‖2 = ‖~v1‖2 + 2 〈~v1, ~v2〉+ ‖~v2‖2, we only have Etotal = E1 + E2 if ~v1 ⊥ ~v2.

The kinetic energy functional will only respect the splitting into two sub-motions
if those sub-motions are perpendicular to each other !

In the case of the Fourier series, we are lucky, since en ⊥ em for n 6= m, hence the electrical energy of the
sound signal in the wire to your earphones really can be split into the various frequency components.

3.4.4 Excursion: Dirac’s Delta–Distribution

The delta distribution is an indispensable tool for physicists, so you should know it.

Never ever say in a maths lecture that the delta function takes the value +∞ at the origin,
everywhere else it takes the value zero, but its integral over the real line equals one.

That is preposterous nonsense.32

Every physicist should have seen a rigorous definition of the delta distribution at least once; and since
this definition is quite similar to that of Dirac sequences (Definition 3.41), it is no big issue to discuss
this matter right now. An added bonus is that you will better understand where the computing rules of
the delta distribution come from.

To this end, we need some preparations:

Definition 3.54 (Test function space). The set C∞0 (R) consists of all functions ϕ : R → R which
are differentiable an infinite number of times, and which vanish for large arguments: for ϕ ∈ C∞0 (R),
there is a number M > 0 such that ϕ(x) = 0 for all |x| ≥M . The members of that space are called test
functions. We also write D instead of C∞0 (R).

Definition 3.55 (Distribution). A distribution T is a linear and continuous map from D = C∞0 (R)
to R. The set of all distributions is written as D′.

We should explain this a bit:

linear: if T ∈ D′ and ϕ1, ϕ2 ∈ D, and α1, α2 ∈ R, then T (α1ϕ1 + α2ϕ2) = α1T (ϕ1) + α2T (ϕ2).

continuous: if a sequence (ϕk)k∈N of test functions converges to a test function ϕ∗ in D, then
limk→∞ T (ϕk) = T (ϕ∗).

convergence in D: we say that a sequence (ϕk)k∈N converges to a test function ϕ∗ in D if there is a
number M > 0 such that ϕk(x) = 0 for all k and all |x| ≥ M , and if ‖∂mx (ϕk − ϕ∗)‖L∞ → 0 for
k →∞ and all derivative orders m ∈ N.

32 And it is also strategically not really clever. If you deal with mathematical objects like functions or vector fields or
tensors or coordinates of a point, it is advantageous to have an eye on how they are transformed when the coordinate system
changes. Each object can transform in covariant style or contravariant style. And it turns out that distributions always
transform in the opposite style: if the underlying test functions transform covariantly, then the associated distributions
transform contravariantly, and vice versa.
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It turns out (and is quite easy to prove) that D′ is a vector space over the field R. Its dimension is
infinite, and it is not a normed space in the sense that one norm is not enough to describe its topology.

The two key examples of distributions are the following:

delta distribution: define a mapping δ0 : D→ R by δ0(ϕ) = ϕ(x = 0), for ϕ ∈ D.

regular function: let f : R → R be a tame function. Then we set If (ϕ) =
∫∞
x=−∞ f(x)ϕ(x) dx, for

ϕ ∈ D. The I stands for “integration”.

In that sense, every integrable function can be interpreted as a distribution.

A crucial step is the following general representation (whose proof is beyond our reach, unfortunately):

Proposition 3.56. Every distribution T can be approximated via smooth regular functions in the fol-
lowing sense:

For each T ∈ D′, there is a sequence (fk)k∈N with fk ∈ D for all k, with the property that

T (ϕ) = lim
k→∞

Ifk(ϕ), ∀ϕ ∈ D.

For instance, the regular functions fk giving an approximation of the delta distribution δ0 can be chosen
very similarly to the Dirac sequences from Definition 3.41.

Now we are in a position to understand some computing rules of the delta distribution:

(δ0(ax))(ϕ(x)) =
1

a
δ0(ϕ) =

1

a
ϕ(x = 0), a > 0,

δ′0(ϕ) = −ϕ′(x = 0).

To show them, we proceed as follows. Let (fk)k∈N be a sequence of functions approximating δ0 in the
above sense. Then we have

(δ0(ax))(ϕ(x)) = lim
k→∞

∫ ∞
x=−∞

fk(ax)ϕ(x) dx = lim
k→∞

∫ ∞
y=−∞

fk(y)ϕ(y/a)
1

a
dy =

1

a
ϕ(y = 0),

δ′0(ϕ) = lim
k→∞

∫ ∞
x=−∞

f ′k(x)ϕ(x) dx = − lim
k→∞

∫ ∞
x=−∞

fk(x)ϕ′(x) dx = −ϕ′(x = 0).

3.5 Curves

3.5.1 General Properties

Definition 3.57 (Curve, Image). A curve33 is a continuous function γ which maps a compact interval
into Rn:

γ : [a, b]→ Rn,
γ : t 7→ γ(t) = x(t) = (x1(t), . . . , xn(t))>.

The set Γ = {γ(t) : a ≤ t ≤ b} is called image of the curve.

Different curves may have the same image. Here are two curves for the upper semi-circle, run in counter-
clockwise orientation:

γ : [0, π]→ R2, γ(ϕ) = (cosϕ, sinϕ)>,

γ : [−1, 1]→ R2, γ(t) =

(
−2t

1 + t2
,

1− t2

1 + t2

)>
.

Always distinguish a curve γ from its image Γ !

33Kurve
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Definition 3.58. A curve γ : [a, b]→ Rn is called simple if γ(t) = γ(s) implies s = t or {s, t} = {a, b}.
A curve γ : [a, b]→ Rn is said to be a loop34 or closed if γ(a) = γ(b).

A simple closed curve is called a Jordan curve35 36.

You may think of a curve γ as a trajectory of a moving particle; and the image Γ can be visualised like
a condensation trail of a jet flying in the sky. The image Γ is the object we are really interested in, and
the curve γ is mostly an analytical tool for the investigation of Γ. Be advised that the denotation in the
literature is not uniform. Sometimes the function γ is called parametrisation, and then the image Γ is
called curve.

Be warned that the curves can be scary creatures. Naively, one should expect the image of a curve to
be an one-dimensional object. Nevertheless, in 1890, Peano37 constructed a (non-simple) curve whose
image fills the whole square (0, 1) × (0, 1) ⊂ R2 and is, consequently, a two-dimensional object. More
information can be found in the Wikipedia, under the entries Peano curve and Hilbert curve.

But if we consider only Jordan curves, such strange things cannot happen:

Proposition 3.59 (Jordan Curve Theorem). A Jordan curve in the plane divides the plane into
three parts: a part “inside the image”, a part “outside the image”, and the image itself. The image is
the boundary of the “inner part”, and is the boundary of the “outer part”.

Looking at the Peano example, it should be no surprise to you that the proof of the Jordan curve theorem
is longer than we have the time for.

For a curve γ : [a, b]→ Rn, consider a subdivision of the interval [a, b]:

a = t0 < t1 < t2 < · · · < tm−1 < tm = b.

Then you can connect γ(ti−1) and γ(ti) by a straight line. The union of all these straight lines should
give us an approximation of the image of the curve by a polygon, which clearly has a length. And
intuitively it is clear that the length of the curve γ can never be shorter than the length of the polygon.

Definition 3.60 (Length). The length of a curve γ : [a, b]→ Rn is defined as

length(γ) := sup


m∑
j=1

‖γ(tj)− γ(tj−1)‖ : a = t0 < t1 < · · · < tm−1 < tm = b

 .

A curve γ is called rectifiable38 if its length is finite.

A deeper look at this definition will convince you that two curves γ, γ̃ with the same image Γ have the
same length. We should speak in terms of lengths of images of curves, not just lengths of curves.

Definition 3.61 (Tangent vector). A curve γ : [a, b]→ Rn is said to be differentiable if the function
γ is differentiable. The vector γ̇(t) is called tangent vector to the curve at the point γ(t), for t ∈ [a, b].

Warning: The differentiability is the property of the curve, not the property of the image. It can happen
that the curve γ is differentiable (even differentiable an infinite number of times), but the image Γ of
that curve has a “corner” like this: p. Moreover, if the curve is not a simple curve, but “intersects”
itself like the symbol ∞, the intersection point of the image can have more than one tangent.

Corners of the image will be impossible if we demand the curve to be regular:

Definition 3.62 (Regular curve). A curve is said to be regular if it is continuously differentiable and
the tangent vector is never the null vector.

34Schleife
35Jordankurve
36 Marie Ennemond Camille Jordan, 1838 – 1922, also explorer of the Jordan normal form, not to be confused with

Wilhelm Jordan, 1842 – 1899, famous for the Gauss–Jordan method
37Giuseppe Peano, 1858 – 1932
38rektifizierbar
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Proposition 3.63 (Length). The length of a continuously differentiable curve γ : [a, b] → Rn can be
calculated as follows:

length(γ) =

∫ t=b

t=a

‖γ̇(t)‖ dt,

where ‖γ̇(t)‖ =
√
ẋ2

1(t) + · · ·+ ẋ2
n(t). Different curves with the same image have the same length.

Proof. Geometrically, it should be plausible. The details are dropped.

Corollary 3.64. Consider a differentiable function y = f(x) mapping the interval [a, b] into R1. The
graph of this function is the image Γ of a curve γ, whose length is

length(γ) =

∫ x=b

x=a

√
1 + (f ′(x))2 dx.

Proof. Without loss of generality, we can write γ as γ : [a, b]→ R2, γ(x) = (x, f(x))>.

Example: Consider the interval [a, b] = [−1, 1] and the function y = f(x) =
√

1− x2, and compute the
length of the curve described by the graph of f .

The curve γ is also called a parametrisation39 of the image Γ. If you have a parametrisation, you can
always replace it by another parametrisation giving it the same image. It suffices to choose an arbitrary
strictly monotone increasing function t = t(s) which maps an interval [c, d] onto [a, b], and consider

(γ ◦ t)(s) = γ(t(s)).

If the function t = t(s) is strictly monotone decreasing instead, mapping the interval [c, d] onto [a, b],
then the re-parametrisation γ ◦ t induces an “inversion of the direction”: the “particle” is now travelling
along Γ, but backwards. Sometimes we will write −Γ instead of Γ to make it clear that the direction
has been inverted.

Definition 3.65. A parametrisation γ of an image Γ is said to be natural or unit speed or a parametri-
sation by arc-length40 if ‖γ̇(t)‖ = 1 for all t.

Then the tangent vector is always normalised, and the length of the curve γ : [a, b]→ Rn is simply b− a.

Finally, we consider the important case of planar curves41. These are curves whose image is contained
in the two–dimensional Euclidean plane.

Proposition 3.66. Let us be given a planar curve,(
x
y

)
=

(
f(t)
g(t)

)
, a ≤ t ≤ b,

where the functions f and g are continuously differentiable. If ḟ(t) is always positive, then the image of
this curve can be written in the form y = y(x) with derivative

y′(x) =
ġ(t)

ḟ(t)
, x = f(t).

If, additionally, f and g are twice continuously differentiable, then the second derivative of the function
y = y(x) is

y′′(x) =
g̈(t)

(ḟ(t))2
− ġ(t)f̈(t)

(ḟ(t))3
, x = f(t).

39Parametrisierung
40 Bogenlängenparametrisierung
41ebene Kurven
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Proof. The function x = f(t) is invertible, because ḟ never vanishes. Then we have an inverse function
t = τ(x) with x = f(τ(x)); and y = y(x) is y = g(τ(x)). Differentiating this twice with respect to x
gives

1 = ḟ(τ(x))τ ′(x),

0 = f̈(τ(x))(τ ′(x))2 + ḟ(τ(x))τ ′′(x),

y′(x) = ġ(τ(x))τ ′(x),

y′′(x) = g̈(τ(x))(τ ′(x))2 + ġ(τ(x))τ ′′(x).

All that remains is to plug these equations into each other.

A fundamental property of a planar curve is the curvature42. Roughly, it tells you how much you have
to turn the steering wheel at a point if you are driving along the image of the curve with a car. The
curvature is positive or negative if you are driving at a left curve or a right curve, respectively.

More precisely, the curvature at a point (x0, y0) of the image of the curve is defined as follows: suppose
without loss of generality that we are given a unit speed parametrisation (x, y)> = γ(s) = (γ1(s), γ2(s))>

of the curve. Denote the tangential vector (velocity) by T (s) = γ′(s). The unit normal vector N(s) is
obtained by rotating T (s) to the left 90 degrees,

N(s) =

(
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

)
γ′(s) =

(
0 −1
1 0

)(
γ′1(s)
γ′2(s)

)
=

(
−γ′2(s)
γ′1(s)

)
.

The vectors N(s) and T ′(s) are parallel (this is a key advantage of the unit speed parametrisation).

Question: Why ?

Finally, the curvature κ(s) is defined by T ′(s) = κ(s)N(s). The modulus of the curvature can be easily
computed as |κ(s)| = ‖T ′(s)‖ = ‖γ′′(s)‖.
Another approach to the curvature is the following: Suppose for simplicity reasons that in a neighbour-
hood of the point under consideration, the image of the curve can be written as a twice continuously
differentiable function y = y(x). Now you determine a circle that passes through (x0, y0) and whose
describing function y = c(x) has (at the point x0) the same first and second derivatives as y = y(x).
There is exactly one such circle. The modulus of the curvature of the curve is the inverse of the radius
of that circle.

Proposition 3.67 (Curvature). For a regular C2–curve γ = (x, y)>, the curvature is

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ2(t) + ẏ2(t))3/2
.

Especially, for a graph of a function given by y = f(x), the curvature is

κ(x) =
f ′′(x)

(1 + (f ′(x))2)3/2
.

And in case of the unit speed parametrisation γ = (x(s), y(s))>, we have

κ(s) = x′(s)y′′(s)− x′′(s)y′(s).

Proof. Nice exercise.

We continue with some remarks about areas.

Proposition 3.68 (Sectorial area). Let γ : [a, b] → R2 be a continuously differentiable curve. The
sectorial area43 between the image of this curve and the origin is defined as follows: take a polygonal
line approximating the image of γ and adjoin the origin to it, which gives you a closed polygon for which
you can compute the area. The sectorial area between the image of γ and the origin is then the limit
that you obtain if you make the partition of the interval [a, b] underlying the polygonal approximation
infinitesimally fine.

42Krümmung
43Sektorfläche
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The sectorial area is equal to

A(γ) =
1

2

∫ t=b

t=a

(x(t)ẏ(t)− y(t)ẋ(t)) dt.

Proof. The area of a triangle with the corners (x1, y2)>, (x2, y2)>, and (x3, y3)> is

A =
1

2
det

1 x1 y1

1 x2 y2

1 x3 y3

 .

The details are left to the student.

3.5.2 Applications

Definition 3.69 (Conic sections). Fix positive real numbers a, b, p. An ellipse, hyperbola, parabola
in normal form44 is the set of all points (x, y)> ∈ R2 that solve the equations

x2

a2
+
y2

b2
= 1, (ellipse),

x2

a2
− y2

b2
= 1, (hyperbola),

y2 = 2px, (parabola).

Figure 3.4: An ellipse with a = 5 and b = 4. The two focal points F− and F+ are at (±m, 0) with
m =

√
a2 − b2 = 3. The two dashed lines, connecting the two foci to the generic point P on the ellipse,

add up to 2a = 10. A ray of light that starts at F− and gets reflected at the ellipse obeying the well-
known reflection rule, passes through F+. The numerical eccentricity ε := m

a < 1 measures how far the
ellipse differs from a circle. The shifted polar coordinates have their center in F−.

44Ellipse, Hyperbel, Parabel in Normalform
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Figure 3.5: A hyperbola with a = 4 and b = 3. The asymptotic lines (dotted) are given by |xa | = |
y
b |. The

two focal points F− and F+ are at (±m, 0) with m =
√
a2 + b2 = 5. The two dashed lines, connecting

the two foci to the generic point P on the hyperbola, have lengths whose absolute difference is 2a = 8.
The numerical eccentricity ε := m

a is now greater than 1. The shifted polar coordinates have their center
now in the right focal point F+, and the formula r(ϕ) = pε

1−ε cosϕ only describes the right branch of the
hyperbola, not the left one.

You can always rewrite these equations in shifted polar coordinates,

r = r(ϕ) =
pε

1− ε cosϕ
,

where ε < 1, ε > 1 and ε = 1 in case of the ellipse, hyperbola, parabola, respectively. The parameters
(a, b) and (p, ε) are connected via

a =
εp

|1− ε2|
, b =

εp√
|1− ε2|

.

Question: Show that, for given a and b, you can always find such ε and p. Prove the above polar
coordinate formula for these conic sections45.

Then we can consider the motion of a celestial body46 around the sun.

Put the origin in the centre of the sun, and call the masses of the moving body and the sun m and M ,
respectively. The gravitation law and Newton’s third axiom give

mẍ = −γMm
x

‖x‖3
.

45Kegelschnitte
46Himmelskörper
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Figure 3.6: A parabola with equation y2 = 2px, where p = 6. The focus F is at (p2 , 0), and the directrix
(in German: Leitlinie) is the line given by the equation x = −p2 . The two dashed lines have equal
length. A ray of light that travels horizontally leftward and gets reflected at the parabola obeying the
well-known reflection rule, passes through F . This is the reason why your satellite dish antenna works !
The numerical eccentricity ε is now exactly equal to 1. The shifted polar coordinates have their center
in the focal point F , and the parabola can be written as r(ϕ) = p

1−cosϕ in these polar coordinates.

We define the vector of angular momentum47 and the axial vector48 as

J = x×mẋ,

A =
1

γMm
J × ẋ+

x

‖x‖
.

Lemma 3.70. The vectors J and A are constant in time, and perpendicular to each other.

Proof. Show that the time derivatives vanish. Be careful to not turn your calculations into a big mess.

Therefore, the three-dimensional vector x must live in a two-dimensional plane. Introduce a system of
polar coordinates (r, ϕ) as usual in this plane, where you count ϕ starting from A. Put ε = ‖A‖. Then
we have two expressions for the scalar product 〈A, x〉:

〈A, x(t)〉 = ε ‖x(t)‖ cosϕ(t),

〈A, x(t)〉 =
1

γMm
〈J × ẋ(t), x(t)〉+ ‖x(t)‖ =

1

γMm
det(J, ẋ(t), x(t)) + ‖x(t)‖

=
1

γM
det(mẋ(t), x(t), J) + ‖x(t)‖ =

1

γM
〈mẋ(t)× x(t), J〉+ ‖x(t)‖ = − J2

γMm2
+ ‖x(t)‖ .

Here we have used that the determinant function (written as det) in R3 does not change under cyclic
permutations of its three arguments.

47Drehimpulsvektor
48Achsenvektor
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In case of ‖A‖ = 0, we see that x is running around in circles. Otherwise we have

r(t) = ‖x(t)‖ =
εp

1− ε cosϕ(t)
, p =

J2

γMm2 ‖A‖
.

This proves that the celestial body is moving along a conic section.

In case of a comet, you may have either a hyperbola or an ellipse. In case of a planet, it is an ellipse.

Kepler’s First Law: The planets move along an ellipse with the sun as one of its focal points49.

Now define Cartesian coordinates with basis vectors e1, e2, e3 which are given by the relations e1 ‖ A
and e3 ‖ J . Then x3(t) ≡ 0, and

1

m
J = x× ẋ =

 0
0

x1ẋ2 − ẋ1x2

 .

Then Proposition 3.68 tells you that the sectorial area between the position at time t1 and the position
at time t2 (and the origin) is ± 1

2m ‖J‖ |t2 − t1|, which depends only on the difference of the times.

Kepler’s Second Law: The position vector covers equal areas in equal time intervals.

Calling the time needed for one revolution T and the area of the ellipse A0, we find that A0 = 1
2m ‖J‖ T .

On the other hand, the area of an ellipse with parameters (a, b) is A0 = πab = πa2
√

1− ε2. Together
with a = εp

1−ε2 and the above formula for p, you then compute like this:

T 2 =

(
2mA0

‖J‖

)2

=
4m2

J2
· (πa2

√
1− ε2)2 =

4m2π2

J2
a3 · a(1− ε2) =

4m2π2

J2
a3 · ε · p

=
4m2π2

J2
a3 · ‖A‖ · J2

γMm2 ‖A‖
,

which brings you to the famous formula

T 2 =
4π2

γM
a3.

Kepler’s Third Law: The squares of the periods of revolution are proportional to the cubes of the
long axes.

3.6 Curve Integrals

We know integrals
∫ t=b
t=a

f(t) dt over an interval [a, b], which can be construed as a straight line in Rn.

In this section, we will replace this straight line by a curve in Rn. There are (at least) two choices for
the replacement of the integrand f and the differential dt: scalar-valued or vector-valued.

Curve integrals of first kind: the integrand f and the differential dt are scalars. Think of f as a
density of charges distributed along a curve, and dt = ds is the differential of arc-length. Then
the value of the integral is the total charge.

Curve integrals of second kind: the integrand f and the differential dt are n–vectors; and the prod-
uct f dt is to be understood as scalar product. Think of f as being a force vector and dt as the
unit tangent vector along the curve. Then the value of the integral can be seen as the amount of
energy you have to spend in order to drag an object against the force along the curve.

From these interpretations, it should be clear that the direction of integration along the curve does not
matter for integrals of the first kind, in contrast to integrals of the second kind.

The energy interpretation of curve integrals of the second kind predicts that the value of such an integral
sometimes depends only on the location of the endpoints of the curve, not the curve itself. We say
that the integral is path-independent50 and will clarify the conditions for the path-independence below.
Path-independent curve integrals are sometimes called path integrals51.

49Brennpunkte
50wegunabhängig
51do not mix them up with the Feynman path integrals; they are completely different objects
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3.6.1 Curve Integrals of First Kind

Definition 3.71 (Curve integral of first kind). Let f : Rn → R be a continuous function and
γ : [a, b]→ Rn be a regular C1–curve. Then we define a curve integral of first kind52 as follows:∫

γ

f dt :=

∫ t=b

t=a

f(γ(t)) ‖γ̇(t)‖ dt.

Proposition 3.72 (Re-parametrisation). The value of a curve integral of first kind does not change
under a C1 re-parametrisation of the curve.

Proof. Substitution rule. Be careful when the re-parametrisation changes the direction of the curve.

Consequently, the value of the curve integral does not depend on the curve γ, but only on the image Γ
of the curve. In the sequel, we will write

∫
Γ
f dt instead of

∫
γ
f dt.

Curve integrals for curves that are only piecewise53 C1 can be defined in a natural way: take a curve γ
which maps the interval [a, b] into Rn continuously, and is C1 for t 6∈ {t1, t2, . . . , tm} with a = t0 < t1 <
t2 < · · · < tm < tm+1 = b. Then the curve integral

∫
Γ
f dt is defined as∫

Γ

f dt :=

m∑
j=0

∫ tj+1

tj

f(γ(t)) ‖γ̇(t)‖ dt.

If we have two images Γ and ∆ of two regular piecewise C1 curves, and if the union Γ ∪∆ can be also
written as the image of a regular piecewise C1 curve, then∫

Γ∪∆

f dt =

∫
Γ

f dt+

∫
∆

f dt.

It is easy to check that∫
−Γ

f dt =

∫
Γ

f dt,∫
Γ

(c1f1 + c2f2) dt = c1

∫
Γ

f1 dt+ c2

∫
Γ

f2 dt,∣∣∣∣∫
Γ

f dt

∣∣∣∣ ≤ ‖f‖L∞(Γ) length(Γ).

