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I do not know what I may appear to the world,
but to myself I seem to have been only like a boy playing on the sea–shore,

and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.

Sir Isaac Newton (1642 – 1727) 1

1As quoted in [3].
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Chapter 1

Existence and Uniqueness Results

1.1 An Introductory Example

We consider a thermodynamical system1 — think of a closed balloon with a certain type of gas in it —
and (some of) the thermodynamical quantities are the

pressure p,

temperature T ,

specific volume τ , which is the volume per unit mass,

density % with %τ = 1 per definition,

specific entropy S, which is the entropy per unit mass,

specific interior energy e,

specific enthalpy i, defined as i = e+ pτ .

We assume that these quantities do not depend on the space variable x in the balloon, and they do not
depend on the time variable t.

It turns out that of these 7 quantities (for any fixed system), only two are independent, for instance S
and τ . All the other five quantities can be expressed as functions of (S, τ), and these functions depend
on the medium under consideration. We now concentrate on the function e = e(S, τ), and one of the key
relations of thermodynamics is the formula

de = T dS − p dτ,

or expressed in more mathematical style,

∂e

∂S
(S, τ) = T,

∂e

∂τ
(S, τ) = −p. (1.1)

A caloric equation of state2 then is

p = f(%, S), p = g(S, τ),

where f and g depend on the properties of the medium, and f , g are related to each other because of
% = τ−1. A physically reasonable assumption is

∂f

∂%
> 0,

1This exposition follows [5].
2kalorische Zustandsgleichung
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10 CHAPTER 1. EXISTENCE AND UNIQUENESS RESULTS

which immediately implies

∂g

∂τ
< 0.

Then we may define c :=
√
∂p/∂% as sound speed of the medium. Be careful: this formula holds only if p

is written as a function of % and S.

Another reasonable assumption from physics is g to be convex in τ , hence

∂2g

∂τ2
(S, τ) > 0,

and also

∂g

∂S
(S, τ) > 0.

Definition 1.1. A medium is called ideal gas if

pτ = RT,

with R being a constant depending only on the medium3.

Proposition 1.2. Under additional assumptions to appear during the course of the proof, the interior
energy of an ideal gas depends only on the temperature T .

Quasi–Proof. We start with e = e(S, τ) and (1.1). Then we find

R
∂e

∂S
+ τ

∂e

∂τ
= RT + τ · (−p) = 0,

or more in detail

R
∂e

∂S
(S, τ) + τ

∂e

∂τ
(S, τ) = 0. (1.2)

This is a differential equation, and in particular, it is a

partial differential equation (PDE), because partial derivatives appear,

first order differential equation, because higher order derivatives are absent,

linear differential equation, because the operator R ∂
∂S + τ ∂

∂τ is a linear operator.

PDEs are hard to investigate, which is the reason why this course concentrates on easier equations, so-
called ordinary differential equations (ODE), and now we rely on a flash of inspiration which recommends
the ansatz

e(S, τ) = h(τ ·H(S)),

with unknown functions h and H. However, following this way we will never know if all solutions e =
e(S, τ) to (1.2) can be expressed by this ansatz. Anyway, plugging the ansatz into (1.2) yields

Rh′ · τH ′(S) + τh′ ·H(S) = 0,

and the physical assumptions

τ > 0, h′ 6= 0

make division possible:

RH ′(S) +H(S) = 0. (1.3)

This is an ordinary differential equation, because no partial derivatives exist. Moreover, it is

3 more precisely: R is the universal gas constant divided by the effective molecular weight of the gas under consideration
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of first order,

linear,

homogeneous,

with constant coefficients. 4

One more physical assumption is H 6= 0. Then we can divide once again, and

R
H ′(S)

H(S)
+ 1 = 0,

d

dS
ln |H(S)| = − 1

R
,∫ S0

S=1

d

dS
ln |H(S)|dS = −

∫ S0

S=1

1

R
dS,

ln |H(S0)| − ln |H(1)| = − 1

R
(S0 − 1),

ln

∣∣∣∣H(S0)

H(1)

∣∣∣∣ = − 1

R
(S0 − 1),

|H(S0)| = |H(1)| exp

(
1

R

)
exp

(
−S0

R

)
.