3.6.2 Curve Integrals of Second Kind

Definition 3.73 (Curve integral of second kind). Let f = f(x) : Rn → Rn be a continuous function,

f = f(x) =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)

 ,

and γ : [a, b]→ Rn be a regular C1 curve,

γ = γ(t) = x(t) =


x1(t)
x2(t)

...
xn(t)

 .

Then we define the curve integral of second kind54 as follows:∫
γ

f · dx :=

∫
γ

f1 dx1 + · · ·+ fn dxn :=

∫ t=b

t=a

(
f1(γ(t))γ̇1(t) + · · ·+ fn(γ(t))γ̇n(t)

)
dt.

52Kurvenintegral erster Art
53stückweise
54Kurvenintegral zweiter Art
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Proposition 3.74 (Re-parametrisation). The value of a curve integral of second kind does not change
under a C1 re-parametrisation which preserves the orientation of the curve.

Re-parametrisations that change the orientation of the curve only change the sign of the value of the
curve integral.

Proof. Substitution rule.

You can define curve integrals over piecewise C1 regular curves in the same way as you did for curve
integrals of first kind. Then it is easy to check that∫

Γ∪∆

f · dx =

∫
Γ

f · dx+

∫
∆

f · dx,∫
−Γ

f · dx = −
∫

Γ

f · dx,∫
Γ

(κf + λg) · dx = κ

∫
Γ

f · dx+ λ

∫
Γ

g · dx,∣∣∣∣∫
Γ

f · dx

∣∣∣∣ ≤ ‖f‖L∞(Γ) length(Γ),

where ‖f‖L∞(Γ) = supx∈Γ

√
f2

1 (x) + · · ·+ f2
n(x).

From the energy interpretation of such curve integrals, we know that sometimes the value of the curve
integral only depends on the endpoints, not on the curve between them.

Definition 3.75 (Conservative vector field). A vector field f is called conservative or exact55 if
every curve integral over a loop vanishes.

An alternative description: if γ and δ are any two regular piecewise C1 curves with coinciding endpoints

A and B, then
∫

Γ
f · dx =

∫
∆
f · dx. We will often write

∫ B
A
f · dx.

Example 3.76. Compute the integral
∫

Γ
f · dx with Γ being the unit circle in R2 and

f = f(x) =
1

x2
1 + x2

2

(
−x2

x1

)
, x = (x1, x2)> 6= (0, 0)>.

Proposition 3.77. A vector field f : Ω→ Rn is conservative if and only if it is a gradient field56, i.e.,
if there is a scalar function ϕ : Ω→ R with f = gradϕ. In this case, we have∫ B

A

f · dx = ϕ(B)− ϕ(A), A,B ∈ Ω.

It is custom to call ϕ (or −ϕ) a potential57 to the vector field f .

Proof. First, let f be a gradient field, and let γ be a regular C1 curve connecting A and B ∈ Ω. Then∫
γ

f · dx =

∫ t=b

t=a

f(γ(t)) · γ̇(t) dt =

∫ t=b

t=a

d

dt
ϕ(γ(t)) dt = ϕ(γ(b))− ϕ(γ(a)) = ϕ(B)− ϕ(A),

which depends only on the points B and A, not on the curve connecting them.

Second, let the vector field f be conservative. Pick a point x0 ∈ Ω, and define a function ϕ : Ω→ R,

ϕ(x∗) :=

∫ x∗

x0

f · dx,

where, by assumption, the image Γ of the curve γ connecting x0 and x∗ does not matter as long as it
stays in Ω.

55konservativ bzw. exakt
56Gradientenfeld
57Potential
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We would like to know ∂
∂xj

ϕ(x). Since we have the freedom in choosing the curve, we can fix Γ in such

a way that it arrives at the point x on a straight line parallel to the ej–axis. In the case of n = 2,
think of curves like p or y, with x0 at the lower left corner, and x∗ at the upper right corner. Then the
“terminal part” of the curve integral can be seen as an integral over an interval on the real axis, and all
that remains is to exploit the fundamental theorem of calculus.

Proposition 3.78 (Integrability conditions). A continuously differentiable conservative vector field
f : Ω→ Rn must satisfy the integrability conditions58(

∂fj
∂xk

)
(x) =

(
∂fk
∂xj

)
(x), 1 ≤ j, k ≤ n, x ∈ Ω.

Proof. This follows from the Schwarz theorem in Proposition 1.19, applied to the potential ϕ.

Warning: The converse is not true, as Example 3.76 demonstrates.

We need a special condition on the domain Ω.

Definition 3.79 (Simply connected). We say that an open set Ω ⊂ Rn is simply connected59 if every
loop entirely contained in Ω can be shrunk to a point, always staying in Ω.

An open ball, an open triangle, an open rectangle in R2 are simply connected; an open ball in R2 without
centre is not. A hollow cylinder in R3 is not simply connected, but a hollow ball in R3 is.

Proposition 3.80. A C1 vector field that satisfies the integrability conditions in a simply connected
domain is conservative there.

It suffices to prove the following: if you have a curve between two endpoints and “wiggle it a bit”, keeping
the endpoints fixed, then the value of the curve integral does not change. It even suffices to “wiggle”
only a short part of the curve. However, such a short part of the curve is always contained in a certain
ball that is a subset of Ω, provided that the part of the curve is chosen short enough.

Consequently, it suffices to prove the following result:

Lemma 3.81. A C1 vector field that satisfies the integrability conditions in a ball is conservative there.

Proof. Let the ball B be centered at the origin. For each x ∈ B, we choose a curve γx connecting the
origin with the point x, namely the straight line, which is entirely contained in B:

γx = γx(t) = tx, 0 ≤ t ≤ 1.

We have γ̇(t) = x. Then we define a scalar function ϕ : B → R by

ϕ(x) =

∫
γx

f · dx =

∫ t=1

t=0

f(γ(t)) · γ̇(t) dt =

∫ t=1

t=0

n∑
j=1

fj(tx)xj dt =

n∑
j=1

xj

∫ t=1

t=0

fj(tx) dt.

We want to show that ∇ϕ = f . Since the partial derivatives of the fj are uniformly continuous on B,
Proposition 3.36 allows us to differentiate under the integral sign:

∂ϕ

∂xk
(x) =

∫ t=1

t=0

fk(tx) dt+

n∑
j=1

xj

∫ t=1

t=0

(
∂fj
∂xk

)
(tx) · t dt

= t · fk(tx)
∣∣∣t=1

t=0
−
∫ t=1

t=0

t · ∂fk(tx)

∂t
dt+

n∑
j=1

xj

∫ t=1

t=0

t ·
(
∂fj
∂xk

)
(tx) dt

= fk(x)−
∫ t=1

t=0

t ·
n∑
j=1

(
∂fk
∂xj

)
(tx) · xj dt+

n∑
j=1

xj

∫ t=1

t=0

t ·
(
∂fj
∂xk

)
(tx) dt = fk(x),

because of the integrability conditions.

58 Integrabilitätsbedingungen
59einfach zusammenhängend
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Corollary 3.82. A function f : Ω→ R3, where Ω ⊂ R3 is simply connected, is conservative if and only
if rot f = ~0.

Question: Take f as in Example 3.76 and Ω either the upper half-plane {(x1, x2) : x2 > 0} or the lower
half-plane {(x1, x2) : x2 < 0}, and construct, in either case, a potential function ϕ. If you choose the two
potential functions in such a way that ϕ+(1, 0) = 0 and ϕ−(1, 0) = 0, what happens on the left half-axis
{(x1, 0) : x1 < 0} ?

3.6.3 Complex Curve Integrals

Definition 3.83 (Complex curve integral). Let γ : [a, b] → C be a regular C1 curve and w : Ω → C
be a continuous function, where Ω ⊂ C is an open set. Then a curve integral

∫
γ
w dz is defined as∫

γ

w dz =

∫ t=b

t=a

w(γ(t))γ̇(t) dt.

If γ is a loop, we also write
∮
γ
w dz :=

∫
γ
w dz.

We split w and γ = z into real part and imaginary part:

w = u+ iv, z = x+ iy.

Then the curve integral can be interpreted as linear combination of two real curve integrals of second
kind: ∫

γ

w dz =

∫ t=b

t=a

(u(z(t)) + iv(z(t))) · (ẋ(t) + iẏ(t)) dt

=

∫ t=b

t=a

(
u(z(t))ẋ(t)− v(z(t))ẏ(t)

)
dt+ i

∫ t=b

t=a

(
v(z(t))ẋ(t) + u(z(t))ẏ(t)

)
dt

=

∫
Γ

u(x, y) dx− v(x, y) dy + i

∫
Γ

v(x, y) dx+ u(x, y) dy.

This representation tells us that an orientation-preserving re-parametrisation does not change the value
of the complex curve integral. An orientation-changing re-parametrisation changes only the sign of the
value of the complex curve integral.

The integrability conditions for the complex curve integral are
the Cauchy–Riemann differential equations.

Then Proposition 3.80 gives us the following result of eminent importance.

Proposition 3.84 (Cauchy’s Integral Theorem). Let the function w : Ω→ C be holomorphic (com-
plex differentiable) in Ω with continuous derivative w′. Assume that the domain Ω is simply connected.
Then the integral∮

Γ

w dz

vanishes for every regular C1 loop Γ in Ω.

The supposition of the continuity of w′ can be dropped, as a (completely) different proof would show.

Convention: we always choose the direction of integration along the loop Γ in such a way that the
bounded domain “inside” Γ is lying “to the left”.

Remark 3.85. The path-independence of curve integrals is equivalent to the vanishing of all loop inte-
grals. Then it makes sense to speak about definite integrals∫ z

z0

w(ζ) dζ,

where w is a holomorphic function and the points z0 and z are connected by an arbitrary curve in Ω.
Only the endpoints z0 and z matter for the value of the integral. In the third semester, we will learn that
such an integral is an antiderivative for the function w.
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Corollary 3.86 (of Cauchy’s integral theorem). Let the function w : Ω→ C be holomorphic in Ω, and
assume that the domain Ω is simply connected, and Γ is a loop in Ω. Pick a point z0 inside this loop,
and a small positive ε, such that the ball Bε(z0) about z0 with radius ε does not intersect Γ. Then we
have ∮

Γ

w(z)

z − z0
dz =

∮
Bε(z0)

w(z)

z − z0
dz.

Proof. Connect Γ and the ball Bε(z0) by a straight line and apply Cauchy’s integral theorem to the
domain “between” Γ and Bε(z0).

Now we choose ε extremely small and use the differentiability of w:

|z − z0| = ε =⇒ w(z) = w(z0) + O(ε).

It follows that∣∣∣∣∣
∮
Bε(z0)

O(ε)

z − z0
dz

∣∣∣∣∣ ≤ |O(ε)| · 1

ε
· length(Bε(z0)) = O(ε),∮

Γ

w(z)

z − z0
dz =

∮
Bε(z0)

w(z0)

z − z0
dz + O(ε) = w(z0)

∮
Bε(z0)

1

z − z0
dz + O(ε).

In the last loop integral, we parametrise z = z0 + ε exp(it) with 0 ≤ t ≤ 2π and dz = εi exp(it) dt:∮
Bε(z0)

1

z − z0
dz =

∫ t=2π

t=0

1

ε exp(it)
εi exp(it) dt = 2πi.

We send ε to zero, and the result is amazing:

Proposition 3.87 (Cauchy’s Integral Formula). Let the function w : Ω → C be holomorphic in Ω,
and assume that the domain Ω is simply connected. Then we have the following formula for any loop Γ
in Ω and any point z0 inside the loop Γ:

w(z0) =
1

2πi

∮
Γ

w(z)

z − z0
dz.

The values of a holomorphic function on a loop
determine the values of that function inside the loop.

A variant of Proposition 3.36 allows us to differentiate under the integral sign as often as we want:

∂kz0w(z0) =
k!

2πi

∮
Γ

w(z)

(z − z0)k+1
dz,

which tells us that w ∈ C∞(Ω). We can do even better: if |z − z0| > R for all points z ∈ Γ, then

|∂kz0w(z0)| ≤ k!

2π
‖w‖L∞(Γ)

1

Rk+1
length(Γ). (3.4)

Then the usual remainder term estimates show us that the Taylor series of the function w(z) converges
for z near z0; and its limit is w(z). The function w is better than just C∞; it even has a converging
Taylor series.

We go back to (3.4) once more, with k = 1:

|∂z0w(z0)| ≤ 1

2π
‖w‖L∞(Γ)

1

R2
length(Γ).

What happens if w is holomorphic in all of C, and, furthermore, if it is bounded ? In this case, you can
choose a huge circular loop Γ = BR(z0), giving you length(Γ) = 2πR and

|w′(z0)| ≤
‖w‖L∞(C)

R
.

However, R can be any big number, hence w′(z0) = 0. Since z0 can be chosen arbitrarily in C, the
function w must be constant, because w′(z) = 0 everywhere in C.
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Proposition 3.88 (Liouville’s60 Theorem). If a function is holomorphic on all of C and bounded,
then it is constant.

We have one more famous result:

Proposition 3.89 (Fundamental Theorem of Algebra). Every polynomial of degree at least one
has a zero in C.

Proof. Write the polynomial as P = P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0. We may assume that
an = 1, divide otherwise. Assume that P has no zero in C. It is clear that |P (z)| ≥ 1 for large values of
|z|, because the highest power zn is stronger than all other powers for large |z|. Say that |P (z)| ≥ 1 for
|z| ≥ R. We define

Q(z) =
1

P (z)
.

The function Q is holomorphic on C, since we never divide by zero. The function Q is bounded for
|z| ≥ R, namely by 1. The function |Q| is also bounded for |z| ≤ R, since |Q| is continuous there and
B0(R) is compact. Consequently, Q is bounded on C and is holomorphic on C. By the Liouville Theorem,
Q must be a constant. However, this is not possible for n ≥ 1, giving the desired contradiction.

Try to prove the fundamental theorem of algebra without holomorphic functions !

3.7 Keywords

• norms of functions,

• fundamental theorem of calculus,

• antiderivatives of standard functions,

• rules for finding antiderivatives,

• numerical methods,

• improper integrals,

• the three results on commutation of limit processes,

• formulae for the Fourier coefficients,

• L2 theory of Fourier series,

• definition of Dirac sequences,

• definition of the three kinds of convergence of Fourier sequences,

• curves and images,

• tangent vectors and length,

• three kinds of curve integrals,

• conservative vector fields and integrability conditions.

60 Joseph Liouville, 1809 – 1882



Chapter 4

Eigenvalues and Eigenvectors

Literature: Greiner: Quantenmechanik. Einführung. Chapter IV.20: Eigenwerte und Eigenfunktionen

4.1 Introduction

Literature: Greiner: Klassische Mechanik II. Chapter III.7: Schwingungen gekoppelter Massepunkte

Consider three balls B1, B2, B3 with equal mass 1, connected by springs with spring constants k1, k2,
and k3. At time t = 0, the system is in rest position, then we touch it and let it swing (only vertically).
Assuming that there is no damping, how does the system evolve ?

B_1

B_2

B_3

k_1

k_2

k_3

We denote the deviation of the ball Bi from the rest position by yi(t) and get the following system of
linear ordinary differential equations:

− y′′1 = k1y1 − k2(y2 − y1),

− y′′2 = k2(y2 − y1)− k3(y3 − y2),

− y′′3 = k3(y3 − y2).

91
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Experience says that oscillations should be modelled with sine functions:

y1(t) = ξ1 sinωt, y2(t) = ξ2 sinωt, y3(t) = ξ3 sinωt.

Going with this ansatz into the ODE (ordinary differential equation) system, we get

ω2ξ1 sinωt = ((k1 + k2)ξ1 − k2ξ2) sinωt,

ω2ξ2 sinωt = (−k2ξ1 + (k2 + k3)ξ2 − k3ξ3) sinωt,

ω2ξ3 sinωt = (−k3ξ2 + k3ξ3) sinωt,

which can be simplified tok1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

ξ1ξ2
ξ3

 = ω2

ξ1ξ2
ξ3

 .

We will abbreviate this to Ax = λx with A being this 3× 3 matrix, x = (ξ1, ξ2, ξ3)>, and λ = ω2. The
matrix A maps the vector x to a multiple of itself.

We know A and want to find all λ and x with Ax = λx. Since mass points in idle position are not
interesting, the vector x should not be the null vector.

Definition 4.1 (Eigenvalue, eigenvector). Let U be a linear space over the field K, and f be an
endomorphism in U . We say that λ ∈ K is an eigenvalue1 for f if a vector x ∈ U , x 6= 0, exists with

f(x) = λx.

The vector x is called eigenvector2 to the eigenvalue λ.

Recall that an endomorphism is a linear map from a vector space into itself.

In quantum mechanics or elasticity theory, U might be a space of functions, and f a differential operator.
The eigenvalue λ is then related to a frequency, or the energy, or similar quantities connected to the
state of the system.

In the rest of this chapter, we restrict ourselves to U = Rn or U = Cn, and f = fA is the endomorphism
from U to U associated to a matrix A ∈ Kn×n. Then we will talk about eigenvalues and eigenvectors of
this matrix A, instead of the mapping fA.

4.2 Basic Properties

Proposition 4.2. Let A ∈ Kn×n. A number λ ∈ K is an eigenvalue to the matrix A if and only if
det(A− λI) = 0.

Any vector x ∈ ker(A− λI) is an eigenvector to the eigenvalue λ.

The linear space ker(A− λI) is called eigenspace3.

Proof. The system Ax = λx is equivalent to (A − λI)x = 0, which has a solution x 6= 0 if and only if
det(A−λI) = 0. Moreover, each vector from ker(A−λI) is, by definition, a solution to (A−λI)x = 0.

Definition 4.3 (Characteristic polynomial). The expression χA(λ) = det(A− λI) is the character-
istic polynomial4 of the matrix A.

Proposition 4.4. The characteristic polynomial of A ∈ Kn×n is a polynomial of degree n,

χA(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0,

with an = (−1)n, an−1 = (−1)n−1 trace(A) = (−1)n−1
∑n
j=1 ajj, and a0 = detA.

1Eigenwert
2Eigenvektor
3Eigenraum
4charakteristisches Polynom
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Proof. You can compute an and an−1 from the Leibniz formula in Proposition 2.25. The absolute term
a0 can be computed easily by setting λ = 0.

Proposition 4.5. Let U be a linear space over C with finite dimension, and f be a linear mapping of
U into itself. Then the mapping f has at least one eigenvector.

Proof. Given a basis for U , there is a matrix A connected to f via Ax = f(x) for all x ∈ U . The
characteristic polynomial to this matrix has at least one zero in C, by the fundamental theorem of
algebra (Proposition 3.89). This zero is an eigenvalue of f .

Question: What happens if you replace C by R in Proposition 4.5 ? Consider A =
(

0 −1
1 0

)
.

Proposition 4.6. Similar matrices have the same characteristic polynomial.

Proof. Recall that two matrices A and Ã are similar if there is an invertible matrix B with Ã = B−1AB.
The assertion follows from the Proposition 2.9, 2.10, and

det(Ã− λI) = det(B−1AB −B−1λIB) = det(B−1(A− λI)B)

= det(B−1) det(A− λI) det(B) = det(A− λI).

Lemma 4.7. If λ1, . . . , λm are distinct eigenvalues of a matrix A, and u1, . . . , um are associated
eigenvectors, then these vectors are linearly independent.

Proof. Assume the opposite; the vectors u1, . . . , um are linearly dependent. We can renumber the
vectors in such a way that um can be written as a linear combination of u1, . . . , um−1. Moreover, we
can assume that u1, . . . , um−1 are linearly independent. Otherwise, we throw um away and continue
with the remaining vectors. Therefore, we have numbers α1, . . . , αm−1 (not all of them zero) with

um = α1u1 + · · ·+ αm−1um−1.

We apply A:

λmum = α1λ1u1 + · · ·+ αm−1λm−1um−1.

From these two representations we then have

0 = α1(λ1 − λm)u1 + · · ·+ αm−1(λm−1 − λm)um−1.

Not all of the coefficients can vanish, because the λj are mutually distinct. Consequently, the vectors
u1, . . . , um−1 must be linearly dependent, which is a contradiction.

Corollary 4.8. If a matrix A ∈ Kn×n has n mutually distinct eigenvalues, then the associated eigen-
vectors form a basis of Kn.

Write these n eigenvectors column-wise next to each other and call that matrix S. Then we have

AS = SD,

where D = diag(λ1, λ2, . . . , λm) is a diagonal matrix containing the eigenvalues (in the same order as
the eigenvectors appear in S).

Definition 4.9 (Diagonalisable matrix). We say that a matrix A is diagonalisable5 if there is an
invertible matrix S, such that the matrix D = S−1AS is diagonal.

5diagonalisierbar
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If a matrix A is diagonalisable, then the matrix D contains n eigenvalues of A, and S is a matrix of
eigenvectors. This follows from Proposition 4.6.

What is the purpose of diagonalising a matrix ?

In practical applications, a matrix often describes a mapping in Rn, e.g., a rotation or a reflection.
Remember that the columns of the matrix are the components of the images of the basis vectors. If you
choose another basis of the space Rn, the matrix A has to be changed accordingly. Later computations
will become easier if A has an easy structure. And the easiest structure you can get is that of a diagonal
matrix. For this, the basis vectors will be the eigenvectors of the matrix A, provided that A has enough
(n) eigenvectors.

An example should clarify the matter:

A =

−1 2 2
2 2 2
−3 −6 −6

 .

The characteristic polynomial is

χA(λ) = det(A− λI) = det

−1− λ 2 2
2 2− λ 2
−3 −6 −6− λ

 .

After some calculation, you will find that

χA(λ) = −λ(λ2 + 5λ+ 6) = −λ(λ+ 2)(λ+ 3)

with zeros λ1 = 0, λ2 = −2, λ3 = −3. This is a good moment to perform a quick check:

The sum of the eigenvalues equals the trace of the matrix;
the product of the eigenvalues equals the determinant of the matrix.

Question: Why is that so ?

The eigenvectors are solutions to the systems (A− λjI)x = 0:

λ1 = 0:

−1 2 2
2 2 2
−3 −6 −6

x = 0, with a solution x = u1 =

 0
1
−1

 ,

λ2 = −2:

 1 2 2
2 4 2
−3 −6 −4

x = 0, with a solution x = u2 =

 2
−1
0

 ,

λ3 = −3:

 2 2 2
2 5 2
−3 −6 −3

x = 0, with a solution x = u3 =

 1
0
−1

 .

Write the eigenvectors as columns in a matrix:

S =

 0 2 1
1 −1 0
−1 0 −1

 .

Since the eigenvectors form a basis, the matrix S is invertible. Then we have

S−1AS =

λ1 0 0
0 λ2 0
0 0 λ3

 = D.

You can check this if you compute S−1, and then multiply the three matrices S−1, A, and S by hand.
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4.3 The Jordan Normal Form

Things are not always that nice as presented in the last section. It can happen that a matrix A ∈ Kn×n

does not have n eigenvectors, but less. Then you do not have enough vectors for a basis.

This phenomenon can only occur if some eigenvalues are multiple.

Definition 4.10 (Algebraic, geometric multiplicity). The algebraic multiplicity6 of an eigenvalue
λ of a matrix is defined as the multiplicity of the zero λ of the characteristic polynomial.

The geometric multiplicity7 of an eigenvalue λ of a matrix A is defined as the dimension of ker(A−λI).

Example 4.11. Take A = ( 3 1
0 3 ). This matrix has eigenvalues λ1 = λ2 = 3, but every eigenvector is a

multiple of u1 = (1, 0)>. The algebraic multiplicity is two, and the geometric multiplicity is one.

Proposition 4.12. The geometric multiplicity is less than or equal to the algebraic multiplicity.

If all eigenvalues of a matrix A ∈ Kn×n have equal algebraic and geometric multiplicity, then you can
find n linearly independent eigenvectors of A. Selecting these eigenvectors as a new basis for Kn will
diagonalise A.

You can no longer diagonalise if there is an eigenvalue whose algebraic multiplicity is greater than the
geometric multiplicity. Instead of a diagonalisation, we resort to an almost diagonalisation of the matrix,
using a family of eigenvectors and principal vectors. The result will be the Jordan normal form.

Definition 4.13 (Principal vectors). A family (u1, . . . , um) of vectors (none of them being the null
vector) is said to be a chain of principal vectors8 to the eigenvalue λ of a matrix A if u1 is an eigenvector
to the eigenvalue λ, and

(A− λI)ui = ui−1, 2 ≤ i ≤ m.

The vector uj is called jth level principal vector9.

Question: Determine eigenvectors and principal vectors for the following Jordan block :

A =


λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ

 . (4.1)

Lemma 4.14. The principal vector ui to the eigenvalue λ of A belongs to ker(A − λI)i, but not to
ker(A− λI)i−1. Moreover, a chain of principal vectors is linearly independent.

Proof. The first claim is easy to check, after having computed (A − λI)kui for i ≤ k and i > k. The
second claim then follows from the first.

The principal vectors are exactly that vectors, which will complete the family of eigenvectors to a basis
of the whole space.

Examples: If an eigenvalue has algebraic multiplicity six and geometric multiplicity one, then there is
one eigenvector and, starting from this eigenvector, a chain of five principal vectors.

If an eigenvalue has algebraic multiplicity six and geometric multiplicity two, then there are two eigen-
vectors u1, u2, and two chains of principal vectors. These two chains start from two eigenvectors (which
may not be u1 and u2) and have altogether four principal vectors.

Proposition 4.15 (Jordan normal form). For any matrix A ∈ Cn×n, you can find a regular G ∈
Cn×n whose columns are eigenvectors and principal vectors of A, such that G−1AG is a block-diagonal
matrix diag(J1, . . . , Jk). The Ji are Jordan blocks as in (4.1). Different Jordan blocks can belong to the
same eigenvalue of A. These blocks are uniquely determined, only their arrangement can change.

6algebraische Vielfachheit
7geometrische Vielfachheit
8Kette von Hauptvektoren
9Hauptvektor j-ter Stufe
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The proof is much longer than we have the time for. We only remark that you can not replace C by R,
and conclude with two examples.

Example: The characteristic polynomial of the matrix

A =

17 0 −25
0 2 0
9 0 −13


is χA(λ) = (2 − λ)3, hence A has an eigenvalue λ = 2 with algebraic multiplicity three. The system
(A − λI)x = 0 has only two linearly independent solutions, namely u1 = (0, 1, 0)> and u2 = (5, 0, 3)>.
The geometric multiplicity is, therefore, two. We need one principal vector. The first try is to solve
(A − λI)x = u1, which is unfortunately unsolvable. The second try is (A − λI)x = u2 which has many
solutions, for instance u3 = ( 1

3 , 0, 0)>. Put G = (u1, u2, u3), which is the new basis of the C3. Then the
Jordan normal form of A is

G−1AG =

2 0 0
0 2 1
0 0 2

 .

Example: Consider the matrix

A =


−4 −9 12 1 −967 −671
4 8 −1 4 392 272
0 0 8 4 −194 −135
0 0 −9 −4 305 212
0 0 0 0 −4 −4
0 0 0 0 9 8

 .

The characteristic polynomial is, after some calculation, χA(λ) = (2 − λ)6, giving you an eigenvalue
λ = 2 of algebraic multiplicity six. Eigenvectors are (for instance)

u1 = (−7, 0,−4, 6, 0, 0)
>
, u2 = (−3, 2, 0, 0, 0, 0)

>
.

Of course, linear combinations of u1 and u2 will give more eigenvectors. Consequently, we expect two
chains of principal vectors, both together containing 4 principal vectors. After a much longer calculation,
you will find a matrix G of eigenvectors and principal vectors:

G =


−9 0 16 12 −671 0
6 1 −6 −5 272 0
0 0 4 4 −135 0
0 0 −6 −5 212 0
0 0 0 0 −4 0
0 0 0 0 6 1


Then the Jordan normal form of A is:

G−1AG = J =


2 1 0 0 0 0
0 2 0 0 0 0
0 0 2 1 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

 .

We see a chain with one principal vector (plus one eigenvector) and a chain with three principal vectors
(plus one eigenvector). The eigenvectors of A can be found in the first and third columns of G. The first
column of G contains the eigenvector 3u2, from which the chain with one principal vector originates.
And the third column of G contains the eigenvector −u1 − 3u2, which is the anchor point of the second
chain. These anchor points can not be chosen arbitrarily. The full algorithm is quite complicated, and
we recommend to let a computer algebra system do the work, like the opensource system maxima. The
relevant commands are matrix, eigenvalues, eigenvectors, jordan, dispJordan, ModeMatrix.
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4.4 Normal Matrices and Projections

Literature: Greiner: Quantenmechanik. Einführung. Chapter XVII: Das formale Schema der Quan-
tenmechanik

Our goal is to study eigenvalues and eigenvectors to certain important matrices. These matrices are the
self-adjoint matrices and the unitary matrices, which are special cases of normal matrices.

Recall the scalar product in Cn and the definition of the adjoint matrix A∗:

〈x, y〉 =

n∑
j=1

ξjηj ,

A = (ajk) ∈ Cn×m =⇒ A∗ = (akj) ∈ Cm×n.

All vectors are column vectors, as always.

Warning: The notation in many physics books differs from ours: there you will find the convention
〈x, y〉 =

∑n
j=1 ξjηj, and then several formulas below must be changed. Moreover, A∗ in mathematics

corresponds to A† in physics.

Proposition 4.16 (Adjoint matrices). As a matrix product, the scalar product is 〈x, y〉 = y∗x. For
all compatible vectors x, y and matrices A, we have

〈Ax, y〉 = 〈x,A∗y〉 .

Fix A ∈ Cn×m. If a matrix B satisfies

〈Ax, y〉Cn = 〈x,By〉Cm (4.2)

for all compatible x and y, then B must be the adjoint to A.

Proof. The first claim is obvious. By the usual rules for the adjoint matrix, we conclude that

〈Ax, y〉 = y∗(Ax) = (y∗A)x = (A∗y)∗x = 〈x,A∗y〉 .

Testing (4.2) with unit vectors for x and y gives B = A∗.

We can “shift-conjugate” the operator A from the left factor to the right factor of a scalar product, but
also in the other direction:

〈x,Ay〉 = 〈Ay, x〉 = 〈y,A∗x〉 = 〈A∗x, y〉 .

Definition 4.17. Let A ∈ Cn×n. Then we define:

A is normal if AA∗ = A∗A,

A is self-adjoint or hermitian if A = A∗,

A is symmetric if A is self-adjoint and A ∈ Rn×n,

A is unitary if A−1 = A∗,

A is orthogonal if A is unitary and A ∈ Rn×n.

Examples are numerous:

• Matrices describing rotations or reflections in Rn are orthogonal, as we will see below.

• The Hessian matrix of a real-valued (twice continuously differentiable) function is symmetric.

• The matrix of the inertial tensor10 is symmetric.

10Trägheitstensor
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• Most operators from quantum mechanics are self-adjoint, although they frequently do not have a
matrix form. For instance, the energy levels for the electron in the hull of the hydrogen atom are
eigenvalues of the Hamilton11 operator, which is a partial differential operator of second order
acting in the function space L2(R3 → C) (whose dimension is infinite). The wave function of the
electron is then the eigenvector to that eigenvalue.

Orthogonal projection operators are another example. Take the space Cn and a subspace U ⊂ Cn. There
is exactly one mapping which maps a point x from Cn to that element of U , which has least distance
to x. This mapping is called orthogonal projection12. Let {u1, . . . , um} be an orthonormal basis for the
subspace U . By Satz 2.31 from the first term, the projection operator P has the following form:

P : Cn → U,

P : x 7→ Px =

m∑
j=1

〈x, uj〉uj =

m∑
j=1

(u∗jx)uj =

m∑
j=1

uj(u
∗
jx) =

 m∑
j=1

uju
∗
j

x =: APx.

From now on, we will no longer distinguish between an orthogonal projector P (which is a mapping) and
its associated matrix AP (which is, well, a matrix). There should be no danger of misunderstandings.

Proposition 4.18 (Properties of orthogonal projectors, I). Orthogonal projectors are self-adjoint
and idempotent13, meaning P ◦ P = P .

The relation P ◦P = P holds for all projections (not only orthogonal projections), and maybe it becomes
clearer if you remember that a point directly on the ground will have no shadow from the sunbeams. Or
you could draw pictures with U ⊂ Cn, x, Px, PPx.

Proof. Just compute it, taking advantage from the sesquilinearity14 of the scalar product and from the
system (u1, . . . , um) being orthonormal:

〈Px, y〉 =

〈
m∑
j=1

〈x, uj〉uj , y

〉
=

m∑
j=1

〈x, uj〉 〈uj , y〉 ,

〈x, Py〉 =

〈
x,

m∑
j=1

〈y, uj〉uj

〉
=

m∑
j=1

〈y, uj〉 〈x, uj〉 =

m∑
j=1

〈x, uj〉 〈uj , y〉 ,

P 2x = PPx =
m∑
j=1

〈Px, uj〉uj =
m∑
j=1

〈
m∑
l=1

〈x, ul〉ul, uj

〉
uj

=

m∑
j=1

m∑
l=1

〈x, ul〉 〈ul, uj〉uj =

m∑
j=1

〈x, uj〉uj = Px.

Proposition 4.19 (Properties of orthogonal projectors, II). Let U and V be subspaces of Cn
with U ⊥ V . Denote the orthogonal projectors from Cn onto U and V by P and Q, respectively. Then
PQ = 0, the null operator.

Proof. The spaces U and V have orthonormal bases (u1, . . . , uk) and (v1, . . . , vl). Then the projectors
P and Q are given by

Px =

k∑
i=1

〈x, ui〉ui, Qx =

l∑
j=1

〈x, vj〉 vj .

11William Rowan Hamilton, 1805 – 1865
12Orthogonalprojektion
13idempotent
14this means that the scalar product is linear in each factor, but constants in the second factor must be conjugated

before dragging them in front of the product
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What still remains is to compute PQx for an arbitrary x ∈ Cn:

PQx =

k∑
i=1

〈Qx, ui〉ui =

k∑
i=1

〈
l∑

j=1

〈x, vj〉 vj , ui

〉
ui =

k∑
i=1

l∑
j=1

〈x, vj〉 〈vj , ui〉ui = 0,

because of 〈vj , ui〉 = 0 due to U ⊥ V .

Now we get back to the normal matrices.

Proposition 4.20. For any matrix A ∈ Cn×n, the following holds:

1. (imgA)⊥ = kerA∗,

2. A is normal =⇒ kerA = kerA∗,

3. A is normal =⇒ Cn = imgA⊕ kerA.

Proof. 1. If y ∈ (imgA)⊥, then 〈y,Ax〉 = 0 for each x ∈ Cn. Choosing x = A∗y, we then have
0 = 〈y,AA∗y〉 = 〈A∗y,A∗y〉, hence y ∈ kerA∗. This gives you the inclusion (imgA)⊥ ⊂ kerA∗.

Put r := rank(A) = rank(A∗). Then r = dim imgA, hence dim(imgA)⊥ = n − r, where we have
used the dimension formula for sub-spaces. By the dimension formula for linear mappings, we have
dim kerA∗ = n − dim imgA∗ = n − rank(A∗) = n − r. Recall (imgA)⊥ ⊂ kerA∗, and both these
sub-spaces of Cn have the same dimension n− r. Therefore, they are equal.

2. From A∗A = AA∗, we deduce that

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉 = 〈x,AA∗x〉 = 〈A∗x,A∗x〉 = ‖A∗x‖2 ,

which says that Ax = 0 if and only if A∗x = 0.

3. Satz 2.32 from the first terms yields Cn = (imgA)⊕ (imgA)⊥. Now apply part 1 and part 2.

Corollary 4.21 (Fredholm15 alternative). From (imgA)⊥ = kerA∗ we get imgA = (kerA∗)⊥, and
this gives a beautiful conclusion:

If Ax = b is solvable, then b must be perpendicular to kerA∗.

If b is perpendicular to kerA∗, then the system Ax = b is solvable.

Question: Check the following: if A and B are normal matrices, then A + B need not be a normal
matrix. Hence the set of all normal matrices of Cn×n will not form a vector space (if n ≥ 2).

We continue with eigenvalues and eigenvectors of normal matrices:

Proposition 4.22 (Normal matrices). Let A ∈ Cn×n be a normal matrix, and λ ∈ C. Then:

1. (A− λI)∗ = A∗ − λI,

2. A− λI is normal,

3. Ax = λx ⇐⇒ A∗x = λx; especially, the matrices A and A∗ have the same eigenvectors,

4. eigenvectors to different eigenvalues are perpendicular to each other.

Proof. 1. Conjugating is an additive operation.

2. Follows from 1 by a computation like this:

(A− λI)(A− λI)∗ = (A− λI)(A∗ − λI) = AA∗ − λA∗ − λA+ |λ|2I
= A∗A− λA∗ − λA+ |λ|2I = (A∗ − λI)(A− λI)

= (A− λI)∗(A− λI).

15 Erik Ivar Fredholm, 1866 – 1927
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3. By Proposition 4.20 and 2., ker(A− λI) = ker((A− λI)∗) = ker(A∗ − λI).

4. Take eigenvectors x and x′ to eigenvalues λ and λ′ with λ 6= λ′. Part 3 gives A∗x′ = λ′x′, hence

λ 〈x, x′〉 = 〈λx, x′〉 = 〈Ax, x′〉 = 〈x,A∗x′〉 =
〈
x, λ′x′

〉
= λ′ 〈x, x′〉 .

This is only possible if 〈x, x′〉 = 0, due to λ 6= λ′.

The next result is the highlight of this chapter, and it tells us that normal matrices are always diago-
nalisable because they possess enough linearly independent eigenvectors. The ugly machinery of Jordan
normal forms is then not needed.

Theorem 4.23 (Spectral theorem). The following statements are equivalent for any A ∈ Cn×n:

1. A is normal,

2. there is an orthonormal basis of Cn, consisting of eigenvectors of A,

3. there are orthogonal projectors P1, . . . , Pn and λ1, . . . , λn ∈ C with the following properties:

(a) PjPk = 0 for j 6= k,

(b)
∑n
j=1 Pj = I,

(c)
∑n
j=1 λjPj = A.

The last formula is known as spectral representation16 of A.

Proof. 1 =⇒ 2: By Proposition 4.5, the matrix A has at least one eigenvalue. Denote the eigenvalues of
A by λ1, . . . , λm. Each eigenspace ker(A− λjI) has an orthonormal basis. Collecting these bases gives
you a family of vectors (u1, . . . , ur) which are orthonormal, due to Proposition 4.22.

If r = n, we are done. Aiming for a contradiction, we suppose that r < n. Put U := span(u1, . . . , ur)
and V := U⊥. The vectors uj are eigenvectors to A as well as A∗, hence AU ⊂ U and A∗U ⊂ U , by
Proposition 4.22, part 3. Next we show that A maps the sub-space V into itself: AV ⊂ V . If v ∈ V is
fixed and u ∈ U is arbitrary, then

〈u,Av〉 = 〈A∗u, v〉 = 0,

since A∗u ∈ U and U ⊥ V . This implies that Av ∈ U⊥ = V , or AV ⊂ V as claimed. By Proposition 4.5,
the matrix A must have an eigenvector in V which is impossible, from the construction of U and V .

2 =⇒ 3: Write this orthonormal basis of Cn as (u1, . . . , un), with uj being an eigenvector to the eigenvalue
λj . Define orthonormal projectors Pj as Pjx := 〈x, uj〉uj . Proposition 4.19 gives (a) and Satz 2.29 from
the first term gives (b). Then (c) follows easily:

Ax = AIx = A

n∑
j=1

Pjx = A

n∑
j=1

〈x, uj〉uj =

n∑
j=1

〈x, uj〉Auj =

n∑
j=1

〈x, uj〉λjuj =

n∑
j=1

λjPjx.

3 =⇒ 1: Formula (c) gives you a representation of A, from which it is easy to verify that AA∗ = A∗A.
Here you could use P ∗ = P from Proposition 4.18 and PjPk = δjkPj .

Question: Choose A = 3I and uj = ej , the canonical basis vectors of Cn. How do the projectors Pj
look like ?

We discuss an example. Let A ∈ Cn×n be normal with eigenvalues λ1, . . . , λn and eigenvectors u1, . . . ,
un, such that 〈uj , uk〉 = δjk. Given x ∈ Cn, can we describe Ax in another way ? We may decompose x,

x = α1u1 + · · ·+ αnun,

16 Spektraldarstellung
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since (u1, . . . , un) is a basis of Cn. And the αj can be quickly found as αj = 〈x, uj〉, because uf
〈uk, ul〉 = δkl. The result then is

x =

n∑
j=1

〈x, uj〉uj =

n∑
j=1

(
Pjx

)
=

 n∑
j=1

Pj

x,

or part 3(b). And the action of A then is described by

Ax = A

n∑
j=1

Pjx =

n∑
j=1

APjx =

n∑
j=1

A 〈x, uj〉uj =

n∑
j=1

〈x, uj〉Auj =

n∑
j=1

〈x, uj〉λjuj =

n∑
j=1

(
λjPjx

)

=

 n∑
j=1

λjPj

x,

hence part 3(c). The matrix A performs its action onto the vector x in three steps:

• first x is decomposed by the family of projectors P1, . . . , Pn into the components living in the
eigenspaces,

• second: in each eigenspaces, the operator A behaves like a dilation17 by the associated eigenvalue,

• third: the individual results are recombined (
∑n
j=1).

Things become even nicer for self-adjoint and unitary matrices:

Proposition 4.24 (Self-adjoint matrices). All eigenvalues of a self-adjoint matrix are real.

Each symmetric matrix possesses an ONB of real eigenvectors.

Proof. If A = A∗ then A is normal, and we can exploit Proposition 4.22. Let now Ax = λx, then
λx = Ax = A∗x = λx, and therefore (λ− λ)x = 0, which is only possible for λ ∈ R.

The eigenvectors are elements of ker(A − λI), and A − λI is a real matrix if A is symmetric and λ is
real. Then you can choose a basis of ker(A− λI) as real vectors.

Example 4.25 (the Fourier series revisited). We compare a self-adjoint matrix A ∈ Cn×n and the
differential operator A := i d

dt acting on the space C1
(2π)(R→ C) of those functions that are continuously

differentiable and 2π-periodic.

U = Cn U = C1
(2π)(R→ C)

dimU = n dimU =∞
〈x, y〉 =

∑n
j=1 ξjηj 〈f, g〉 =

∫ π
t=−π f(t)g(t) dt

A = A∗,

〈Ax, y〉 = 〈x,Ay〉 ∀ x, y ∈ Cn

A = A∗: partial integration can be used to show〈
i

d

dt
f , g

〉
=

〈
f, i

d

dt
g

〉
∀ f, g ∈ U

eigenvalues of A are λ1, . . . , λn ∈ R eigenvalues of A are . . .−3, −2, −1, 0, 1, 2, . . .

eigenvectors of A are u1, . . . , un ∈ Cn
Auk = λkuk

eigenfunctions of A are ek = ek(t) = e−ikt, k ∈ Z
Aek = kek

〈uj , uk〉 = δjk 〈ej , ek〉 = 2πδjk

decomposition of x ∈ Cn:
x =

∑n
k=1 αkuk, αk = 〈x, uk〉

Fourier series decomposition of f ∈ U :
f(t) =

∑
k∈Z f̂kek(t), f̂k = 1

2π 〈f, ek〉
Pythagorean Theorem:
‖x‖2 =

∑n
k=1 |αk|2

Bessel identity:
‖f‖2 =

∑
k∈Z 2π|f̂k|2

17Streckung, Dehnung
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Proposition 4.26 (Unitary matrices). Let either A ∈ Cn×n or A ∈ Rn×n. Then the following
statements are equivalent:

1. A is unitary (or orthogonal), i.e., AA∗ = I (or AA> = I),

2. the columns of A are an ONB of Cn (or Rn),

3. if (v1, . . . , vn) is an ONB, then so is (Av1, . . . , Avn),

4. for all x, y ∈ Cn (or ∈ Rn), we have 〈x, y〉 = 〈Ax,Ay〉,

5. A is isometric18, i.e., ‖Ax‖ = ‖x‖ for all x ∈ Cn (or ∈ Rn),

6. A is normal and all eigenvalues have modulus 1.

Sketch of proof. We only consider the C–case:

1⇐⇒ 2 : This is just the definition of the matrix-matrix-product.

4⇐⇒ 5 : This is a direct consequence of

4 〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2 ,

4 〈Ax,Ay〉 = ‖Ax+Ay‖2 − ‖Ax−Ay‖2 + i ‖Ax+ iAy‖2 − i ‖Ax− iAy‖2 .

1 =⇒ 4 : This is due to 〈Ax,Ay〉 = 〈A∗Ax, y〉 = 〈x, y〉.
4 =⇒ 1 : Put B = A∗A. Then 〈x, y〉 = 〈Ax,Ay〉 = 〈x,A∗Ay〉 = 〈x,By〉. On the other hand, 〈x, y〉 =
〈Ix, y〉. Then Proposition 4.16 gives B = I∗ = I.

Observe that we have shown: the four statements 1, 2, 4, 5 are logically equivalent.

(1, 5) =⇒ 6 : Every unitary matrix is normal. If Ax = λx with x 6= 0 and ‖Ax‖ = ‖x‖, then |λ| = 1.

6 =⇒ 1 : The spectral theorem gives us n eigenvectors and projections Pj onto the fibres, generated by
those eigenvectors, such that A =

∑n
j=1 λjPj . Then

AA∗ =

 n∑
j=1

λjPj

( n∑
k=1

λkPk

)
=

n∑
j=1

n∑
k=1

λjλkPjPk =

n∑
j=1

λjλjPj =

n∑
j=1

|λj |2Pj = I,

because of |λj | = 1. Therefore, A is unitary.

3 =⇒ 2 : Choose vj = ej , the canonical basis vectors. They are an ONB, hence (Ae1, . . . , Aen) must be
an ONB. But these vectors are just the columns of A.

4 =⇒ 3 : If 〈vj , vk〉 = δjk then 〈Avj , Avk〉 = δjk.

We learn the following:

Each mapping of a (finite-dimensional) vector space into itself
that preserves the length of a vector is described by a unitary/orthogonal matrix.

Proposition 4.26 gives us enough information to completely characterise orthogonal matrices:

n = 2: The first column is a vector of length one, hence it can be written as (cosϕ, sinϕ)>, for some ϕ ∈
[0, 2π]. Then the second column must be also a vector of length one, and it must be perpendicular
to the first column. Therefore the second column is ±(− sinϕ, cosϕ)>, leading us to two cases:

A =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, detA = 1,

A =

(
cosϕ sinϕ
sinϕ − cosϕ

)
, detA = −1.