If we take the freedom to introduce a constant C0 ∈ R, then we can write

H(S0) = C0 exp(−S0/R).

Incorporating this constant C0 into an updated version of the function h, we then find

e(S, τ) = h(τ exp(−S/R)),

and the consequences are then

p = − ∂e
∂τ

= −h′(τ exp(−S/R)) exp(−S/R) = −h′(%−1 exp(−S/R)) exp(−S/R).

Because of p > 0 everywhere, this gives the necessary condition h′ < 0 on the function h. We also wanted

to have ∂p(%,S)
∂% > 0, from which we deduce that h′′ > 0.

Additionally,

T =
∂e

∂S
(S, τ) = − 1

R
h′(τ exp(−S/R)) · τ exp(−S/R).

We put y = τ exp(−S/R), and it follows that

T = − 1

R
h′(y)y,

hence T depends on y only. An information from physics is that this dependence is typically monotonically
decreasing, and therefore an inverse function exists of the form y = y(T ). We can not express this function
as a formula, but we know its existence. Then it follows that

e = h(τ exp(−S/R)) = h(y) = h(y(T )),

and indeed e depends on T only, but no other second thermodynamic quantity.

For completeness, we list the assumptions made:

• e has the form e = h(τH(S)),

• h′ 6= 0 and H 6= 0 (which means that these functions take nowhere the value zero),

4 In comparison: (1.2) is also linear and homogeneous, but has variable coefficients.
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• the function T = T (y) is strictly monotone.

If the last condition seems to restrictive, we could it replace it by the condition that T has only a finite
number of intervals of monotonicity, and consider only such systems where T stays in the same interval
of monotonicity.

Corollary 1.3. Also the sound speed depends only on the temperature, because of

c2 =
∂p

∂%
(%, S) = − ∂

∂%
h′(%−1) exp(−S/R) exp(−S/R)

= h′′(%−1 exp(−S/R))(exp(−S/R))2%−2 = h′′(y)y2 = h′′(y(T )) · (y(T ))2.

Let us take a step back, go to the meta-level, and have a look what we have done so far. It is not the
purpose of the math course to teach you thermodynamics. The topic of the first part of this semester are
differential equations instead, and we wish to understand their solutions. This can be achieved two ways:

• Sometimes we have an explicit formular of the solution, and from this formula we can read off how
the solution behaves. An example is the formula for H, which was found under the additional
condition H 6= 0.

• In many cases, there is a solution, but we have no formula for it. Then we still have the desire to
characterise the solution as thorough as possible. For instance, we have never found the function h,
or the function T = T (y), but we were still able to prove that e is a function of one thermodynamical
quantity (namely T ) alone.

1.2 General Considerations

Definition 1.4. An ordinary differential equation of order k5 is an equation of the form

f(t, y(t), y′(t), . . . , y(k)(t)) = 0, t ∈ [t0, t1]

with a given function f and an unknown function y = y(t).

Common variations are the following:

• y and f are vector valued,

• t and y are C–valued, and the condition t ∈ [t0, t1] is to be replaced by the condition of t coming
from a closed set of C.

We say that a function y = y(t) is a solution if y is k times continuously differentiable, the vector
(t, y(t), y′(t), . . . , y(k)(t)) belongs to the domain of f for all t ∈ [t0, t1], and the differential equation holds
for all such t.

Typical questions are:

• are there any solutions at all ?

• how many solutions do exist ? Does the solution set have a special structure ?

• can we give an explicit formula for the solution ?

• can we prove that all solutions have been found ?

• does the solution explode in finite time ? What is its life span ?