18isometrisch
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The first matrix has the characteristic polynomial χA(λ) = (cosϕ−λ)2 + sin2 ϕ, with the complex
roots19 λ1,2 = exp(±iϕ). The associated mapping is a rotation with angle ϕ.

The second matrix has the characteristic polynomial χA(λ) = λ2 − 1 with roots λ1,2 = ±1. The
associated mapping is a reflection along the axis of the eigenvector to the eigenvalue λ1 = +1,
(cos(ϕ2 ), sin(ϕ2 )).

n = 3: The characteristic polynomial χA(λ) = −λ3 + c2λ
2 + c1λ + c0 has real coefficients −1, c2, c1,

c0. We have limλ→−∞ χA(λ) = +∞ and and limλ→+∞ χA(λ) = −∞, therefore the continuous
function χA must have a real root, which can only be +1 or −1. For the other two roots, there
are two possibilities. Either they are both real, and each of them must be +1 or −1. Or they are
both non-real, and each is the complex conjugate of the other. Since their modulus must equal 1,
we can write them as exp(±iϕ), for some ϕ ∈ (0, π).

In the first case, the eigenvalues are either (λ1, λ2, λ33) = (1, 1, 1) or (1, 1,−1) or (1,−1,−1) or
(−1,−1,−1), with associated eigenvectors (u1, u2, u3). The mappings are the identity mapping, a
reflection on the plane spanned by (u1, u2), a rotation around u1 with angle π, or a point-reflection
at the origin.

In the second case, there is a real eigenvector u1 to the real eigenvalue λ1 = ±1. The other
two non-real eigenvalues are (λ2, λ3) = (exp(iϕ), exp(−iϕ)) with 0 < ϕ < π, and these non-real
eigenvalues have never a real eigenvector. Then A maps the plane E = (span(u1))⊥ into itself,
namely as a rotation with angle ϕ. Hence there is a real orthogonal matrix S, such that

S−1AS =

±1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 .

The mapping A is either a rotation around u1 with angle ϕ (in case of λ1 = +1), or it is a rotation
followed by a plane reflection (in case of λ1 = −1).

We can generalise this to arbitrary n.

Proposition 4.27 (Orthogonal matrices). For any orthogonal matrix A ∈ Rn×n, an orthonormal
basis (u1, . . . , un) of Rn can be found which transforms the matrix A to Ã,

Ã =



1 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 R1 0 0

0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 Rk


,

where the Rj are 2× 2 rotation matrices.

For later use, we define some groups of matrices. The operation of the group is always the multiplication.

Definition 4.28. 1. The group of all invertible n× n matrices is called linear group GL(n).

2. The group of all unitary n× n matrices is called unitary group U(n).

3. The group of all orthogonal n× n matrices is called orthogonal group O(n).

4. The groups of all invertible, unitary, orthogonal matrices with determinant equal to +1 are called
special linear group SL(n), special unitary group SU(n), and special orthogonal group SO(n).

5. The group of all matrices of the form exp(iϕ)I with ϕ ∈ R is called circle group.

It turns out that the discussion of quarks and anti-quarks requires a deeper understanding of the struc-
tures of SU(3) and SU(4), compare the already cited book of Greiner and Müller on symmetries in
quantum mechanics.

19Wurzel bzw. Nullstelle
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4.5 Definiteness, Quadratic Forms, and Quadrics

For a self-adjoint matrix A and arbitrary vector x, we have

〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈Ax, x〉,

hence 〈Ax, x〉 must be real. Then the following definition is reasonable:

Definition 4.29. Let A ∈ Cn×n be self-adjoint and U ⊂ Cn be a sub-space. Then we call

• A positive definite on U if 〈Ax, x〉 > 0 for all x ∈ U , x 6= 0,

• A negative definite on U if 〈Ax, x〉 < 0 for all x ∈ U , x 6= 0,

• A positive semi-definite on U if 〈Ax, x〉 ≥ 0 for all x ∈ U ,

• A negative semi-definite on U if 〈Ax, x〉 ≤ 0 for all x ∈ U .

If no sub-space U is mentioned, then U = Cn is meant.

Proposition 4.30 (Definiteness). A self-adjoint matrix is

positive definite if and only if all eigenvalues are positive,

positive semi-definite if and only if all eigenvalues are greater than or equal to zero,

negative semi-definite if and only if all eigenvalues are less than or equal to zero,

negative definite if and only if all eigenvalues are negative.

Proof. Exercise.

In particular, a definite matrix is invertible.

Proposition 4.31. Let f ∈ C2(G → R) be a function on an open set G ⊂ Rn. Let x0 be an interior
point of G. Then the following holds:

• if ∇f(x0) = 0 and the Hessian matrix (Hf)(x0) is positive definite, then f has a minimum at the
point x0;

• if ∇f(x0) = 0 and the Hessian matrix (Hf)(x0) is negative definite, then f has a maximum at the
point x0;

• if ∇f(x0) = 0 and the Hessian matrix (Hf)(x0) has some negative eigenvalues and some positive
ones, then f has a saddle point at x0.

If ∇f(x0) = 0 and one eigenvalue of (Hf)(x0) is zero, then everything can happen.

Definition 4.32 (Signature). Denote by U+, U−, and U0 the linear spaces that are spanned by the
eigenvectors to positive, negative, and zero eigenvalues of a self-adjoint matrix A. Define k+ = dimU+,
k− = dimU−, and k0 = dimU0. The triple (k+, k−, k0) is the signature20 of the matrix A. (If there are
no eigenvalues of the sign +, −, or 0, choose the null space for U+, U−, U0.)

The signature only depends on the eigenvalues, which do not change under similarity transformations
(since similar matrices have the same characteristic polynomial, Proposition 4.6).

This can be sharpened a bit to the following Law which we do not prove:

Proposition 4.33 (Sylvester’s Law of Inertia21 22). If A ∈ Cn×n is self-adjoint and G ∈ Cn×n is
invertible, then also G∗AG is self-adjoint and has the same signature as A.

20Signatur
21 Sylvesterscher Trägheitssatz
22 James Joseph Sylvester, 1814 – 1897
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Proposition 4.34 (Definiteness). A self-adjoint matrix A ∈ Cn×n is positive definite if and only if
all sub-determinants of the form

detAk := det(aij)1≤i,j≤k, k = 1, . . . , n,

are positive. It is negative definite if and only if (−1)k detAk > 0 for all k.

Proof. If A is positive definite, then all eigenvalues are positive, then also detA is positive, being the
product of the eigenvalues. Choose Uk = span(e1, . . . , ek) and x ∈ Uk. Then

〈Ax, x〉 =

k∑
i,j=1

ξiaijξj > 0,

showing that A is positive definite on Uk. Consequently, detAk > 0.

A matrix A is negative definite if and only if −A is positive definite. The other two parts of the proof
are a bit tricky, and we prefer to omit them.

To present another criterion on the definiteness which is sometimes helpful, we need an auxiliary result,
which gives you a hint where the eigenvalues of a matrix are located, without computing them:

Lemma 4.35 (Gerschgorin’s circle theorem). Let A ∈ Cn×n be any matrix, and for j = 1, . . . , n,
call Cj the closed circle in the complex plane with center ajj and radius

∑
k 6=j |ajk|. Then the union of

all these circles C1, . . . , Cn contains all the eigenvalues of A.

Be careful with the logics here ! The circle theorem does not say that each circle Cj contains one
eigenvalue.

Proof. Take an eigenvalue λ of A, an eigenvector x to that eigenvalue, and let xk be a component of x
with biggest modulus. This means |xk| ≥ |xj | for all j = 1, . . . , n. We do not know the value of k, and
we can not choose k, but we know that k exists. The kth row of the equation Ax = λx reads∑

j 6=k

akjxj = (λ− akk)xk,

|λ− akk| · |xk| ≤
∑
j 6=k

|akj | · |xj | ≤ |xk|
∑
j 6=k

|akj |,

which implies |λ− akk| ≤
∑
j 6=k |akj |. This is what we wanted.

Here comes the promised criterion, which is an easy consequence of Gerschgorin’s theorem:

Proposition 4.36 (Definiteness). Any self-adjoint matrix A that is strictly diagonal dominant, i.e.,

akk >
∑
j 6=k

|akj |, 1 ≤ k ≤ n,

is positive definite.

Lemma 4.37. If a rectangular matrix A ∈ Cm×n has rank equal to n with n ≤ m, then the matrix
A∗A ∈ Cn×n is positive definite and invertible.

Proof. Beautiful exercise.

We conclude this section with a classification of the quadric surfaces23 in Rn. These consist of all points
x = (x1, . . . , xn)> from Rn with

n∑
i,j=1

aijxixj + 2

n∑
j=1

bjxj + b0 = 0, (4.3)

23Quadriken
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where the aij , and bj , are given real numbers.

Neglecting exceptional cases of minor importance, the quadrics in R2 are the ellipse, the hyperbola,
or the parabola. Now we present a general procedure to completely classify the quadrics in Rn, with
n = 2, 3.

We start with the example

3x2
1 − 7x2

2 + 10x2
3 + 28x1x2 − 38x1x3 + 42x2x3 + 12x1 − 16x2 + 20x3 + 25 = 0,

and we observe that we can rewrite it into the form

(
x1 x2 x3

) 3 14 −19
14 −7 21
−19 21 10

x1

x2

x3

+
(
12 −16 20

)x1

x2

x3

+ 25 = 0, (4.4)

which is equivalent to

(
x1 x2 x3 1

)
3 14 −19 6
14 −7 21 −8
−19 21 10 10

6 −8 10 25



x1

x2

x3

1

 = 0.

Note that both matrices are symmetric. It is quite hard to understand the shape of the solution set
(which is some set of points of the R3) of this scalar equation, because the matrices are quite complicated.
A new coordinate system will bring us to a simpler matrix, in the sense that the new matrix contains
many zero entries.

Step 1: Eliminating the mixed entries ajkxjxk by a rotation.

Write (4.3) as 〈Ax, x〉+2 〈b, x〉+b0 = 0, which is of the form (4.4). The matrix A is real symmetric.
Then there is an orthonormal system of real eigenvectors of A that form a basis of Rn. Writing
these vectors as columns one next to the other, you have an orthogonal matrix G. Put

y := G>x, x = Gy

as new coordinates. With the new notation L := G>AG, c := G>b, c0 := b0, you then get

〈Ly, y〉+ 2 〈c, y〉+ c0 = 0.

By choice of G, the matrix L is a diagonal matrix comprising the eigenvalues of A. By suitable
ordering of the columns of G, we can achieve that

L = diag(λ1, . . . , λp, λp+1, . . . , λp+m, 0, . . . , 0),

with λ1, . . . , λp being the positive eigenvalues and λp+1, . . . , λp+m being the negative eigenvalues.
The signatures of A and L are the same, namely (p,m, n− p−m) (by Sylvester’s Law).

Step 2: Eliminating many lower order terms by a shift of the origin.

Now we shift the origin, which means to introduce new coordinates z by z := y + δ, for some
carefully chosen shift vector δ. We have two cases.

Case I: if all the pure squares y2
j are present, then all the linear terms cjyj can be eliminated, but

the constant term will remain almost always.

Case II: only some pure squares y2
j are present, other pure squares are absent. Then some linear

terms can be eliminated, and the constant term can be eliminated if some linear item is present
whose quadratic brother is absent.

We discuss an example of Case I: consider

0 = 4y2
1 − 9y2

2 + 16y2
3 + 8y1 − 36y2 + 32y3 + 26.

We rewrite this equation as follows:

0 = 4(y2
1 + 2y1)− 9(y2

2 + 4y2) + 16(y2
3 + 2y3) + 26

= 4
(

(y1 + 1)2 − 1
)
− 9
(

(y2 + 2)2 − 4
)

+ 16
(

(y3 + 1)2 − 1
)

+ 26

= 4(y1 + 1)2 − 9(y2 + 2)2 + 16(y3 + 1)2 +
(
− 4 + 36− 16 + 26

)
.
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We set z1 := y1 + 1, z2 := y2 + 2, z3 := y3 + 1, d0 := 42 and get 0 = 4z2
1 − 9z2

2 + 16z2
3 + d0. A

matrix formulation is

(
z1 z2 z3 1

)
4 0 0 0
0 −9 0 0
0 0 16 0
0 0 0 42



z1

z2

z3

1

 = 0. (4.5)

Next we discuss an example of Case II: consider

0 = 4y2
1 − 9y2

2 + 8y1 − 36y2 + 32y3 + 26,

and observe that no term with y2
3 is available, but we have linear terms y1

3 . We rewrite the equation:

0 = 4(y2
1 + 2y1)− 9(y2

2 + 4y2) + 32y3 + 26

= 4
(

(y1 + 1)2 − 1
)
− 9
(

(y2 + 2)2 − 4
)

+ 32y3 + 26

= 4(y1 + 1)2 − 9(y2 + 2)2 + 32y3 +
(
− 4 + 36 + 26

)
= 4(y1 + 1)2 − 9(y2 + 2)2 + 32

(
y3 +

58

32

)
.

Now we set z1 := y1 + 1, z2 := y2 + 2, z3 := y3 + 58
32 , and the result then is 0 = 4z2

1 − 9z2
2 + 32z3,

for which we have the matrix formulation

(
z1 z2 z3 1

)
4 0 0 0
0 −9 0 0
0 0 0 16
0 0 16 0



z1

z2

z3

1

 = 0. (4.6)

And we only mention one more example of Case II: if in our model equation also the term 32y3

were absent, then the zero order item 58 would have survived.

We can join Case I and Case II in the formula 0 = 〈Lz, z〉 + 2 〈d, z〉 + d0 where one of d and d0

vanishes. After switching to block matrix notation,

L =

(
Λ O
O O

)
∈ Rn×n, Λ = diag(λ1, . . . , λm, λm+1, . . . λm+p),

d =

(
O
d′

)
∈ Rn, d′ = (dm+p+1, . . . , dn)>,

ẑ =

(
z
1

)
∈ Rn+1, z = (z1, . . . , zn)>,

we can compress the quadric formula even more:
〈
Âẑ, ẑ

〉
= 0, with

Â =

(
L d
d> d0

)
=

Λ O O
O O d′

O d′
>

d0

 ,

where at least one of d′ and d0 is zero. Compare (4.5) and (4.6) for examples.

This procedure enables us to completely classify all quadric curves for n = 2:

The signature of A is (2, 0, 0) or (0, 2, 0): Then we are in Case I, hence d = 0, and the curve is either
an ellipse or a point or the empty set, depending on the sign of d0.

The signature of A is (1, 1, 0): Then we are in Case I, hence d = 0, and the curve is either a pair of
straight lines or a hyperbola, depending on whether d0 = 0 or d0 6= 0.

The signature of A is (1, 0, 1) or (0, 1, 1): Then we are in Case II. If d′ 6= 0, then d0 = 0 and we have
a parabola. If d′ = 0, then you get three exceptional cases. Figure them out yourselves.
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The signature of A is (0, 0, 2): Then A is the matrix full of zeros, and the curve is either a straight
line or the empty set.

The situation is more intricate for n = 3. If we agree to neglect most of the exceptional cases, the
following classification is found. Here + and − stand for positive of negative entries in Â; all other
entries are zero. The numbers µj are always positive. We can always arrange that λ1 > 0, otherwise we
multiply the equation with −1.

p+m = 3: The vector d is always the null vector, and the sub-cases are:

Â =


+

+
+

−

 ellipsoid, µ1x
2
1 + µ2x

2
2 + µ3x

2
3 − 1 = 0,

Â =


+

±
−

∓

 hyperboloid of one sheet, µ1x
2
1 + µ2x

2
2 − µ3x

2
3 − 1 = 0,

Â =


+

±
−

±

 hyperboloid of two sheets, µ1x
2
1 − µ2x

2
2 − µ3x

2
3 − 1 = 0,

Â =


+

±
−

0

 elliptic double cone, µ1x
2
1 + µ2x

2
2 − µ3x

2
3 = 0.

p+m = 2 and d = 0: The only reasonable cases are

Â =


+

+
0

−

 elliptic cylinder, µ1x
2
1 + µ2x

2
2 = 1,

Â =


+

−
0

±

 hyperbolic cylinder, µ1x
2
1 − µ2x

2
2 = 1.

p+m = 2 and d 6= 0: Then d0 = 0; and the two sane cases are

Â =


+

+
0 −
− 0

 elliptic paraboloid, µ1x
2
1 + µ2x

2
2 = 2x3,

Â =


+

−
0 −
− 0

 hyperbolic paraboloid, µ1x
2
1 − µ2x

2
2 = 2x3.

p+m = 1 and d 6= 0: Then d0 = 0; and the only interesting case is

Â =


+

0 −
0

− 0

 parabolic cylinder, µ1x
2
1 = 2x2.

Pictures of these surfaces can be found in [2].



4.6. OUTLOOK: THE GOOGLE PAGERANK ALGORITHM 109

4.6 Outlook: the Google PageRank Algorithm

Let us have a look at Google’s PageRank algorithm, called after Larry Page, one of the founders
of Google24. Here we only show some basic ideas; of course, the algorithm to compute the rank of a
web page has been refined over the passing of the years, and naturally, some details are kept secret for
understandable reasons . . .

The rank of a web page shall describe its “importance”, and this importance is related to the links from
one web page to another. Intuitively, we make some rough assumptions:

• a web page which receives many links should have higher rank than a page which receives only a
few links,

• if a web page A receives some links coming from other pages of high rank, and a web page B
receives links coming from other pages of low rank, than the links pointing to A shall count more
than the links pointing to B.

The page rank of a web page P shall be written as r(P ), which should be a positive number, and it
should hold

r(P ) =
∑
Q∈BP

r(Q)

|Q|
,

where BP is the set of all the pages in the WWW which contain a hyperlink to the page P , and |Q| is
the total number of links which start on the page Q.

The unknown numbers r(P ) and r(Q) appear on both sides of the equation, and for each web page P
which is reachable in the WWW, we have one equation. Consequently, we have to solve a system of
linear equations, where the matrix comes from RN×N , with N ≈ 1010. Call these pages P1, . . . , PN , and
arrange their page ranks to a column vector π = (r(P1), . . . , r(PN ))>. Then we wish to solve the system

π> = π>P,

where π> is a row vector, and P is a matrix of size N ×N with entries

pij =

{
1
|Pi| : Pi links to Pj ,

0 : otherwise

To obtain a notation more familiar, we transpose and get P>π = π, which is an eigenvalue problem.

How to solve it ? How to find π ?

Due to the enormous size of the matrix, the only viable approach seems to be: guess an initial vector

π(0), for instance π
(0)
j = 1/N for each component, and then iterate π(k+1) := P>π(k), and hope for fast

convergence as k goes to infinity. Natural questions are:

• is the problem solvable at all ? If 1 is not an eigenvalue of P>, then the solution π can not exist !

• does the iteration converge ?

• does the iteration converge with reasonable speed ?

We start with the first question. All the columns of P> have sum equal to one, by definition of the pij .
Then each of the columns of (P> − I) adds up to zero. Therefore, adding all the rows of the matrix
(P> − I) produces the zero row vector. Then the rows of (P> − I) are linearly dependent, and the
determinant of that matrix must be zero, and therefore one is an eigenvalue of P>.

To consider the second question, we play with a toy model: take N = 2 and P> =

(
0 1
1 0

)
. If your

initial vector is π(0) = (0.2, 0.8)>, for instance, then the sequence of the π(k) does not converge, as can
be computed by hand quickly. The reason is that P> has another eigenvalue, −1, which has the same

24 Our representation follows the article of A.Langville, C. Meyer: A survey of eigenvector methods for web information
retrieval, SIAM Review, Vol. 47, No. 1 (2005), 135–161.
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modulus as our favourite eigenvalue +1. This is bad. We want that no eigenvalue has modulus larger
than one, and +1 must be the only eigenvalue with modulus equal to one, and +1 shall be an eigenvalue
of algebraic multiplicity one. (Think about why we wish all this !)

So we would like to know, where the other eigenvalues of P> are located. Here the Gerschgorin
principle helps and tells us that all the eigenvalues are (possibly complex) numbers with modulus ≤ 1.
(We apply the Gerschgorin principle to P, but this matrix has the same eigenvalues as P>). At least
we have proved that eigenvalues of modulus larger than one are impossible !

Now comes the moment where we should modify the matrix P a bit. First: if a row of P contains only
zeroes, then we replace each of these zeroes by 1/N . This gives us a matrix P. Next, we set

P := αP + (1− α)E, 0 < α < 1,

where E = ~e⊗~v, and ~e is a column vector full of ones, and ~v is a special vector full of positive entries that
sum up to one. This vector ~v can describe that a user might type in a popular URL by hand into the
browser, or it can be used for manual adjustions of certain pageranks for political/commercial/whatever
reasons (think of stopping link spammers). The number α is a parameter for fine tuning.

The key step is now: the matrix P has only positive entries, and then we can cite the Frobenius–
Perron theorem that tells us that the eigenvalue of biggest modulus is unique, its eigenvector has
only positive entries, and all the other eigenvalues have smaller modulus. And it keeps getting bet-

ter: if the eigenvalues of P are (1, µ1, µ2, . . . , µN ) with |µj | ≤ 1, then the eigenvalues of P are
(1, αµ1, αµ2, . . . , αµN ). Google has chosen α ≈ 0.85, which implies that all the other eigenvalues are (in
modulus) considerably smaller than one.

This is related to the question of the speed of convergence: if λ1 = 1 is the largest eigenvalue, and λ2 ∈ C
is the second-largest (in modulus) eigenvalue of the iteration matrix P, then the error in the vector π
after k steps of iterations can be bounded by (|λ2|/λ1)k (times a constant). But |λ2| ≤ 0.85, by the
choice of α, which makes the convergence quite fast. It is said that Google can compute the page rank
vector π in just a few days, and a new version of π is computed about once per month.

Now you have an idea how to do “the world’s largest matrix computation”.

4.7 Keywords

• Eigenvalues, eigenvectors, and how to compute them,

• multiplicities of eigenvalues, diagonalisation of a matrix,

• orthogonal projectors, self-adjoint operators,

• spectral theorem,

• definiteness.



Chapter 5

Integration in Several Dimensions,
and Surfaces

5.1 Integration on Cuboids

Definition 5.1 (Cuboid). A set Q ⊂ Rn is called cuboid1 if there are real numbers ai, bi with −∞ <
ai < bi < +∞ and

Q =
{
x = (x1, . . . , xn)> ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n

}
.

The volume2 of this cuboid Q is defined as

vol(Q) :=

n∏
i=1

(bi − ai).

We say that a collection of numbers

(x1,0, x1,1, . . . , x1,m1
), (x2,0, x2,1, . . . , x2,m2

), . . . , (xn,0, xn,1, . . . , xn,mn),

forms a grid-partition3 of the above Q if

ai = xi,0 < xi,1 < xi,2 < · · · < xi,mi−1 < xi,mi = bi, i = 1, . . . , n.

Given indices 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, . . . , 1 ≤ jn ≤ mn, we define an open sub-cuboid Qj1...jn as

Qj1...jn := (x1,j1−1, x1,j1)× (x2,j2−1, x2,j2)× · · · × (xn,jn−1, xn,jn).

The closures Qj1...nh of all sub-cuboids joined together give again Q:

Q =
⋃

j1,...,jn

Qj1...jn .

Definition 5.2 (Step function). A function f from a cuboid into the real numbers is said to be a step
function4 if a grid-partition of the cuboid exists, with the property that f is constant on each sub-cuboid.

Note two things:

• we do not say anything about the values of a step-function on the borders of the sub-cuboids,

• for each step-function, you can find an infinite number of grid-partitions (just split the sub-cuboids
once more).

1Quader
2Volumen
3Gitterzerlegung
4Treppenfunktion
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Definition 5.3 (Integral of step functions). Let f : Q → R be a step function, taking the values
cj1j2...jn at the sub-cuboid Qj1j2...jn . Then the integral of f over Q is defined as∫

Q

f(x) dx :=

m1∑
j1=1

m2∑
j2=1

· · ·
mn∑
jn=1

cj1j2...jn vol(Qj1j2...jn).

Question: If different grid-partitions of Q gave different values of the integral, this definition would
become absurd. Show that this cannot happen.

As in (3.1), any step function f satisfies the following estimate:∣∣∣∣∫
Q

f(x) dx

∣∣∣∣ ≤ ‖f‖L∞(Q) vol(Q). (5.1)

We define tame functions as in one dimension:

Definition 5.4 (Tame function). We call a function f : Q→ R tame5 if f is bounded and there is a
sequence (ϕm)m∈N of step functions which converges to f in the L∞(Q)–norm:

lim
m→∞

‖ϕm − f‖L∞(Q) = 0.

Definition 5.5 (Integral of tame functions). Let (ϕm)m∈N be a sequence of step functions which
converges to a tame function in the L∞(Q)–norm. Then we define∫

Q

f(x) dx := lim
m→∞

∫
Q

ϕm(x) dx.

Question: If this limit did not exist, or if different sequences of step functions gave different limits, then
this definition would become absurd, too. Show that this is impossible, taking advantage of (5.1).

The integral of tame functions over cuboids shares many properties with its one-dimensional counterpart:

Proposition 5.6. • The estimate (5.1) holds for tame functions, too.

• Continuous functions are tame.

• If f and g are tame functions over a cuboid Q and f ≤ g everywhere, then
∫
Q
f(x) dx ≤

∫
Q
g(x) dx.

• If f is tame, then so is |f |.

• If f and g are tame, then also f · g is tame.

• Each tame function f over a cuboid Q satisfies the estimate∣∣∣∣∫
Q

f(x) dx

∣∣∣∣ ≤ ∫
Q

|f(x)|dx.

• For M = sup{f(x) : x ∈ Q} and m = inf{f(x) : x ∈ Q}, we have

m vol(Q) ≤
∫
Q

f(x) dx ≤M vol(Q).

• If f and g ≥ 0 are continuous, then there is a point ξ ∈ Q with∫
Q

f(x)g(x) dx = f(ξ)

∫
Q

g(x) dx.

Proof. See the one-dimensional version, Propositions 3.6, 3.9, and 3.11.

5Regelfunktion
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Proposition 5.7. If a sequence (fm)m∈N of tame functions over a cuboid Q converges uniformly to a
limit function f , then this limit function is tame, too, and we can commute the limit and the integration:

lim
m→∞

∫
Q

fm(x) dx =

∫
Q

lim
m→∞

fm(x) dx =

∫
Q

f(x) dx.

Proof. The proof is exactly the same as in the 1D case, see Proposition 3.32.

Now to the differences between integration in one dimension and integration in several dimensions:

• there are no anti-derivatives of a function over a cuboid,

• in the multi-dimensional case, iterated integrals can be considered.

Iterated integrals give us a means to calculate the value of the integral. Let Q ⊂ Rn = Rnx be a cuboid,
and put n = l +m with 1 ≤ l,m ≤ n− 1. Write

Rn = Rl × Rm,
x = (x1, . . . , xn) = (v1, . . . , vl, w1, . . . , wm) = (v, w),

Q = O × P,

with a cuboid O ⊂ Rl and a cuboid P ⊂ Rm.

Take a function f ∈ C(Q → R) and write it as f = f(x) = f(v, w). If you freeze the variable v, you
obtain a function fv = fv(w) which depends on w only, is defined on P and continuous there. Then the
integral

∫
P
fv(w) dw makes sense. Note that this integral is a function of the variable v.

Proposition 5.8 (Fubini’6s Theorem). Write a cuboid Q ⊂ Rn as Q = O × P as above, and pick
a continuous function f : Q → R. For frozen v ∈ O (and frozen w ∈ P ), define a function fv (and a
function fw) as

fv : P → R, fv : w 7→ f(v, w),

fw : O → R, fw : v 7→ f(v, w).

Then the following holds:

1. The function fv is a continuous function over P , and the function fw is continuous over O.

2. The integrals
∫
P
fv(w) dw and

∫
O
fw(v) dv exist, for every v and w, respectively. The first integral

is a continuous function over O, the second integral is a continuous function over P .

3. We have the identity∫
Q

f(x) dx =

∫
O

(∫
P

fv(w) dw

)
dv =

∫
P

(∫
O

fw(v) dv

)
dw. (5.2)

Sketch of proof. Continuous functions are tame and can be approximated by step functions, for which
the above claims are quite obvious. The uniform convergence of the step functions to tame functions
allows to commute limits and integration operators (but you have to be careful in the details).

You could try yourselves to prove the same result once more, replacing everywhere continuous by tame.
Be warned that the devil is in the details, though. One such detail is that we have no information about
the values of a step-function on the borders of the sub-cuboids, making claim 2 of the above proposition
wrong, for some values of v and w . . .

Question: Take Q = (0, 1)× (0, 2). Which value has the integral
∫
Q
y sin(xy) d(x, y) ?

6 Guido Fubini, 1879 – 1943
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5.2 Integration on Arbitrary Bounded Domains

We start with an example.

Let B be a two-dimensional disk with electrical charges on it. The charge density function is a continuous
function f = f(x), for x ∈ B. We expect the total charge to be∫

B

f(x) dx,

and now we wish to make sense of this expression.

Our considerations of the previous section cannot be applied directly, since the disk is no cuboid. Another
idea might be to choose a cuboid Q containing B and to define the zero extension f0 of f ,

f0(x) :=

{
f(x) : x ∈ B,
0 : x ∈ Q \B.

Our naive intuition suggests that
∫
B
f(x) dx can be defined as

∫
Q
f0(x) dx. But this does not work,

because f0 is not a tame function on the cuboid Q. There is no sequence of step functions on Q which
converges uniformly to f0, except in the artificial case that f vanishes on the boundary ∂B, making f0

continuous on Q. In general, f0 will be discontinuous on ∂B.

However, we can argue that the function f0 is almost tame: if we stay a bit away from the bad part
∂B, the function is tame there. And the bad part ∂B has no two-dimensional area, because it is a
one-dimensional object. This hints at how to overcome the trouble: just cut-off the boundary ∂B.

Definition 5.9 (Sets of Jordan–measure zero). We say that a set Γ ⊂ Rn has n-dimensional
Jordan-measure zero7 if, for every positive ε, you can find a finite number of cubes with total volume
less than ε whose union covers Γ.

The boundary of a two-dimensional disk is a set with two-dimensional Jordan-measure zero.

Definition 5.10 (Jordan-measurable). We say that a set G ⊂ Rn is Jordan-measurable8 if it is
bounded in Rn, and its boundary ∂G has n-dimensional Jordan-measure zero.

Definition 5.11 (ε-boundary-cut-off). Let G ⊂ Rn be an open Jordan-measurable set. Take a cube
Q ⊂ Rn that contains G and a grid-partition of Q with sub-cubes of equal size.

• The sub-cubes whose closure intersects ∂G are the boundary sub-cubes.

• The sub-cubes that are contained in G and are neighbours of boundary sub-cubes are the interme-
diate sub-cubes. We make the agreement that two sub-cubes are neighbours if they have at least
one vertex9 in common.

• All other sub-cubes that are contained in G are the interior sub-cubes.

• All sub-cubes whose closure does not intersect G are the exterior sub-cubes.

A function ϕε : Q → R with ε > 0 is called an ε-boundary-cut-off function of the domain G if the
following conditions are met:

• There is a cube Q of Rn which contains G and a grid-partition of Q, such that the total volume of
the boundary sub-cubes and intermediate sub-cubes is less than ε,

• the function ϕε takes the value 0 on the exterior and boundary sub-cubes, the value 1 on the interior
sub-cubes, and values between zero and one on the intermediate sub-cubes,

• the function ϕε is continuous on Q.

One can show (we will not do it) that, for any Jordan-measurable set, such boundary-cut-off functions
can always be found. See Figure 5.1 for an example.

7n-dimensionales Null-Jordan-Maß
8Jordan-meßbar
9Eckpunkt
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interior sub−cubes

intermediate sub−cubes

boundary sub−cubes

Figure 5.1: A (part of a) grid partition of G ⊂ R2. The fat curved line is ∂G, and G lies “below” it.
The exterior sub-cubes are the white ones “above” the fat curved line. The cut-off-function ϕε is zero
on the boundary sub-cubes, and one on the interior sub-cubes.

Definition 5.12 (Integral over bounded domains). Let G be an open Jordan-measurable set in Rn.
For any positive ε, let ϕε be an ε-boundary-cut-off. Then the integral

∫
G
f(x) dx over G of a continuous

function f : G→ R is defined as∫
G

f(x) dx := lim
ε→+0

∫
Q

ϕε(x)f(x) dx,

where Q is a cube containing G, and the function f has been tacitly zero-extended to Q.

Take two boundary-cut-off functions ϕε and ϕε′ . They coincide everywhere except a set with volume at
most ε+ ε′. Then the estimate∣∣∣∣∫

Q

ϕε(x)f(x) dx−
∫
Q

ϕε′(x)f(x) dx

∣∣∣∣ ≤ (ε+ ε′) ‖f‖L∞(G)

follows and convinces us that the sequence (
∫
Q
ϕεf dx)ε→+0 is a Cauchy sequence of real numbers.

Therefore, the limit in Definition 5.12 exists, making it a sane definition.

Definition 5.13 (Volume of a bounded domain). The volume of an open Jordan-measurable set G
is defined as

vol(G) :=

∫
G

1 dx.

Proposition 5.14. Let G be an open Jordan-measurable set in Rn, and f, g : G→ R be continuous. Then
the assertions of Propositions 5.6 hold (replace Q with G everywhere, and “tame” with “continuous”).
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Proof. Omitted.

You can also consider iterated integrals. Just extend the integrand by zero outside the domain G and
write down the equation (5.2).

Lemma 5.15 (Fubini). Let [a, b] ⊂ R be a bounded interval, and ψ± ∈ C([a, b] → R) two continuous
functions with ψ−(x) < ψ+(x), for x ∈ (a, b). Define a set

G = {(x, y) ∈ R2 : a < x < b, ψ−(x) < y < ψ+(x)}.

Then this set is open and Jordan-measurable in R2, and the integral of every continuous function f over
G can be computed as∫

G

f(x, y) d(x, y) =

∫ x=b

x=a

(∫ y=ψ+(x)

y=ψ−(x)

f(x, y) dy

)
dx.

How to prove it should be obvious: pick a small ε; cut-off the boundary of G with a cut-off function ϕε;
then you can read the integral over G as an integral over a larger cube (by zero-extension of f); for such
an integral iterated integration is permitted. Then you send ε to zero and commute limε→0 with the
integral symbols (carefully checking that you are allowed to do that).

Of course, you can switch the roles of x and y, as well as formulate similar lemmas in higher dimensions.

Example: Let G = {(x, y) ∈ R2 : x2 + y2 < R2} be a ball of radius R, and compute the integral∫
G

(x2 + y2) d(x, y).

Differentiation under the integral is possible in higher dimensions, too:

Proposition 5.16 (Differentiation with respect to parameters). Let Λ ⊂ R be a compact interval
and G ⊂ Rn be an open Jordan-measurable set. Assume that the function f : G×Λ→ R is continuously
differentiable. Then the function

g = g(λ) =

∫
G

f(x, λ) dx

maps Λ into R, is continuously differentiable there, and has derivative

g′(λ) =

∫
G

∂f

∂λ
(x, λ) dx.

We have already skipped the proof of the one-dimensional version, so we should skip the proof now, too.

Proposition 5.17 (Substitution). Let H be an open set in Rn, and let ϕ : H → Rn be a function with
the following properties:

• ϕ is C1 on H,

• ϕ is injective,

• the Jacobi matrix ϕ′ is always regular.

Let G ⊂ Rn be an open Jordan-measurable set, with G being contained in H (then G is a strictly smaller
set than H). Finally, let f be a continuous function f : ϕ(G)→ R. Then the following holds:

• the set ϕ(G) is Jordan-measurable and open,

• the substitution formula holds:∫
ϕ(G)

f(y) dy =

∫
G

f(ϕ(x)) |detϕ′(x)| dx.
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The formula remains true if ϕ′ becomes singular on a subset of G with Jordan-measure zero.

Proof. Consult [4, Vol. 2, Nr. 205] for the gory details.

Example 5.18 (Polar coordinates). We come back to the integral
∫
B

(x2 + y2) d(x, y) where B is a
ball about 0 of radius R. The function ϕ is ϕ = ϕ(r, φ) = (x, y) with

x = r cosφ, y = r sinφ.

This gives detϕ′ = r. The ball B is described by {(r, φ) : 0 ≤ φ ≤ 2π, 0 ≤ r < R}. We choose
f = f(x, y) = x2 + y2 and obtain, by Fubini’s theorem,∫

B

(x2 + y2) d(x, y) =

∫ φ=2π

φ=0

∫ r=R

r=0

r2 · r d(r, φ) = 2π
R4

4
.

5.3 Integration on Unbounded Domains

Now we investigate integrals
∫
G
f(x) dx with unbounded domains G. You can see them as multi-

dimensional analogues to improper integrals.

Definition 5.19 (Integrability). Let G be a (possibly unbounded) open set in Rn, and QR the centred
cube with side length 2R:

QR :=
{
x = (x1, . . . , xn)> ∈ Rn : −R < xj < R, j = 1, . . . , n

}
.

We assume that G ∩ QR is Jordan-measurable, for every positive R, and say that a bounded function
f ∈ C(G→ R) is integrable over G if the following limit exists:

lim
R→∞

∫
G∩QR

|f(x)|dx <∞.

Question: If a function f is integrable over G, then also the limit

lim
R→∞

∫
G∩QR

f(x) dx

exists. Why ?

Definition 5.20 (Integral). Let the function f be bounded, continuous and integrable over G; then we
define∫

G

f(x) dx := lim
R→∞

∫
G∩QR

f(x) dx.

Proposition 5.21. Take two functions f and g that are continuous, bounded and integrable over G.

• Then also the functions αf + βg are continuous, bounded and integrable over G, and we have∫
G

(αf + βg) dx = α
∫
G
f dx+ β

∫
G
g dx.

• The functions |f | and f · g are integrable over G, too.

• If f ≤ g everywhere, then
∫
G
f dx ≤

∫
G
g dx.

• In particular, we have |
∫
G
f dx| ≤

∫
G
|f |dx.

That was the easy part.

Question: Take f = f(x, y) = exp(−|y|(1 + x2)). Check the integrability of f over G = R2, and
compute the integrals

∫
R(
∫
R f dx) dy and

∫
R(
∫
R f dy) dx if you can.

Observe that the integral
∫ x=+∞
x=−∞ f(x, y = 0) dx does not exist in this example, which should discourage

you from applying Fubini’s rule mindlessly.

Stronger assumptions will rescue Fubini’s rule, as we will see now. For clarity of exposition, we consider
only the case G = R2. You can write down a version for G = Rn = Rl × Rm yourselves.
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Proposition 5.22 (Fubini’s Theorem). Take a bounded function f ∈ C(R2 → R). Suppose that, for
every compact interval I ⊂ Rx, a continuous and bounded function gI : Ry → R exists, such that

|f(x, y)| ≤ gI(y), (x, y) ∈ I × Ry,
∫ y=+∞

y=−∞
gI(y) dy <∞. (5.3)

Then the following holds:

• The following functions exist and are continuous on R:

F (x) :=

∫ y=+∞

y=−∞
f(x, y) dy, F|·|(x) :=

∫ y=+∞

y=−∞
|f(x, y)|dy, x ∈ R.

• If the function F|·| is integrable over R, then the function F is integrable over R, and the function
f is integrable over R2. In this case we have the equivalence∫

R2

f(x, y) d(x, y) =

∫
Rx

(∫
Ry
f(x, y) dy

)
dx.

Warning: We did not assert that you can switch the order of integration, i.e.∫
R2

f(x, y) d(x, y)
?
=

∫
Ry

(∫
Rx
f(x, y) dx

)
dy,

because it would be wrong. For this equivalence, you need a counterpart of (5.3) with the roles of x and
y interchanged.

You can probably guess the idea of the proof: first you replace R2 by a big square QR, for which the
classical Fubini rule is valid. Then you send R to infinity and try to commute the limR–operator with
an integral symbol. This is the point where you need (5.3). The details are left to the student.

5.4 Surfaces

Literature: Greiner and Stock: Hydrodynamik. Chapter 17: Mathematische Ergänzung: Zur Theorie
der Flächen

5.4.1 Definition and Examples

The typical example of a surface is the upper hemisphere of a ball in the usual three-dimensional space.

In some sense, surfaces in R3 are like (images of) curves in R2. We recall the ingredients for a curve:

parametrisation: this is a continuous mapping γ : [a, b]→ R2,

parameter domain: this is the interval [a, b] where the parameter t lives in,

image: this is the set {γ(t) : t ∈ [a, b]} ⊂ R2, (different parametrisations can give the same image).

Understandably, we wish to forbid such monsters as the Peano curve. To this end, we requested so-called
regularity conditions:

• the parameter domain should be compact and connected (hence, a closed and bounded interval),

• the mapping γ should be injective, at least in the open interval (a, b) (but we want to allow
γ(a) = γ(b), for we can not consider loops otherwise),

• the parametrisation γ should be differentiable with continuous derivative γ̇, and this derivative
must never be the null vector.
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If these conditions hold, the curves behave as expected: they have a tangent vector at every point, they
have a finite length, the images have no corner points10, and you can consider curve integrals.

Surfaces (more precisely, surface patches) are similar. The main differences are that the parameter
domain is a subset of R2, and the image is a subset of R3.

Definition 5.23 (Surface patch). A set S ⊂ R3 is said to be a surface patch11 if a set U ⊂ R2 and
a continuous mapping Φ: U → R3 exists with Φ(U) = S. The set U is called parameter domain12, and
the mapping Φ is named parametrisation. The following conditions on U and Φ are assumed:

• the parameter domain U is compact and connected; the boundary ∂U has Jordan-measure zero,

• the mapping Φ is injective on the interior Ω := U \ ∂U , and Φ(Ω) ∩ Φ(∂U) = ∅,

• the derivative Φ′ (Jacobi matrix) is continuous on U and has rank 2 everywhere in U .

Question: Let u = (u1, u2)> denote the parameters of u ∈ U , and write Φ as a column vector
(Φ1,Φ2,Φ3)>. What is the geometrical meaning of the two column vectors of Φ′ ?

Example 5.24 (Plane). Take three vectors a0, a1, a2 ∈ R3 with a1 and a2 being linearly independent,
and define the parametrisation

Φ(u) = a0 + u1a1 + u2a2, u ∈ U.

Then ∂u1Φ = a1 and ∂u2Φ = a2.

Example: The lateral surface13 of a cylinder: choose U = {0 ≤ ϕ ≤ 2π} × {0 ≤ z ≤ 1} and

Φ(u) =

cosϕ
sinϕ
z

 , u ∈ U.

How about the complete surface of a cylinder or the surface of a cone ? Are they surface patches ?

Example: Take U = {0 ≤ ϕ ≤ 2π} × {0 ≤ θ ≤ π} and

Φ(u) =

sin θ cosϕ
sin θ sinϕ

cos θ

 .

This describes the unit sphere, but violates the last condition of Definition 5.23.

The famous Hedgehog Theorem14 15 states that this is unavoidable—it is impossible to find a parametri-
sation of the whole sphere. Instead you parametrise the lower and the upper hemisphere separately (for
instance), and then glue the pieces together. This is where the name surface patch comes from.

Example: For a parameter domain U ⊂ R2 and a C1 function f : U → R, put

Φ(u) =

 u1

u2

f(u1, u2)

 .

This describes the surface patch “generated by the function f over the domain U”. Obviously,

∂Φ

∂u1
=

 1
0
fu1

 ,
∂Φ

∂u2
=

 0
1
fu2

 .

10Knick
11Flächenstück
12Parametergebiet
13Mantel
14Satz vom Igel
15 You cannot comb a hedgehog so that all its prickles stay flat; there will be always at least one singular point, like the

head crown.
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Question: Give one more parametrisation of the upper hemisphere, in the spirit of the last example.

Combining the last two examples, we now have two different parametrisations for the upper hemisphere:
one via polar coordinates with parameter domain U = {0 ≤ ϕ ≤ 2π} × {0 ≤ θ ≤ π/2}, the other via
cartesian coordinates with parameter domain V = {(x, y) : x2 + y2 ≤ 1}. Which one you choose is up
to you; and, depending on the goal you are trying to achieve, you select that one which makes your
calculations easier.

It turns out that the mapping which translates between polar parameters (ϕ, θ) and cartesian parameters
(x, y) of the upper hemisphere is invertible and differentiable, with differentiable inverse mapping:

Proposition 5.25. If U and V are parameter domains, and Φ: U → R3, Ψ: V → R3 two parametrisa-
tions of the same surface patch S, then there is a C1 diffeomorphism16 τ : U → V with Φ = Ψ ◦ τ . This
diffeomorphism τ is named parameter transform17 between Φ and Ψ.

Proof. Omitted. But it is not that hard.

5.4.2 Tangential Vectors and Tangential Planes

Everyone has a rough understanding what a tangential plane at a point on a sphere geometrically means:
it is the plane that gives the “closest approximation of the sphere near that point”. However, if you want
a more precise description of a tangential plane, or if you want to compute something, you will have to
use parametrisations of the surface under consideration.

Note that there is a tricky point: we have already seen that the same surface can have different parametri-
sations. Somehow we should also describe tangential planes via parametrisations. It would be quite bad
if two different parametrisations of the same surface patch would lead to differing tangential planes. We
would not know which of them is the right one.

Therefore, our job is now the following: how to define tangential planes of a surface patch at a point (by
means of a parametrisation), in such a way that different parametrisations of the surface patch agree on
what the tangential plane is.

To start with the easy things, we consider tangential vectors on a surface patch first:

Consider a surface patch S with a parameter domain U and parametrisation Φ: U → S. Pick a point
u0 = (u1,0, u2,0) in the parameter domain U ; call x0 = Φ(u0) the associated point on S. To give a
formula for a tangential vector on S at the point x0, we take a short curve γ = γ(τ) = (u1(τ), u2(τ)) in
U , where |τ | < ε� 1 and γ(τ = 0) = u0. Then Φ ◦ γ is a curve on S. The tangent vector of that curve,
taken at the point x0 = Φ(u0), is

~t =
∂

∂τ
Φ(γ(τ))|τ=0 = Φ′(u0) · γ′(0) = (∂u1

Φ) · u′1(0) + (∂u2
Φ) · u′2(0).