• how to find reasonable numerical methods to compute with acceptable effort approximate solutions ?

• can we make qualitative statements about the solutions without computing them ?

5 gewöhnliche Differentialgleichung k-ter Ordnung
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Examples of the above are:

• the ODE y′ − αy = 0 has solutions y(t) = Ceαt with C ∈ R, and these are all solutions. If we
prescribe an initial condition y(0) = 29, then the function y(t) = 29eαt remains as only solution.

• the ODE y′′ + y = 0 has solutions y(t) = C1 cos t + C2 sin t, for C1, C2 ∈ R, hence the set of all
solutions forms a two-dimensional vector space. The solution will be unique if we pose the initial
condition y(0) = 56, y′(0) = −27. There will be no solution if we pose the boundary conditions
y(0) = 0, y(π) = 1.

• the initial value problem6

y′(t) = t2 + y2(t), y(0) = 1

has exactly one solution, but a solution formula does not exist. Notwithstanding this obstacle, we
are able to prove that the solution y has a pole, and this pole is between π/4 and 1.

• the following initial value problem (also known as Hill’s equation)

y′′(t) + (1 + ε cos(αt))y(t) = 0, y(0) = 1, y′(0) = 0

with 0 < ε � 1 and α ∈ R occurs in the investigation of a pendulum whose length is periodically
changing with time. There is no solution formula, but one can prove anyway that (assuming that ε
and α are suitably chosen) the solution y suffers from an exponential resonance effect (in contrast to
the linear resonance effect as it is known from oscillation equations like y′′+ay′+ by = cos(ωt+ δ)).
These resonance effects depend in a delicate manner on the values of the parameters, see the figures
which have been obtained numerically using the ode45 method of Matlab.
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• the initial value problem

y′(t) =
√
|y|, y(0) = 0

has an infinite number of solutions.
6Anfangswertproblem
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Figure 1.1: Linear resonance

• the Lorenz system is

ẋ = σ(y − x),

ẏ = %x− y − xz,
ż = −βz + xy,

with typical values σ = 10, β = 8/3, % = 28. This model describes a heavily simplified system from
meteorology. It is of first order, a system, nonlinear, and there is definitely no solution formula. But
anyway it is possible to give at least a rough description of the long time asymptotics, leading to
the celebrated Lorenz attractor.

• the logistic growth model is

y′(t) = αy(t)− β(y(t))2,

describing the growth of an idealised population of micro-organisms. Here y(t) denotes the mass of
the population at time t. A solution formula exists, but independent of that we are able to prove
rigorously that the values y(t) can never become negative if y(0) is positive. Clearly, negative values
of y(t) would be biological nonsense. We are also able to show that y(t) exists globally in time,
whatever the non-negative starting value y(0) is.

Definition 1.5 (Explicit DE). An ODE of order k is called explicit if it has the form

y(k)(t) = g(t, y(t), y′(t), . . . , y(k−1)(t)).

The implicit function theorem from the second semester gives us a criterion when an implicit ODE can
be transformed into an explicit ODE.

Proposition 1.6. Each explicit ODE of order k can be equivalently transformed into a first order system.
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Figure 1.2: Lorenz attractor, generated with vplot. The component y(t) is indicated by the colour, with
red positive and blue negative.
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Proof. Let us be given the explicit ordinary differential equation

y(k)(t) = g(t, y, y′, . . . , y(k−1)), (1.4)

and define

u1(t) := y(t), u2(t) := y′(t), . . . , uk(t) := y(k−1)(t),

U := (u1, . . . , uk)>.

Then we find the system

U ′(t) =


u2

u3

...
uk(t)

g(t, u1, u2, . . . , uk)

 . (1.5)

And now it is obvious: if y solves (1.4), then the vector U constructed above solves the first order
system (1.5). And conversely: if U solves (1.5), then the first component u1 of U is a solution to (1.4).