We obtain different tangent vectors at x0 if we let (u′1(0), u′2(0)) vary. If for instance the curve γ runs
horizontally with unit speed through the point u0 in the parameter domain U , then (u′1(0), u′2(0)) = (1, 0),
and the tangential vector becomes ~t = ∂u1Φ(u0). Similarly for ∂u2Φ(u0). Our requirement that the rank
of Φ′ be two everywhere simply means that those two tangent vectors are linearly independent.

Then we are tempted to define the tangential plane at x0 on the surface patch S as the plane that goes
through the point x0 = Φ(u0) and is spanned by the vectors ∂u1

Φ(u0) and ∂u2
Φ(u0).

Next we have to check the independence of this plane from the choice of parametrisation. Take another
parametrisation Ψ: V → R3 of S, with x0 = Ψ(v0). We have to verify that the vectors ∂v1Ψ(v0), ∂v2Ψ(v0)
span the same plane as ∂u1

Φ(u0), ∂u2
Φ(u0). Equivalently, we may verify that the cross products of the

spanning vectors point along the same line:

Proposition 5.26 (Re-parametrisation). Let Φ: U → R3 and Ψ: V → R3 be two parametrisations
of the same surface S and τ : U → V a diffeomorphism with Φ = Ψ ◦ τ . Then we have:

(∂u1Φ)× (∂u2Φ) = det
(
τ ′
)

((∂v1Ψ)× (∂v2Ψ)) . (5.4)

16Diffeomorphismus. This is a C1 mapping that is bijective from U onto V .
17Parametertransformation
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Proof. The chain rule of differentiation says

Φ′ = Ψ′ · τ ′. (5.5)

In this formula, Φ′ and Ψ′ are matrices with 2 columns and 3 rows, and τ ′ is a 2× 2–matrix. Since τ is
a bijective mapping, the derivative τ ′ is always an invertible matrix. Choose an arbitrary column vector
a ∈ R3. Then (5.5) can be extended to an identity of matrices from R3×3:

(
a, ∂u1Φ, ∂u2Φ

)
=
(
a, ∂v1Ψ, ∂v2Ψ

)
·

1 0 0
0 (τ ′)11 (τ ′)12

0 (τ ′)21 (τ ′)22

 .

Taking determinants on both sides, and interpreting two of them as parallelepipedial products18 imply

det
(
a, ∂u1

Φ, ∂u2
Φ
)

= det
(
a, ∂v1Ψ, ∂v2Ψ

)
· det(τ ′),

〈a, (∂u1Φ)× (∂u2Φ)〉 = 〈a, (∂v1Ψ)× (∂v2Ψ)〉 · det(τ ′).

The vector a is completely arbitrary; then (5.4) follows immediately.

Of course, the cross product of the spanning vectors of a plane is just a normal vector of that plane.
This justifies the next definition, and the obtained tangent plane is independent of the parametrisation.

Definition 5.27 (Tangential plane of a surface patch). Let S ⊂ R3 be a surface patch, parametrised
by a mapping Φ with parameter domain U . Then the tangential plane at a point x0 = Φ(u0) ∈ S is
defined as the plane that goes through x0 and has normal vector ∂u1

Φ(u0)× ∂u2
Φ(u0).

Definition 5.28 (Unit normal vector). Let S ⊂ R3 be a surface patch with parametrisation Φ. Then

n(x) :=
(∂u1

Φ)× (∂u2
Φ)

‖(∂u1Φ)× (∂u2Φ)‖
(u), with x = Φ(u)

is called unit normal vector19.

This unit normal vector is, at the same time, a normal vector to the tangent plane and a normal vector
to the surface patch. Proposition 5.26 guarantees that the unit normal vector changes at most its sign
when we choose to parametrise the surface in another way.

Definition 5.29 (Orientation). Two parametrisations Φ and Ψ of a surface patch S ⊂ R3 are said to
have the same orientation20 if the parameter transform τ with Φ = Ψ ◦ τ has a Jacobi-Matrix τ ′ with
positive determinant. Otherwise, we say that Φ and Ψ have opposite orientations21.

All parametrisations form two classes. Elements in the same class have the same orientation. We pick
one class and call it positive orientation. Then we talk about an oriented surface patch S.

In practice, you often have a surface that is too big to be parametrised by only one surface patch (take
the sphere, for instance). In such situations, it is standard to take several surface patches, each of them
parametrising only a part of the surface, and glue these patches together. Of course, you do not want
the unit normal vector to flip when you go from one patch to its neighbour patch.

Proposition 5.30 (Unit normal vector field). An oriented surface patch S has, for each point x ∈ S,
a uniquely determined unit normal vector

n(x) = ± (∂u1Φ)× (∂u2Φ)

‖(∂u1
Φ)× (∂u2

Φ)‖
(u), with x = Φ(u),

where + stands for positive orientations and − for negative orientations. The mapping x 7→ n(x) is
called unit normal vector field22 on S.

18Spatprodukte
19Einheitsnormalenvektor
20gleichorientiert
21entgegengesetzt orientiert
22Einheitsnormalenfeld
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Definition 5.31 (Orientable). A surface is said to be orientable23 if a unit normal vector field on that
surface can be chosen in such a way that the normal vectors vary continuously on the surface.

There are plenty of examples of non-orientable surfaces, the most prominent being the Möbius24 strip,
showing that a surface may have “only one side”.

Example: Consider the unit sphere:

Φ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ)>, 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π.

We easily compute

∂ϕΦ =

− sin θ sinϕ
sin θ cosϕ

0

 , ∂θΦ =

cos θ cosϕ
cos θ sinϕ
− sin θ

 ,

(
(∂ϕΦ)× (∂θΦ)

)
(ϕ, θ) = − sin θ

sin θ cosϕ
sin θ sinϕ

cos θ

 = − sin θΦ(ϕ, θ).

This normal vector points to the interior of the ball, except at the north and south poles, where it vanishes
(which makes this parametrisation illegal at those points).

5.4.3 Outlook: General Relativity

Roughly spoken, Einstein’s theory of relativity tells us that our world is four-dimensional, and large
masses make this four-dimensional space curved. Then this space is no longer a flat space that can be
described by four cartesian coordinates, but it is a four-dimensional manifold which has a curvature.

In this section we try to explain what this means.

We will follow the Einstein summation convention: when you see a single term or a product with one
index appearing as lower index and as upper index at the same time, then you have to take the summation
over that index. For example, the expressions

ajj , ajbkj , ajbkl c
ldmk

are to be understood as

n∑
j=1

ajj ,

n∑
j=1

ajbkj ,

n∑
l=1

n∑
k=1

ajbkl c
ldmk,

where n is the space dimension.

The spatial variables always have upper indices, and in a partial derivative ∂yk

∂xm , k is an upper index,
and m is a lower index.

Next we consider two coordinate systems describing the same point:

(x1, . . . , xn), (x′
1
, . . . , x′

n
).

For instance, (x1, x2, x3) could be the usual cartesian coordinates in R3, and (x′
1
, x′

2
, x′

3
) could be the

polar coordinates:

(x′
1
, x′

2
, x′

3
) = (r, θ, ϕ).

Now let us be given a physical quantity that depends on the space variables like a velocity field or a
density field (like mass per volume), and now we will study how the coordinate representation of this
quantity changes when we switch the coordinate system.

23orientierbar
24August Ferdinand Möbius, 1790–1868
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Thinking of a moving particle, we should consider time derivatives of the coordinate functions, and they
transform (due to the chain rule) like this:

dx′
j

dt
=
∂x′

j

∂xi
dxi

dt
(Einstein summation convention).

And a scalar function f depending on the spatial variables has partial derivatives which transform as
follows (again by the chain rule):

∂f

∂x′j
=

∂xi

∂x′j
∂f

∂xi
.

Observe that these two transformation rules are quite different, and in particular the matrix of the ∂x′j

∂xi

is the inverse of the matrix of the ∂xi

∂x′j
.

Definition 5.32. A contravariant tensorfield is a function that maps (depending on the coordinate
system) a point P to numbers a1(P ), . . . , an(P ) which transform according to

a′
j

=
∂x′

j

∂xi
ai

when we switch from the x–coordinate system to the x′–coordinate system.

A covariant tensorfield is a function that maps (depending on the coordinate system) a point P to numbers
a1(P ), . . . , an(P ) which transform according to

a′j =
∂xi

∂x′j
ai

when we switch from the x–coordinate system to the x′–coordinate system.

Be careful: a mathematical object with upper indices need not be a contravariant tensor field, and an
object with lower indices need not be a covariant tensor field. The key to the definition is always the
transformation rule !

There are also twice contravariant tensor fields ajk, and they transform according to the formula

a′
jk

=
∂x′

j

∂xl
∂x′

k

∂xm
alm.

Similarly you can define tensor fields a
j1...jp
k1...kq

which are p–fold contravariant and q–fold covariant.

Before we come to examples, a few remarks on the notations are in order. Geometric points and vectors
will be written in bold letters, and the geometric scalar product of two vectors a and b will be expressed
as ab. The function which maps the coordinates of a geometric point to that point is written as

r = r(x1, x2, x3), r = r(x′
1
, x′

2
, x′

3
).

In R3, fix an orthonormal frame of base vectors i, j, k (these will never change neither their meaning
nor their directions).

In case of polar coordinates (x1, x2, x3) = (r, θ, ϕ) we then have

r = r sin θ cosϕ i + r sin θ sinϕ j + r cos θ k

= x1 sinx2 cosx3 i + x1 sinx2 sinx3 j + x1 cosx2 k.

local base vectors: near a chosen point, let one of the coordinates xj run, and keep the others fixed.
You obtain a curve, and the local base vector ej is just the tangential vector to that curve:

ej :=
∂r

∂xj
.

These vectors might not have length one, and are not necessarily perpendicular to each other. In
case of polar coordinates, you have

e1 = sinx2 cosx3 i + sinx2 sinx3 j + cosx2 k
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(pointing away from the origin in radial direction),

e2 = x1 cosx2 cosx3 i + x1 cosx2 sinx3 j− x1 sinx2 k

(pointing towards the south pole along a meridian),

e3 = −x1 sinx2 sinx3 i + x1 sinx2 cosx3 j + 0 k

(pointing from west to east).

Some people prefer normalizing the local base vectors ej to length one, but this destroys the beauty
of the following formulas.

arc length and metric tensor field: consider a curve with parametrization

r = r(x1(t), . . . , xn(t)).

Then the tangential vector can be calculated by the chain rule:

dr

dt
=

∂r

∂xj
dxj

dt
= ej ẋ

j ,

and its squared length is(
dr

dt

)2

= ejekẋ
j ẋk = gjkẋ

j ẋk

with gjk = ejek, or in shorter notation,

ds2 = gjk dxj dxk.

Here ds is called the arc length element, and the gjk form the metric tensor field which is twice
covariant. This tensor field is symmetric in the sense of gjk = gkj . In our derivation, the matrix
of the gjk is positive definite, but in general relativity, one of the variables will be the time, and
the 4× 4 matrix of the gjk will then have one positive and three negative eigenvalues.

The inverse matrix of the gjk has entries gjk (by definition), and this inverse matrix is a twice
contravariant tensor field.

In case of the polar coordinates in R3, we have gjk = 0 for j 6= k, and

g11 = 1, g22 = r2 = (x1)2, g33 = (r sin θ)2 = (x1 sinx2)2,

g11 = 1, g22 =
1

r2
=

1

(x1)2
, g33 =

1

(r sin θ)2
=

1

(x1 sinx2)2
.

We also set g = det gij , which is r4 sin2 θ in case of the polar coordinates in R3. The square root
of |g| will always be the factor which appears when evaluating volume integrals !

dual local base vectors: given the local base vectors e1, . . . , en, we define

ej := gjkek,

and these are just the vectors of the dual basis, since

ejek = (gjlel)ek = gjlglk = δjk (Kronecker symbol).

components of a vector field: at each point P , we attach a vector, giving us a vector field v = v(P ).
Then we can write it in terms of the ej basis,

v(P ) = vj(P )ej ,

where the vj can be computed using the scalar product:

vj(P ) = ejv(P ).

The components vj form a contravariant tensor field.
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Now we have enough knowledge to write down the typical differential operators in general coordinates:

grad f =
∂f

∂xj
ej =

(
gij

∂f

∂xi

)
ej ,

div v =
1√
|g|

∂

∂xi

(√
|g|vi

)
,

4 f = div grad f =
1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
.

Next we wish to understand how the local base vectors change when we go from one point to a neigh-
bouring point. Then we should consider the derivatives ∂ei

∂xj , which are again vectors which can be
decomposed in terms of the local basis or the dual basis, leading to

∂ei
∂xj

= Γkijek,
∂ei
∂xj

= Γij,ke
k,

Γkij = ek
∂ei
∂xj

, Γij,k = ek
∂ei
∂xj

.

The Γkij and Γij,k are the Christoffel symbols, and they can be computed via

Γij,m =
1

2

(
∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
, Γkij = gkmΓij,m.

Now there is a nasty issue coming: spatial derivatives of a tensor field will (in general) not be tensor
fields again, and then also the Christoffel symbols will not be tensor fields (because their transformation
rule when exchanging the coordinate system will be different). To compensate this, we introduce a new
derivative: the covariant derivative. For a general p–fold covariant and q–fold contravariant tensor, it
is quite hard to define, but it is easier for tensor fields which are covariant or contravariant only a few
number of times:

∇kf =
∂f

∂xk
(scalar functions),

∇kai =
∂ai

∂xk
+ Γikla

l, ∇kai =
∂ai
∂xk
− Γlkial (once contravariant/covariant, respectively),

∇kaij =
∂aij

∂xk
+ Γiksa

sj + Γjksa
is, ∇kaij =

∂aij
∂xk

− Γskiasj − Γskjasi.

Then the divergence of a vector field v can be simply written as div v = ∇jvj . When checking this, note
that we have the Ricci Lemma:

∇rgik = ∇rgik = 0, ∇ig = 0.

And we can also write down the simple formulas

grad f = (∇kf)ek, 4 f = gij∇i∇jf, 4v = (gij∇i∇jvk)ek.

Next we come to the curvature of a manifold. The Riemannian curvature tensor is a tensor Rjikm with

∇k∇muj −∇m∇kuj = Rjikmu
i.

This tensor measures how much the rule ∂k∂m− ∂m∂k = 0 is violated (roughly spoken). In case of a flat
metric, the Riemannian curvature tensor is everywhere zero.

Explicitely, we have the formulae

Rjikm =
∂Γjmi
∂xk

−
∂Γjki
∂xm

+ ΓjksΓ
s
mi − ΓjmsΓ

s
ki.

Further, we define

Rijkm := gjsR
s
ikm
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and also the Ricci tensor

Rik := Rsiks.

Finally, the scalar curvature is defined as

R := grsRrs.

Then the Einstein field equations are

Rij −
1

2
gijR = κTij , i, j = 0, 1, 2, 3,

where x0 denotes the time variable. Here Tij is the energy momentum tensor which describes the
distribution of the masses. The tensor of the gij is the covariant metric tensor field belonging to the
four-dimensional space-time manifold (which will be deformed if masses are present, and it will be flat in
case of an empty universe). These Einstein field equations, one of the key elements of Einstein’s theory
of general relativity, are a highly complicated system of partial differential equations of second order,
and the unknown functions are the components of the metric tensor gij .

Have fun !

Wie die spezielle Relativitätstheorie auf das Postulat gegründet ist, daß ihre Gleichungen bezüglich
linearer, orthogonaler Transformationen kovariant sein sollen, so ruht die hier darzulegende The-
orie auf dem Postulat der Kovarianz aller Gleichungssysteme bezüglich Transformationen von der
Substitutionsdeterminante 1.

Dem Zauber dieser Theorie wird sich kaum jemand entziehen können, der sie wirklich erfaßt hat;
sie bedeutet einen wahren Triumph der durch Gauss, Riemann, Christoffel, Ricci und Levi-
Civiter (sic) begründeten Methode des allgemeinen Differentialkalküls.25

5.5 Surface Integrals

5.5.1 Surface Integrals of First Kind

It is natural to ask for the area of a surface; and it is also natural to expect that the area (in a naive
sense of the word) will emerge if you “integrate the function 1 over the surface”.

Now we have to explain how to integrate over a surface (patch).

Fix a point u0 = (u0,1, u0,2)> and take a small rectangle in the parameter domain:

R∆ := {(u1, u2) : u0,1 ≤ u1 ≤ u0,1 + ∆1, u0,2 ≤ u2 ≤ u0,2 + ∆2}, (5.6)

where ∆1 and ∆2 are small positive numbers. This rectangle is mapped by the parametrisation Φ onto
a quadrangle Φ(R∆) ⊂ S (with non–straight edges) with corners

Φ(u0), Φ(u0 + (∆1, 0)), Φ(u0 + (0,∆2)), Φ(u0 + (∆1,∆2)).

The Taylor expansion of our parametrisation reads

Φ(u) = Φ(u0) + Φ′(u0) · (u− u0) +R(u, u0)

with a remainder vector R much shorter than ‖Φ′(u0) · (u− u0)‖ — recall that Φ′(u0) has full rank. The
proof that the remainder R indeed is negligible is beautiful, since it combines many ideas from various
branches of mathematics. Enjoy how they nicely fit together:

Lemma 5.33. Suppose that the function Φ: U → R3 that describes the surface patch S is twice contin-
uously differentiable, and u0 ∈ U . Then the matrix (Φ′(u0))>Φ′(u0) ∈ R2×2 is positive definite. Call its
positive eigenvalues λ1 and λ2. Then we have, for all u ∈ U , the length estimate from below

‖Φ′(u0) · (u− u0)‖ ≥
√

min(λ1, λ2) ‖u− u0‖ ,

and there is a positive constant C2 such that the remainder R satisfies the length estimate from above

‖R(u, u0)‖ ≤ C2 ‖u− u0‖2 .
25 A. Einstein, Zur allgemeinen Relativitätstheorie. Königlich Preußische Akad. Wiss. (Berlin). Sitz.ber. (1915),

778–786.
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We remark that both inequalities together say ‖R(u, u0)‖ � ‖Φ′(u0) · (u− u0)‖ if ‖u− u0‖ � 1.

Proof. For simplicity of notation, put A := Φ′(u0). Then A ∈ R3×2 maps from R2 into R3, and A has
full rank two, since Φ is a parametrisation of a surface patch. The dimension formula for the linear map
associated to the matrix A then reads

dimR2 = dim kerA+ dim imgA,

and therefore dim kerA = 0, or kerA = {0}. Take any vector ∆u := u − u0 ∈ R2, with ∆u 6= 0. Then
A∆u 6= 0 because of kerA = {0}, hence

0 < ‖A∆u‖2 = 〈A∆u,A∆u〉R3 =
〈
A>A∆u,∆u

〉
R2 ,

which is just the definition that the matrix B := A>A is positive definite (of course, B is symmetric !).
By Proposition 4.30, the two eigenvalues of B must be positive. Call them λ1 and λ2. Since B is
symmetric and real, it is self-adjoint, and therefore the spectral theorem holds. Call the associated
projectors P1 and P2, which are matrices from R2×2 with the properties

P1 + P2 = I2, P 2
j = Pj , P>j = Pj , P1P2 = P2P1 = 0 ∈ R2×2, B = λ1P1 + λ2P2.

Now we compute the length of Φ′(u0) · (u− u0) = A∆u:

‖A∆u‖2 = 〈B∆u,∆u〉R2 = 〈(λ1P1 + λ2P2)∆u, (P1 + P2)∆u〉R2

=

2∑
j=1

2∑
k=1

〈λjPj∆u, Pk∆u〉R2 =

2∑
j=1

2∑
k=1

λj
〈
P>k Pj∆u,∆u

〉
R2 =

2∑
j=1

2∑
k=1

λj 〈PkPj∆u,∆u〉R2

=

2∑
j=1

λj 〈PjPj∆u,∆u〉R2 =

2∑
j=1

λj
〈
P>j Pj∆u,∆u

〉
R2 =

2∑
j=1

λj 〈Pj∆u, Pj∆u〉R2

≥ min(λ1, λ2)

2∑
j=1

〈Pj∆u, Pj∆u〉R2 .

We interrupt this computation for a little calculation of the length of ∆u:

‖∆u‖2 = 〈∆u,∆u〉R2 = 〈(P1 + P2)∆u, (P1 + P2)∆u〉R2

=

2∑
j=1

2∑
k=1

〈Pj∆u, Pk∆u〉R2 = ( . . . repeat the dance with the adjoints from above . . . )

= ( . . . but now without the λj . . . ) =

2∑
j=1

〈Pj∆u, Pj∆u〉R2 ,

and therefore we have proved

‖A∆u‖2 ≥ min(λ1, λ2) ‖∆u‖2 .

This is the first estimate. And the second estimate ‖R(u, u0)‖ ≤ C2 ‖u− u0‖2 is exactly the claim of
Taylor’s Theorem, compare Remark 1.22.

We obtain a parametrisation Ψ of the tangential plane at Φ(u0) if we drop the remainder term R:

Ψ(u) = Φ(u0) + Φ′(u0) · (u− u0).

The image of the rectangle R∆ (defined in (5.6)) from the parameter domain U under the parametrisation
Ψ of the tangential plane is just a parallelogram Ψ(R∆) with the corners

Φ(u0), Φ(u0) + ∂u1
Φ(u0) ·∆1, Φ(u0) + ∂u2

Φ(u0) ·∆2, Φ(u0) + ∂u1
Φ(u0) ·∆1 + ∂u2

Φ(u0) ·∆2.

It is natural to expect that the areas of the quadrangle with non–straight edges Φ(R∆) and of the
parallelogram Ψ(R∆) should be roughly the same, and that this approximation should become better
and better if the side lengths ∆1 and ∆2 of the rectangle R∆ go to zero. But the area A(Ψ(R∆)) is easy
to compute, and we obtain

A(Ψ(R∆)) = ‖(∂u1
Φ(u0) ·∆1)× (∂u2

Φ(u0) ·∆1)‖ = ‖(∂u1
Φ)× (∂u2

Φ)‖ · |∆1| · |∆2|.

This reasoning justifies the following definition of the area of a surface patch.
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Definition 5.34 (Area of a surface patch). Let S ⊂ R3 be a surface patch, parametrised by a mapping
Φ with parameter domain U . Then the area of that parametrisation is defined as

A(Φ(U)) :=

∫
U

‖(∂u1
Φ)× (∂u2

Φ)‖ d(u1, u2).

This definition is not satisfactory: we know that a surface patch may have several differing parametri-
sations. They should all have the same area, because the area is a geometric property and should only
depend on the surface patch, but not on the parametrisation (which is just a tool for the analytical de-
scription). And indeed, now we show that the parametrisation does not matter (beware that we recycle
the identifier Ψ, since we do not need it anymore as parametrisation of the tangential plane):

Proposition 5.35 (Re-parametrisation). Let Φ: U → R3 and Ψ: V → R3 be two parametrisations
of the same surface S and τ : U → V a diffeomorphism with Φ = Ψ ◦ τ . Put

g = ‖(∂u1
Φ)× (∂u2

Φ)‖2 , h = ‖(∂v1Ψ)× (∂v2Ψ)‖2 .

Then the following identity is true:∫
U

√
g d(u1, u2) =

∫
U

√
h ◦ τ |det(τ ′)|d(u1, u2) =

∫
V

√
hd(v1, v2).

Proof. From Proposition 5.26 we know already
√
g = |det τ ′|

√
h. Now apply Proposition 5.17.

Definition 5.36 (Scalar surface element). The expression

dσ = ‖(∂u1
Φ)× (∂u2

Φ)‖ d(u1, u2) =
√
g d(u1, u2)

is called scalar surface element26. It is invariant under re-parametrisations.