The key advantage of this result is that it enables us to focus our further studies on explicit first order
systems.

For a single equation y′ = f(t, y) without solution formula, it might be helpful to draw so-called slope
fields7 to obtain a rough idea how the solutions look like.
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Slope field

Example of a solution

Figure 1.3: A slope field for the differential equation y′ = f(t, y) = y

7Richtungsfelder
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Figure 1.4: A slope field for the differential equation y′ = f(t, y) = 1/(0.3 + t)
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Figure 1.5: A slope field for the differential equation y′ = f(t, y) = (sin y)2
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1.3 The Theorem of Picard and Lindelöf

8 9

We recall the Banach fixed point theorem from the first semester:

Theorem 1.7. Let U be a Banach space, M ⊂ U a closed subset, and Φ a mapping with the properties

• Φ maps M into itself,

• Φ is contractive, which means that there is a number α less than one such that ‖Φ(u)− Φ(ũ)‖U ≤
α ‖u− ũ‖U for all u, ũ ∈M .

Then there is a unique fixed point u∗ of Φ, in the sense of Φ(u∗) = u∗, and any sequence (un)n∈N defined
by selecting u0 ∈ M freely and setting un+1 := Φ(un) converges to this fixed point u∗, and we have the
error estimate

‖un − u∗‖U ≤
αn

1− α
‖u1 − u0‖U .

Theorem 1.8 (Global Version of the Picard-Lindelöf Theorem). Let I := [a, b] ⊂ R, t0 ∈ I and
y0 ∈ Rn, and f : I × Rn → Rn be a continuous function which satisfies a global Lipschitz10 condition
with respect to y as follows:

∃L > 0: ∀t ∈ I, ∀y1, y2 ∈ Rn : ‖f(t, y1)− f(t, y2)‖Rn ≤ L ‖y1 − y2‖Rn .

Then the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0 (1.6)

possesses a unique solution y ∈ C1(I → Rn).

Proof.

Step 1: transformation to an integral equation

If y ∈ C1(I → Rn) is a solution to (1.6), then the Fundamental Theorem of Calculus asserts

y(t) = y0 +

∫ t

s=t0

f(s, y(s)) ds =: (Φ(y))(t), t ∈ I. (1.7)

Conversely: if y ∈ C(I → Rn) is a solution to (1.7), then (again by the Fundamental Theorem
of Calculus), the integral in the right–hand side of (1.7) is a differentiable function of t, hence
y ∈ C1(I → Rn), and we are able to differentiate (1.7), obtaining (1.6).

Step 2: applying the Banach Fixed Point Theorem

We choose the Banach space U = C(I → Rn) with the special norm

‖u‖U := sup
t∈I

e−(L+1)|t−t0| ‖u(t)‖Rn ,

with L being the constant appearing in the Lipschitz condition. The closed set M shall be M = U ,
and the map Φ is as in (1.7). Obviously, Φ maps M into itself, and we only have to check whether
Φ contracts.

First we note that(
Φ(u)− Φ(ũ)

)
(t) =

∫ t

s=t0

f(s, u(s))− f(s, ũ(s)) ds,

8Charles Émile Picard, 1856 – 1941
9Ernst Leonard Lindelöf, 1870 – 1946

10 Rudolf Otto Sigismund Lipschitz, 1832 – 1903
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and therefore we find

e−(L+1)|t−t0|
∥∥∥(Φ(u)− Φ(ũ)

)
(t)
∥∥∥
Rn

= e−(L+1)|t−t0|
∥∥∥∥∫ t

s=t0

f(s, u(s))− f(s, ũ(s)) ds

∥∥∥∥
Rn

≤ e−(L+1)|t−t0|
∫ max(t,t0)

s=min(t,t0)

‖f(s, u(s))− f(s, ũ(s))‖Rn ds

≤ e−(L+1)|t−t0|
∫ max(t,t0)

s=min(t,t0)