Then the area of the surface patch is given by

A(Φ(U)) =

∫
U

√
g d(u1, u2).

You will have wondered why we have chosen to define cumbersomely g as the square of the norm of the
cross product, only to write afterwards

√
g everywhere in the integrands. However, this notation has

some advantages. To understand them, it is illuminating to think about the vector-product in different
terms: we know that the norm of a vector product a × b equals the area of the parallelogram spanned
by the factors a and b. On the other hand, this (oriented) area equals the determinant det(a, b) of the
two factors. Now we write a and b as column vectors together, obtaining a matrix X. Then we have

‖a× b‖2 = (detX)2 = (detX) · (detX) = (detX>) · (detX)

= det(X>X) = det

(
〈a, a〉 〈a, b〉
〈b, a〉 〈b, b〉

)
.

In this spirit, we fix gij :=
〈
∂uiΦ, ∂ujΦ

〉
(as for the metric tensor) and express g as

g = g(u) = ‖(∂u1
Φ)× (∂u2

Φ)‖2 = det

(
g11 g12

g21 g22

)
.

Observe that, with the notation from the proof of Lemma 5.33, we have g = detB.

Question: Consider the four-dimensional Euclidean space, and a three-dimensional object in it. How
would you parametrise that object ? Guess how the volume formula for that object looks like ! Now you
have just found out the key advantage of this function g.

In other literature, you may read the notation of Gauss,

E = g11, F = g12 = g21, G = g22.

Then g = EG− F 2. The numbers E,F,G are called coefficients of the first fundamental form27.

26 skalares Oberflächenelement
27Koeffizienten der ersten Fundamentalform
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Remark 5.37. Just for completeness, we explain what the first fundamental form is: it is a tool for the
easy computation of the length of a tangent vector at a surface patch S. Pick a point u0 in the parameter
domain U ; and let γ = γ(τ) = (u1(τ), u2(τ)) be a short curve in U , with γ(τ = 0) = u0 and tangent
vector γ′(0) = (u′1(0), u′2(0)) at u0. Then this curve γ gives rise to a tangent vector on the surface S at
the point x0 = Φ(u0), namely

~t = (∂u1
Φ) · u′1(0) + (∂u2

Φ) · u′2(0).

The length of this tangent vector can be found via∥∥~t∥∥2
= E(u′1(0))2 + 2F (u′1(0))(u′2(0)) +G(u′2(0))2.

This quadratic form is called first fundamental form. Particularly convenient are the parametrisations
Φ with F ≡ 0: then the tangential vectors ∂u1Φ and ∂u2Φ are perpendicular to each other everywhere.

Example: We compute the area of a sphere with radius R:

SR =
{
x ∈ R3 : ‖x‖ = R

}
.

We parametrise it with polar coordinates:

Φ(ϕ, θ) =

R sin θ cosϕ
R sin θ sinϕ
R cos θ

 , 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π.

Recall that the last condition of Definition 5.23 is violated.

Question: Can you give a reason why this does not matter ?

Then we compute

∂ϕΦ =

−R sin θ sinϕ
R sin θ cosϕ

0

 , ∂θΦ =

R cos θ cosϕ
R cos θ sinϕ
−R sin θ

 ,

E = gϕϕ = R2 sin2 θ, F = gϕθ = 0, G = gθθ = R2,
√
g =

√
EG− F 2 = R2 sin θ.

Then the surface of the sphere is calculated like this:

A(SR) =

∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0

R2 sin θ dθ dϕ = 2πR2

∫ θ=π

θ=0

sin θ dθ = 4πR2.

After this preparation, the definition of surface integrals should be plausible:

Definition 5.38 (Surface integral of first kind). Take a surface patch S ⊂ R3 with parametrisation
Φ and parameter domain U , and a continuous function f : S → R. Then the expression∫

S

f(x) dσ :=

∫
U

f(Φ(u))
√
g(u) d(u1, u2)

is called surface integral of first kind28 or scalar surface integral29.

We have already proved that the scalar surface element dσ is invariant under re-parametrisations. There-
fore, also the values of surface integrals of first kind do not depend on the choice of parametrisation.

28 Oberflächenintegral erster Art
29 skalares Oberflächenintegral



130 CHAPTER 5. INTEGRATION IN SEVERAL DIMENSIONS, AND SURFACES

5.5.2 Surface Integrals of Second Kind

Consider some thing that can be considered as “flowing”, for instance, the light emanating from the
sun. Take a surface patch, for instance, a part of the earth surface. You would like to know how much
sunlight arrives at that surface patch in one minute. How to do that ?

You cannot simply multiply “light current per square metres” times “area in square metres”, because
then the temperature on earth would be the same everywhere. Instead, you need one factor more, namely
the cosine of the angle between the vector of light and the normal vector of the surface.

Hence the ingredients to a surface integral of second kind are the following:

a surface patch: it must have a normal vector at every point. In other words, it must be orientable
(you cannot define surface integrals of second kind on the Möbius strip).

a vectorial integrand: usually, this is a vector field in R3, which means that you attach a vector at
every point of a three-dimensional domain.

The integral can be roughly defined as follows:

• cut the surface patch into many small pieces, each of them looking like a small flat parallelogram,

• for each such piece: take its unit normal vector, compute the scalar product with the vector of the
integrand at that point, and multiply with the size of the parallelogram,

• compute the sum over all small parallelograms.

This gives you an approximate value of the integral. Finally, you perform the limit, making the pieces
infinitesimally small.

When computing a surface integral, you express everything in terms of (u1, u2), of course.

Definition 5.39 (Surface integral of second kind). Take a surface patch S ⊂ R3 with positively

oriented parametrisation Φ and parameter domain U , and a continuous function ~f : S → R3. Then the
expression∫

S

~f(x) · d~σ :=

∫
S

〈
~f(x), ~n(x)

〉
dσ =

∫
U

〈
~f ◦ Φ, (∂u1

Φ)× (∂u2
Φ)
〉

d(u1, u2)

is said to be a surface integral of second kind30 or vectorial surface integral31. The value of the integral
is also called flux of ~f through S32. The expression

d~σ = (∂u1
Φ)× (∂u2

Φ) d(u1, u2)

has the name vectorial surface element33.

Question: Why does the value of the integral not change, when you chose another parametrisation of
the surface with the same orientation ?

Example: Let S be one leaf of the screw surface34:

S :=
{

(r cosϕ, r sinϕ,ϕ)> : 0 < r < R, 0 < ϕ < 2π
}

and let ~f denote the vector field

~f(x, y, z) :=

 y
−x
z

 .

30Oberflächenintegral zweiter Art
31 vektorielles Oberflächenintegral
32Fluß von ~f durch die Fläche S
33vektorielles Oberflächenelement
34Schraubenfläche
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The integral
∫
S
~f(x) · d~σ will then be calculated as follows:

∂rΦ =

cosϕ
sinϕ

0

 , ∂ϕΦ =

−r sinϕ
r cosϕ

1

 ,

(∂rΦ)× (∂ϕΦ) =

 sinϕ
− cosϕ

r

 ,

〈
~f ◦ Φ, (∂rΦ)× (∂ϕΦ)

〉
=

〈 r sinϕ
−r cosϕ

ϕ

,
 sinϕ
− cosϕ

r

〉 = r sin2 ϕ+ r cos2 ϕ+ rϕ = r(ϕ+ 1),

∫
S

~f(x) · d~σ =

∫ 2π

ϕ=0

∫ R

r=0

r(ϕ+ 1) dr dϕ = R2π(π + 1).

5.6 Integral Theorems

We conclude this chapter with some integral theorems. There are several of them, but their main idea
is always the same: you transform one type of integral into another one. In the theory of differential
forms35—a theory which we sketch in the outlook at the end—a famous formula is established, namely∫

M

dω =

∫
∂M

ω,

where M is a nice manifold in Rn, ∂M is the nice boundary of M , ω is a differential form on M , and
dω is the differential of ω.

All the theorems which we will present below are special cases of the above formula.

Let us list all of them (some are already proved):

the fundamental theorem of calculus:∫ x=b

x=a

f ′(x) dx = f(b)− f(a),

the path-independence of integrals of gradient fields:∫ B

A

gradϕ · d~x = ϕ(B)− ϕ(A),

the Gauss theorem in R2:∫
Ω

div ~f d(x, y) =

∫
∂Ω

~f · ~ν ds, ~ν = outer normal, s = arc-length,

the Gauss theorem in R3:∫
Ω

div ~f d(x, y, z) =

∫
∂Ω

~f · ~ν dσ,

the Stokes theorem in R3:∫
M

rot ~f · d~σ =

∫
∂M

~f · d~x.

The latter two formulae are indispensable for the investigation of electric fields and magnetic fields.

The proofs of the above formulas would be quite long if you were asking for full generality. However, we
think that it is more important to communicate the main ideas, and for this reason we will go the easy
way and assume that all functions and domains are extraordinarily nice.

35Differentialformen
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Definition 5.40 (Gauss normal36 domain). A set Ω ⊂ R2 is a Gauss normal domain37 if it is open,
bounded, connected, and the boundary ∂Ω has Jordan-measure zero. Additionally, we assume that there
are real numbers x0, x1, y0, y1, and piecewise C1 functions α±, β±, such that:

α−(x) < α+(x), x0 < x < x1,

β−(y) < β+(y), y0 < y < y1,

Ω = {(x, y) : x0 < x < x1, α−(x) < y < α+(x)},
Ω = {(x, y) : y0 < y < y1, β−(y) < x < β+(y)}.

The derivatives of α± and β± are supposed to be bounded.

Gauss normal domains in R3 are defined similarly.

Question: Why is the unit ball not a normal domain ? How can you repair it ?

In the sequel, we will assume that all domains to be considered are normal domains. This makes the
proofs easier; however, the theorems are valid also for other domains.

We need some agreements:

The boundary of a domain in the plane is oriented in such a way
that “the domain is to your left hand”.

The boundary of a surface patch in R3 is oriented like this:
if the thumb of your right hand is parallel to the normal of the plane,

then your fingers are parallel to the tangential vector of the boundary of the surface patch.

5.6.1 Integral Theorems in R2

Proposition 5.41 (Gauss theorem in R2). Let Ω ⊂ R2 be a Gauss normal domain, and ~f : Ω→ R2

be a C1 function with bounded first derivative. Let ~ν denote the outward unit normal on ∂Ω, and ds the
arc-length element of ∂Ω. Then the following identity holds:∫

Ω

div ~f(x, y) d(x, y) =

∫
∂Ω

~f · ~ν ds.

Proof. Put ~f = (P,Q)>. Then div ~f = Px +Qy, and we can compute easily:∫
Ω

Px d(x, y) =

∫ y=y1

y=y0

(∫ x=β+(y)

x=β−(y)

Px(x, y) dx

)
dy

=

∫ y=y1

y=y0

(P (β+(y), y)− P (β−(y), y)) dy =

∮
∂Ω

P dy,∫
Ω

Qy d(x, y) =

∫ x=x1

x=x0

(∫ y=α+(x)

y=α−(x)

Qy(x, y) dy

)
dx

=

∫ x=x1

x=x0

(Q(x, α+(x))−Q(x, α−(x))) dx = −
∮
∂Ω

Qdx.

Summing up, we find∫
Ω

div ~f d(x, y) =

∮
∂Ω

−Qdx+ P dy. (5.7)

It remains to re-parametrise ∂Ω with the arc-length:

∂Ω = {(x, y) = (ξ(s), η(s)) : 0 ≤ s ≤ L},
36 “normal” is not related to “normal vector”, but to “sane”
37 Gaußscher Normalbereich
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where L is the length of the curve ∂Ω. The unit tangent vector to ∂Ω is (ξ′(s), η′(s))>, and the outward
unit normal vector is (η′(s),−ξ′(s))>. Finally, the differentials are transformed as follows:

dx = ξ′(s) ds, dy = η′(s) ds.

Plugging these equations into each other gives∫
Ω

div ~f d(x, y) =

∫ s=L

s=0

(−Q(ξ(s), η(s))ξ′(s) + P (ξ(s), η(s))η′(s)) ds

=

∫ s=L

s=0

~f(ξ(s), η(s)) · ~ν(s) ds =

∫
∂Ω

~f · ~ν ds.

Question: Can you find formulas for the area of the domain Ω from the Gauss theorem ? As a hint,
you could have a look at Proposition 3.68.

Question: Consider a domain with a shape like a horseshoe38. This is no Gauss normal domain. Can
you prove the Gauss integral theorem for this domain ?

5.6.2 The Gauss Theorem in R3

Proposition 5.42 (Gauss theorem in R3). Let Ω ⊂ R3 be a Gauss normal domain, and ~f : Ω→ R3

be a C1 function with bounded first derivative. Let ~ν denote the outward unit normal on ∂Ω, and dσ the
scalar surface element of ∂Ω. Then the following identity holds:∫

Ω

div ~f(x, y, z) d(x, y, z) =

∫
∂Ω

~f · ~ν dσ. (5.8)

Proof. It is very similar to the two-dimensional case. Put ~f = (P,Q,R)>, and write Ω as

Ω = {(x, y, z) : (x, y) ∈ U, γ−(x, y) < z < γ+(x, y)}, U ⊂ R2.

Obviously, div ~f = Px +Qy +Rz. Considering only Rz, we then compute:∫
Ω

Rz(x, y, z) d(x, y, z) =

∫
U

(∫ z=γ+(x,y)

z=γ−(x,y)

Rz(x, y, z) dz

)
d(x, y)

=

∫
U

(R(x, y, γ+(x, y))−R(x, y, γ−(x, y))) d(x, y).

Now we rewrite this integral as a surface integral on ∂Ω. The “upper” and “lower” surface of ∂Ω are
parametrised by functions Φ±,

Φ+(x, y) =

 x
y

γ+(x, y)

 , Φ−(x, y) =

 x
y

γ−(x, y)

 .

The tangent plane at a point (x, y, z)> ∈ ∂Ω is spanned by the vectors ∂xΦ± and ∂yΦ±. The cross-
product of these two spanning vectors then is

∂Φ±
∂x
× ∂Φ±

∂y
=

 1
0

γ±,x

×
 0

1
γ±,y

 =

−γ±,x−γ±,y
1

 ,

which gives us the outer unit normal vector on ∂Ω:

ν+(x, y) =
1√

1 + γ2
+,x + γ2

+,y

−γ+,x

−γ+,y

1

 , ν−(x, y) =
1√

1 + γ2
−,x + γ2

−,y

γ−,xγ−,y
−1

 .

38Hufeisen
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Finally, we have the two scalar surface elements

dσ =
√

1 + γ2
±,x + γ2

±,y d(x, y).

Plugging these equations into each other, we then obtain

∫
Ω

Rz(x, y, z) d(x, y, z) =

∫
∂Ω

〈0
0
R

, ~ν〉 dσ.

Repeat with P and Q, and you are done.

The following formulas are a variation on the partial integration. Green39 found them 1828 when he
was studying the theory of electricity and magnetism.

Proposition 5.43 (Green’s formulas). Let Ω ⊂ R3 be a Gauss normal domain, and u, v : Ω → R
functions from C2. Then the Green’s formulas hold:∫

Ω

(u4 v + (gradu) · (grad v)) d(x, y, z) =

∫
∂Ω

u
∂v

∂~ν
dσ, (5.9)∫

Ω

(u4 v − v4u) d(x, y, z) =

∫
∂Ω

(
u
∂v

∂~ν
− v ∂u

∂~ν

)
dσ, (5.10)

where ~ν denotes the outward unit normal on ∂Ω.

The expression ∂v
∂~ν is the directional derivative of the function v in the direction of the outward normal.

Proof. Apply the Gauss theorem to ~f = u grad v, and you obtain (5.9). Swap the roles of u and v.
Subtraction then gives you (5.10).

Remark 5.44. Take U as the vector space of all those functions f ∈ C2(Ω → R) with f = 0 on the
boundary. Introduce the scalar product 〈f, g〉 =

∫
Ω
f(x)g(x) dx for U (attention: this will not make U

a Banach space). Then Green’s formulas imply 〈4 f, g〉 = 〈f,4 g〉 for f, g ∈ U . In this sense, the
Laplace operator is symmetric on U . In the context of quantum theory, you will rephrase this as “the
Hamilton operator of the free electron is self–adjoint”.

Corollary 5.45. Choosing u ≡ 1 in (5.9) yields the useful identity∫
Ω

4 v d(x, y, z) =

∫
∂Ω

∂v

∂~ν
dσ. (5.11)

Remark 5.46 (Fredholm’s alternative revisited). In contrast to the previous remark, we now take
U as the vector space of all those functions f ∈ C2(Ω → R) with vanishing normal derivative on the
boundary. Define the usual scalar product and put A := 4. Then 〈Af, g〉 = 〈f,Ag〉 for all f, g ∈ U , and
we can think of A as “self–adjoint”. Hence A = A∗.

The Fredholm alternative (Corollary 4.21) says that a system Ax = b is solvable if and only if b ⊥ kerA∗,
in case of A being a matrix. Now A is no matrix, but the Fredholm alternative holds also now: suppose
Av = b and ∂

∂~ν v = 0 on ∂Ω. Then (5.11) says
∫

Ω
bdx = 0, which is equivalent to 〈1, b〉 = 0. But the

function which is everywhere equal to one is exactly a basis of kerA∗ = kerA, and then 〈1, b〉 = 0 simply
means b ⊥ kerA∗. So we come to the belief that the Fredholm alternative holds also for the Laplace
operator (with boundary conditions) on Gauss normal domains. (The details must be skipped.)

39 George Green, 1793 – 1841
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5.6.3 The Stokes Theorem in R3

Proposition 5.47 (Stokes40 theorem). Let S ⊂ R3 be an orientable surface patch with C2 parametri-
sation Φ: U → R3 and parameter domain U ⊂ R2. We assume that U is a domain for which the Gauss
theorem in R2 is valid. Additionally, suppose that U is simply connected. Moreover, assume that the
boundary γ = ∂U is a piecewise smooth Jordan curve, and that the parametrisation Φ is injective on a
larger open set that contains U .

Let ~f be a function that is continuously differentiable on a larger domain that contains the surface patch
S. Then the following identity holds:∫

S

rot ~f · d~σ =

∫
∂S

~f · d~x. (5.12)

We can relax the assumptions a bit if we are willing to work harder. However, for simplicity reasons, we
stick to this version of the Stokes theorem.

Proof. Formula (5.12) can be written as∫
S

rot ~f · ~ndσ =

∫
∂S

~f · d~x,

with ~n(x) being the unit normal:

~n =
(∂u1

Φ)× (∂u2
Φ)

‖(∂u1Φ)× (∂u2Φ)‖
.

The idea of the proof is to write everything in terms of the parameters (u1, u2), and then to apply the
Gauss theorem in R2. We need a good parametrisation of γ = ∂U , e.g., the arc-length parametrisation:

γ(s) =

(
γ1(s)
γ2(s)

)
, 0 ≤ s ≤ L.

Then a parametrisation of ∂S is given by a function φ = φ(s) : [0, L]→ R3,

φ(s) = Φ(γ(s)), 0 ≤ s ≤ L.

Rewritten in terms of the parameters (u1, u2) and s, equation (5.12) then is∫
U

(
(rot ~f) ◦ Φ

)
·
(

(∂u1
Φ)× (∂u2

Φ)
)

d(u1, u2) =

∫ s=L

s=0

~f(φ(s)) · φ′(s) ds. (5.13)

The function Φ and its Jacobi matrix are

Φ =

Φ1(u1, u2)
Φ2(u1, u2)
Φ3(u1, u2)

 , Φ′ =

Φ1,1(u1, u2) Φ1,2(u1, u2)
Φ2,1(u1, u2) Φ2,2(u1, u2)
Φ3,1(u1, u2) Φ3,2(u1, u2)

 ,

with Φi,j being the partial derivative of Φi with respect to uj . Then φ′ = φ′(s) is given by

φ′(s) = Φ′(γ(s)) · γ′(s) =

Φ1,1(γ(s)) Φ1,2(γ(s))
Φ2,1(γ(s)) Φ2,2(γ(s))
Φ3,1(γ(s)) Φ3,2(γ(s))

 · (γ′1(s)
γ′2(s)

)
.

Consider, for instance, the f3 component in the right–hand side of (5.12). We have to evaluate∫
∂S

f3 dx3 =

∫ s=L

s=0

f3(φ(s))(φ′(s))3 ds =

∫ s=L

s=0

f3(φ(s)) (Φ3,1(γ(s))γ′1(s) + Φ3,2(γ(s))γ′2(s)) ds.

Our goal is to apply the Gauss theorem in R2 to this equation. The tangent vector to the curve γ is
(γ′1(s), γ′2(s))>, and the outward unit normal vector to that curve is

~ν(s) =

(
cos(−π2 ) − sin(−π2 )
sin(−π2 ) cos(−π2 )

)(
γ′1(s)
γ′2(s)

)
=

(
0 1
−1 0

)(
γ′1(s)
γ′2(s)

)
=

(
γ′2(s)
−γ′1(s)

)
.

40 Sir George Gabriel Stokes, 1819 – 1903
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Then we have Φ3,1γ
′
1 + Φ3,2γ

′
2 =

〈
(Φ3,2,−Φ3,1)>, ~ν

〉
, and, consequently,∫

∂S

f3 dx3 =

∫ s=L

s=0

f3(Φ(γ(s)))

〈(
Φ3,2(γ(s))
−Φ3,1(γ(s))

)
, ~ν(s)

〉
ds

=

∫
∂U

f3(Φ)

〈(
Φ3,2

−Φ3,1

)
, ~ν

〉
ds

=

∫
U

div

(
f3(Φ)Φ3,2

−f3(Φ)Φ3,1

)
d(u1, u2),

the last relation following from the Gauss theorem in R2.

Now we compute the divergence in the integrand. The vector ~f depends on ~x. Let f3,k denote the
derivative of f3 with respect to xk. We write Φ3,11, Φ3,12 = Φ3,21, Φ3,22 for the second order derivatives
of the function Φ3. Then we infer from the chain rule that

div

(
f3(Φ)Φ3,2

−f3(Φ)Φ3,1

)
=

∂

∂u1
(f3(Φ)Φ3,2)− ∂

∂u2
(f3(Φ)Φ3,1)

=

3∑
k=1

(f3,kΦk,1Φ3,2 − f3,kΦk,2Φ3,1) + f3Φ3,21 − f3Φ3,12

= f3,1(Φ1,1Φ3,2 − Φ1,2Φ3,1) + f3,2(Φ2,1Φ3,2 − Φ2,2Φ3,1). (5.14)

Next, we compute the integrand of the left–hand side of (5.13). A straight-forward computation reveals

(rot ~f) · ((∂u1
Φ)× (∂u2

Φ)) =

f3,2 − f2,3

f1,3 − f3,1

f2,1 − f1,2

 ·
Φ1,1

Φ2,1

Φ3,1

×
Φ1,2

Φ2,2

Φ3,2


=

f3,2 − f2,3

f1,3 − f3,1

f2,1 − f1,2

 ·
Φ2,1Φ3,2 − Φ3,1Φ2,2

Φ3,1Φ1,2 − Φ1,1Φ3,2

Φ1,1Φ2,2 − Φ2,1Φ1,2

 .

We collect only the terms with f3, they are:

f3,2(Φ2,1Φ3,2 − Φ3,1Φ2,2)− f3,1(Φ3,1Φ1,2 − Φ1,1Φ3,2).

But this is exactly the same as (5.14).

The other two terms,
∫
∂S
f1 dx1 and

∫
∂S
f2 dx2, can be considered in the same manner. This completes

the proof of the Stokes theorem.

This proof of Stokes’ Theorem in R3 was by hard computation. We have found out that the formula (5.12)
holds, but the deeper reason remains mysterious. The author hopes that the following second proof of
the Stokes Theorem might give more insights.

We wish to prove (5.12), which is∫
S

rot ~f · d~σ =

∫
∂S

~f · d~x.

Our strategy will be:

Step 0: we prepare some tools (Einstein summation convention and the Levi–Civita tensor),

Step 1: we start with the left-hand side and plug in the parametrisation Φ: U → R3 of the surface
patch S,

Step 2: we obtain an integral
∫
U

? du1 du2,

Step 3: we apply the Gauss Theorem in R2,

Step 4: we obtain a curve integral of second kind
∫
∂U

? du1 + ? du2,

Step 5: we plug in the parametrisation γ : [0, L]→ R2 for the boundary ∂U ,
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Step 6: we obtain an integral
∫ L
s=0

? ds,

Step 7: we see (more or less directly) that this is the desired right-hand side.

Our first tool is the Einstein summation convention. This means: whenever in a product one index
appears twice, then we sum over this index from one to three (without writing the

∑
symbol). For

instance, aijbj is an abbreviation for ai1b1 + ai2b2 + ai3b3.

A first application is the chain rule: when x = Φ(u), then

∂fk(Φ(u))

∂ul
=

∂fk
∂xm

∂Φm
∂ul

.

Here the relevant summation index is m.

Remark 5.48. There is a deeper physical reason why in a product a summation index may appear once
or twice, but never thrice: the reason is that many such expressions are in fact pairings between an
element of one vector space V and an element of the dual vector space V ′. Recall the definition of a
dual vector space: if V is a vector space over the field K, then the dual space V ′ contains all the linear
mappings from V into (the one-dimensional space) K. We give some examples:

the dual space V ′ consists of . . . when the space V contains the . . .

wave vectors k ∈ R3 position variables x ∈ R3

frequencies ω ∈ R time variable t ∈ R
bra-vectors 〈ψ| ket-vectors |φ〉
differential 1-forms tangent vectors

Imagine that a typical element of V ′ just waits for an element of V to come along, then it eats it, and
produces a number from K in a linear manner.

Pairing a bra-vector 〈ψ| with a ket-vector |φ〉 (both are objects from quantum mechanics) then gives the
number 〈ψ|φ〉, which is another way of writing the bracket 〈ψ, φ〉. And what we call 〈Ax, y〉 in this
lecture, will be written in the quantum mechanics course as 〈y|A|x〉.
Differential 1-forms will be discussed in the final section of this script.

Our second tool is the Levi–Civita tensor. For i, j, k ∈ {1, 2, 3}, we define

εijk =


+1 : (i, j, k) is an even permutation of (1, 2, 3),

−1 : (i, j, k) is an odd permutation of (1, 2, 3),

0 : else.

In particular, εijk = 0 if two of its indices have the same value. The key purpose of this tensor is a
simpler expression for the vectorial product in R3:

(~a×~b)i = εijkajbk,

with Einstein summation convention with respect to j and k. In particular, we have

(rot ~f)i = εijk
∂

∂xj
fk,

( d~σ)i = ni dσ = εipq
∂Φp
∂u1

∂Φq
∂u2

du1 du2.

Lemma 5.49. Let j, k, p, q ∈ {1, 2, 3} be given. Then it holds

εijkεipq = δjpδkq − δjqδkp,

with δ·· being Kronecker’s delta.

Sketch of proof. Consider the case (j, k) = (2, 3) and the case (j, k) = (2, 2).
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Now we prove Stokes’ Theorem once again.

Proof. We have, making extensive use of Einstein’s summation convention,∫
S

rot ~f · d~σ =

∫
S

(rot ~f)i( d~σi)

=

∫
U

εijk
∂fk(Φ(u))

∂xj
εipq

∂Φp
∂u1

∂Φq
∂u2

du1 du2

=

∫
U

(δjpδkq − δjqδkp)
∂fk(Φ(u))

∂xj

∂Φp
∂u1

∂Φq
∂u2

du1 du2

∣∣∣ because of Lemma 5.49

=

∫
U

∂fk(Φ(u))

∂xj

∂Φj
∂u1

∂Φk
∂u2

du1 du2 −
∫
U

∂fk(Φ(u))

∂xj

∂Φk
∂u1

∂Φj
∂u2

du1 du2

=

∫
U

∂fk(Φ(u))

∂u1

∂Φk
∂u2

du1 du2 −
∫
U

∂fk(Φ(u))

∂u2

∂Φk
∂u1

du1 du2

∣∣∣ “chain rule backwards”

=

∫
U

∂

∂u1

(
fk(Φ(u))

∂Φk
∂u2

)
du1 du2

−
∫
U

∂

∂u2

(
fk(Φ(u))

∂Φk
∂u1

)
du1 du2

∣∣∣ because of the Schwarz theorem on 2nd derivatives

=

∫
∂U

(
fk(Φ(u))

∂Φk(u)

∂u2
du2 + fk(Φ(u))

∂Φk(u)

∂u1
du1

) ∣∣∣ because of the Gauss theorem (5.7)

=

∫ L

s=0

(
fk(Φ(γ(s)))

∂Φk(γ(s))

∂u2

dγ2

ds
+ fk(Φ(γ(s)))

∂Φk(γ(s))

∂u1

dγ1

ds

)
ds

∣∣∣ plug in u = γ(s)

=

∫ L

s=0

fk((Φ ◦ γ)(s))

(
∂Φk(γ(s))

∂u1

dγ1(s)

ds
+
∂Φk(γ(s))

∂u2

dγ2(s)

ds

)
ds

=

∫ L

s=0

fk(φ(s))
dφk(s)

ds
ds

∣∣∣ recall φ := Φ ◦ γ, and “chain rule backwards”

=

∫ L

s=0

~f(φ(s)) · ~φ′(s) ds

=

∫
∂S

~f · d~x
∣∣∣ that is the definition of curve integrals !

The second proof of the Stokes theorem is complete.

5.7 Outlook: the Stokes Theorem in General Form

(Outlook sections are not relevant for exams.)

The integral theorems proved on the last pages can be brought into a bigger context: the Stokes
theorem on differential forms. Now we try to explain what this means.

A differential form is an expression like this:

ω := u(x, y, z) dx ∧ dy + v(x, y, z) dy ∧ dz + w(x, y, z) dz ∧ dx. (5.15)

This is an example of a 2-form, because of the two differentials “multiplied” using the wedge symbol
∧. Here x, y, z are the usual variables in R3, and u, v, w are smooth functions. We intentionally do not
explain precisely what the d and ∧ symbols mean, but only write down how the calculations work.

The following presentation unfolds like this:

• first we show the purpose of differential forms and show how to integrate a differential 1-form,

• second we list the properties of the wedge product ∧,

• then we show how to compute the integral of a 2-form in R3,

• next we present the exterior derivative d, and how it relates to grad, rot, div in R3,
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• and finally we show how these ingredients come together, building the celebrated Stokes theorem
on differential forms,∫
M

dω =

∫
∂M

ω. (5.16)

The purpose of differential forms

To make a long story short: a differential form is an object which is waiting to be integrated.

Let us think about what we are doing when we integrate a function f (vector-valued or scalar-valued)
over a domain M (where M could be a curve or a surface patch or something similar). First we cut M
into little parts. Then we need two pieces of information:

• we need to know a typical value of f on such a little piece of M ,

• we need to know the size of that little piece of M .

Then we multiply these two pieces of information (in a certain manner, perhaps using a scalar product),
and we sum over all the little parts of M .

A differential form like

ω := u(x, y, z) dx+ v(x, y, z) dy + w(x, y, z) dz (5.17)

unites both mentioned pieces of information in one line. The functions u, v, w can be combined to a
vectorial function ~f = (u, v, w)>, and the expressions dx, dy, dz take care of measuring the sizes of the
little parts of M , where M will be a curve in R3. Then

∫
M
ω will be a curve integral of second kind in

R3. To compute this integral, we choose one parametrisation γ : [0, L]→ R3 — it does not matter which
parametrisation, because they all lead to the same final result, which is∫

M

ω =

∫ L

t=0

〈ω, γ̇〉 dt,

with 〈ω, γ̇〉 being an abbreviation like this:

〈ω, γ̇〉 := u(γ(t))γ̇x(t) + v(γ(t))γ̇y(t) + w(γ(t))γ̇z(t), γ = (γx, γy, γz)
>.

Pick a point P on M . Whatever parametrisation γ was chosen — the tangential vector γ̇ must lie on
the tangential line at the point P on M . In this sense, all the possible tangential vectors at P form a
one-dimensional vector space, and the differential form ω turns such a tangential vector γ̇ into the real
number 〈ω, γ̇〉. In this sense, the differential 1-forms are members of the dual vector space to the vector
space of tangential vectors. This completes the discussion in Remark 5.48.

The wedge product ∧

The product ∧ is called exterior product or outer product (in contrast to the inner product which is the
usual scalar product in Rn). An example of a 1-form is (5.17), and an example of a 2-form is (5.15). If
you have a k-form ω and an `-form %, then ω ∧ % will be a (k + `)-form, which is obtained in the usual
manner: you multiply each summand in ω and each summand in %, and then you add up these products.
Only one rule is special: The wedge product is anti-commutative in the following sense: if p is one of
the variables x, y, z, and if q is also one of the variables x, y, z, then dp∧ dq = −dq ∧ dp. In particular,
we get dx ∧ dx = −dx ∧ dx, hence dx ∧ dx = 0.

How to integrate a 2-form in R3

We wish to integrate

ω = R(x, y, z) dx ∧ dy + P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx
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over M . This is a 2-form in R3, hence M must be a two-dimensional object in R3, therefore M is a
surface patch in R3, with parametrisationxy

z

 =

Φx(u1, u2)
Φy(u1, u2)
Φz(u1, u2)

 , (u1, u2) ∈ U ⊂ R2.

Our calculations are straight-forward:

dx = dΦx =
∂Φx
∂u1

du1 +
∂Φx
∂u2

du2, (5.18)

dy = dΦy =
∂Φy
∂u1

du1 +
∂Φy
∂u2

du2,

dz = dΦz =
∂Φz
∂u1

du1 +
∂Φz
∂u2

du2,

hence

dx ∧ dy =

(
∂Φx
∂u1

du1 +
∂Φx
∂u2

du2

)
∧
(
∂Φy
∂u1

du1 +
∂Φy
∂u2

du2

)
=
∂Φx
∂u1

∂Φy
∂u1

du1 ∧ du1 +
∂Φx
∂u1

∂Φy
∂u2

du1 ∧ du2 +
∂Φx
∂u2

∂Φy
∂u1

du2 ∧ du1 +
∂Φx
∂u2

∂Φy
∂u2

du2 ∧ du2

= 0 +
∂Φx
∂u1

∂Φy
∂u2

du1 ∧ du2 +
∂Φx
∂u2

∂Φy
∂u1

du2 ∧ du1 + 0

=

(
∂Φx
∂u1

∂Φy
∂u2

− ∂Φx
∂u2

∂Φy
∂u1

)
du1 ∧ du2

=

(
∂Φ

Φu1
× ∂Φ

Φu2

)
z

du1 ∧ du2.

Similarly we find

dy ∧ dz =

(
∂Φ

∂u1
× ∂Φ

∂u2

)
x

du1 ∧ du2, dz ∧ dx =

(
∂Φ

∂u1
× ∂Φ

∂u2

)
y

du1 ∧ du2,

and then
∫
M
ω (for our specially written ω) turns into

∫
U

〈PQ
R

, ∂Φ

∂u1
× ∂Φ

∂u2

〉
du1 ∧ du2.

Since (u1, u2) ∈ U ⊂ R2, and U is flat (it has no curvature, but M probably is curved), it is reasonable

to make the agreement du1 ∧ du2 := du1 du2. Our result then is
∫
M
ω =

∫
M
~f · d~σ, as a surface integral

of second kind, with ~f := (P,Q,R)>.

The exterior derivative d

The derivative operator d turns a k-form into a (k + 1)-form, and we define it as follows: first we make
the agreement that a scalar function ϕ = ϕ(x, y, z) on R3 is a 0-form, to which we can apply the exterior
derivative in a natural way:

dϕ :=
∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz.

We have exploited a variant of this rule in (5.18). See also Definition 1.11 for the total differential, which
obeys the same formula (but with a slightly different meaning).

And if

ω =

n∑
i1=1

. . .

n∑
ik=1

fi1...ik(x) dxii ∧ . . . ∧ dxik
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is a k-form in Rn, then we define (with fi1...ik to be understood as 0-form)

dω :=

n∑
i1=1

. . .

n∑
ik=1

( dfi1...ik) ∧ dxii ∧ . . . ∧ dxik .

We discuss examples, and they will tell us how d is related to the operators grad, rot, div in R3.

ω = ϕ is a 0-form on Rn: then dω = ∂ϕ
∂x1

dx1 + · · ·+ ∂ϕ
∂xn

dxn is a 1-form, and its components look like
the components of gradϕ.

ω is a 1-form on R3: then ω = u(x, y, z) dx+ v(x, y, z) dy + w(x, y, z) dz, hence

dω = ( du) ∧ dx+ ( dv) ∧ dy + ( dw) ∧ dz

=

(
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz

)
∧ dx

+

(
∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz

)
∧ dy

+

(
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz

)
∧ dz

=
∂u

∂x
dx ∧ dx+

∂u

∂y
dy ∧ dx+

∂u

∂z
dz ∧ dx

+
∂v

∂x
dx ∧ dy +

∂v

∂y
dy ∧ dy +

∂v

∂z
dz ∧ dy

+
∂w

∂x
dx ∧ dz +

∂w

∂y
dy ∧ dz +

∂w

∂z
dz ∧ dz

= 0− ∂u

∂y
dx ∧ dy +

∂u

∂z
dz ∧ dx

+
∂v

∂x
dx ∧ dy + 0− ∂v

∂z
dy ∧ dz

− ∂w

∂x
dz ∧ dx+

∂w

∂y
dy ∧ dz + 0

=

(
∂v

∂x
− ∂u

∂y

)
dx ∧ dy +

(
∂w

∂y
− ∂v

∂z

)
dy ∧ dz +

(
∂u

∂z
− ∂w

∂x

)
dz ∧ dx,

and now the three components of this 2-form look like the components of rot ~f , with ~f = (u, v, w)>.
In that sense: d applied to a 1-form in R3 gives a 2-form, and your calculation has similarities to
the calculation of the rotation of a vector field.

ω is a 2-form on R3: then ω = R(x, y, z) dx∧ dy+P (x, y, z) dy ∧ dz+Q(x, y, z) dz ∧ dx, and we put
~f = (P,Q,R)>. Then our computing rules give

dω =

(
∂R

∂x
dx+

∂R

∂y
dy +

∂R

∂z
dz

)
∧ dx ∧ dy

+

(
∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)
∧ dy ∧ dz

+

(
∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

)
∧ dz ∧ dx

=

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz = (div ~f) dx ∧ dy ∧ dz.

A key property of the exterior derivative d is d ◦ d = 0. Applying this key property to scalar functions
in R3, we get the well-known rule rot grad = 0. And applied to 1-forms in R3, it corresponds to the rule
div rot = 0.
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The Stokes Theorem on differential forms

Now we discuss examples of the general Stokes theorem (5.16).

M = Γ is a curve from A to B, and ω = ϕ is a function: then ∂M = {A,B} is the set of the two
end-points of the curve, and dω = dϕ = ϕx dx+ ϕy dy + ϕz dz (with ϕx, ϕy, ϕz being the partial
derivatives of ϕ), and the general Stokes theorem (5.16) turns into∫

Γ

ϕx dx+ ϕy dy + ϕz dz = ϕ(B)− ϕ(A),

which is the path–independence of the integral over a gradient field, proved in Proposition 3.77.

M = Ω is a domain in R2, and ω is a 1-form: then ∂M is the boundary of Ω, which is a curve in
the plane, and ω can be written as

ω = −Q(x, y) dx+ P (x, y) dy,

with certain functions P and Q. Put ~f = (P,Q)>. Then our computing rules give

dω = (−Qx dx−Qy dy) ∧ dx+ (Px dx+ Py dy) ∧ dy

= (Px +Qy) dx ∧ dy = (div ~f) dx ∧ dy,

and the general Stokes theorem (5.16) turns into (5.7).

M = Ω is a domain in R3, and ω is a 2-form: then ∂M is the boundary of Ω, which is a surface in
the space, and ω can be written as

ω = R(x, y, z) dx ∧ dy + P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx,

with certain functions P , Q, R. Put ~f = (P,Q,R)>. Then our computing rules give dω =

(div ~f) dx ∧ dy ∧ dz, and the general Stokes theorem (5.16) turns into (5.8).

M = S is a surface patch in R3, and ω is a 1-form: then ∂M is the boundary of S, which is a curve
in R3, and ω can be written as

ω = f1 dx1 + f2 dx2 + f3 dx3,

with scalar functions f1, f2, f3 and x = (x1, x2, x3) ∈ R3. Writing fj,k for the derivative of fj with
respect to xk, from our computing rules we then get

dω = (f1,1 dx1 + f1,2 dx2 + f1,3 dx3) ∧ dx1

+ (f2,1 dx1 + f2,2 dx2 + f2,3 dx3) ∧ dx2

+ (f3,1 dx1 + f3,2 dx2 + f3,3 dx3) ∧ dx3

= (f2,1 − f1,2) dx1 ∧ dx2 + (f3,2 − f2,3) dx2 ∧ dx3 + (f1,3 − f3,2) dx3 ∧ dx1,

and the general Stokes theorem (5.16) turns into (5.12).

Of course you can generalize this to higher dimensions. Perhaps it is a good idea to read Section 1.5
once again. Several important physical theories become beautiful (to the trained eye, admittedly) if you
write their equations in terms of differential forms, for instance the electro-magnetism (see the Teubner-
Taschenbuch der Mathematik, Teil II, 7. Auflage 1995, 10.2.9) and also the theory of special relativity
(see: Hubert Goenner, Spezielle Relativitätstheorie und die klassische Feldtheorie, 1. Auflage 2004).

5.8 Keywords

• Fubini’s theorem,

• substitution rule,

• surfaces and how to parametrise them,

• two kinds of surface integrals,

• the three integral theorems.
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convergence

pointwise, 63
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Cramer’s rule, 42
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volume, 111
curl, 16
curvature, 80
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closed, 77
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regular, 78
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tangent vector, 78

curve integral
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first kind, 85

second kind, 85

definite
negative, 104
positive, 104

definite integral, 48
delta distribution, 77
derivative, 7
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exterior, 140
higher order, 13
partial, 7

determinant, 40
Leibniz formula, 45

determinant function, 38
diagonalisable matrix, 93
diffeomorphism, 120
differential form, 138
differentiation

under the integral, 66, 116
Dirac sequence, 70
directional derivative, 8
Dirichlet kernel, 69
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divergence operator, 16
dual vector spaces, 137
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Eigenwert, 92
einfach zusammenhängend, 87
Einstein summation convention, 137
ellipse, 81
exact vector field, 86
exterior derivative, 140
exterior product, 139

first fundamental form, 128
Flächenstück, 119
Fourier coefficient, 68
Fredholm’s alternative, 99, 134
Fubini’s Theorem, 113, 116, 117
Fundamental Theorem of Algebra, 90
Fundamental Theorem of Calculus, 51

Gauss integral theorem
in R2, 132
in R3, 133

Gauss normal domain, 131
geometric multiplicity, 95
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Gitterzerlegung, 111
gleichmäßig stetig, 49
gleichmäßige Konvergenz, 63
gradient field, 86
Green’s formulas, 134
grid partition, 111
group

circle, 103
linear, 103
orthogonal, 103
symmetric, 43
unitary, 103

Hauptsatz der Differential– und Integralrechnung,
51

Hauptvektor, 95
holomorphic, 27
hyperbola, 81

idempotent, 98
image of a curve, 77
implicit function theorem, 24
integrability conditions, 87
Integral

bestimmtes, 48
unbestimmtes, 51

integral of step functions, 48, 112
integral of tame functions, 112
inverse function theorem, 20
inverse matrix, 42
involution, 44
iterated integrals, 113, 116, 117

Jacobi matrix, 7
Jordan curve, 77
Jordan Curve Theorem, 78
Jordan-measurable, 114
Jordan-measure zero, 114

Kegelschnitte, 81
Kettenregel, 11
Komplement

algebraisches, 42
Konvergenz

gleichmäßige, 63
punktweise, 63

Krümmung, 80
Kurve, 77

Laplace–Operator, 16
Lebesgue space, 75
Leibniz formula for determinants, 45
length of a curve, 78
Levi–Civita tensor, 137
linear group, 103
Liouville’s Theorem, 32, 89
loop, 77

matrix

diagonalisable, 93
inverse, 42
normal, 97
orthogonal, 97
self-adjoint, 97
signature of a, 104
symmetric, 97
unitary, 97

matrix norm, 15
mean value theorem, 12
mean value theorem of integration, 50
Mittelwertsatz, 12
Mittelwertsatz der Integralrechnung, 50
multi–index, 14
multiplicity

algebraic, 95
geometric, 95

negative definite, 104
Neumann series, 16
normal matrix, 97
normal vector, 121
normalised determinant function, 38
Null-Jordan-Maß, 114

Oberflächenintegral
erster Art, 129
zweiter Art, 130

orientation, 121
orthogonal group, 103
orthogonal matrix, 97
orthogonal projector, 98
outer product, 139

parabola, 81
parameter domain, 119
parameter transformation, 120
parametrisation, 79, 119
partial derivative, 7
Peano example, 78
permutation, 43

sign, 44
planar curves, 79
pointwise convergence, 63
polynomial

trigonometric, 67
positive definite, 104
potential, 86
principal vector, 95
product

exterior, 139
outer, 139

punktweise Konvergenz, 63

Quader, 111
quadric, 105

rectifiable curve, 78
Regelfunktion, 48, 112



146 INDEX

regular curve, 78
Richtungsableitung, 8
rotation operator, 16

scalar surface element, 128
scalar surface integral, 129
Schwarz Theorem, 13
sectorial area, 80
self-adjoint matrix, 97
sign of a permutation, 44
signature of a matrix, 104
simply connected, 87
Stammfunktion, 51
step function, 47, 111
Stokes’ theorem, 135
substitution rule, 116
surface

normal vector, 121
normal vector field, 121
orientation, 121

surface element
scalar, 128
vectorial, 130

surface integral
first kind, 129
second kind, 130

surface patch, 119
area, 127
tangential plane, 121

symmetric group, 43
symmetric matrix, 97

tame function, 48
tangent vector, 78
tangential plane, 121
Taylor formula, 14
test functions, 76
total differential, 10
transposition, 44
Treppenfunktion, 47, 111
trigonometric polynomial, 67

unbestimmtes Integral, 51
uniform convergence, 63
uniformly continuous, 49
unit normal vector, 121
unitary group, 103
unitary matrix, 97

vector
principal, 95

vector field
conservative, 86
exact, 86
normal, 121

vectorial surface element, 130
vectorial surface integral, 130
volume of a domain, 115

Weierstraß Approximation Theorem, 71

zusammenhängend
einfach, 87
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