L ‖u(s)− ũ(s)‖Rn ds

≤ e−(L+1)|t−t0|L

∫ max(t,t0)

s=min(t,t0)

e(L+1)|s−t0| e−(L+1)|s−t0| ‖u(s)− ũ(s)‖Rn︸ ︷︷ ︸
≤‖u−ũ‖U

ds

≤ ‖u− ũ‖U e
−(L+1)|t−t0|L

∫ max(t,t0)

s=min(t,t0)

e(L+1)|s−t0| ds

= ‖u− ũ‖U e
−(L+1)|t−t0|L · 1

L+ 1

(
e(L+1)|t−t0| − e0

)
≤ L

L+ 1
‖u− ũ‖U .

This shows that Φ is contractive with constant α = L/(L + 1) < 1. Therefore the Banach fixed
point theorem assures us that Φ has exactly one fixed point y∗ in M = U .

This fixed point is then the desired solution of (1.7), hence also of (1.6).

The proof remains the same if we consider a function f : I×Cn → Cn and look for a solution y ∈ C1(I →
Cn).

The global Lipschitz condition can be written as

‖f(t, y1)− f(t, y2)‖Rn
‖y1 − y2‖Rn

≤ L <∞

for all (t, y1, y2) ∈ I × Rn × Rn, which can be understood as a limit on the slope of the secant lines of f .
Unfortunately, the function f(t, y) = t2 + y2 does not satisfy this global Lipschitz condition because of

|f(t, y1)− f(t, y2)|
|y1 − y2|

=
|y2

1 − y2
2 |

|y1 − y2|
= |y1 + y2|,

which can become arbitrarily large if y1 and y2 are allowed to move freely in the whole R1. Therefore the
global version of the Picard–Lindelöf Theorem is not applicable to this function f . We can overcome this
trouble if we refine the Picard–Lindelöf Theorem, at the price of a slightly more technical proof.

Theorem 1.9 (Local Version of the Picard-Lindelöf Theorem). Let I := [a, b] ⊂ R, t0 be an
interior point of I, and y0 ∈ Rn, and define BR as a closed ball about y0 with radius R:

BR := {y ∈ Rn : ‖y − y0‖Rn ≤ R}.

Let a function f : I×BR → Rn be continuous and assume that it satisfies a local Lipschitz condition with
respect to y as follows:

∃L > 0: ∀t ∈ I, ∀y1, y2 ∈ BR : ‖f(t, y1)− f(t, y2)‖Rn ≤ L ‖y1 − y2‖Rn .

Then there is a positive ε such that the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0

possesses a unique solution y ∈ C1([t0 − ε, t0 + ε]→ Rn).

Sketch of proof. Choose U = C([t0− ε, t0 + ε]→ Rn) with an ε not yet specified, and with the same norm
as in the old proof. The closed set M ⊂ U shall consist of all those y ∈ U whose values y(t) stay inside
BR for t0 − ε ≤ t ≤ t0 + ε.

If you choose ε sufficiently small, you then can show that Φ maps M into itself, and the proof of contrac-
tivity is the same as before.
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Remark 1.10. In case of the initial value problem

y′(t) =
√
|y(t)|, y(0) = 0, (1.8)

we have f(t, y) =
√
|y| which violates the (global and local) Lipschitz condition. The Picard–Lindelöf

Theorem can not be applied, and it is a wonderful homework to find at least two different solution y = y(t)
to (1.8).

Lemma 1.11. If a solution y = y(t) to a differential equation y′ = f(t, y) ceases to exist at a time tend,
then one of the following two events occurs:

• the function y has a pole at tend,

• the point (tend, y(tend)) is at the boundary of the domain of definition of f .

Sketch of proof. Otherwise y(tend) is finite and the point (tend, y(tend)) is in the interior of the domain
of definition of f . Then we can apply the local version of the Picard–Lindelöf theorem once again, but
now with starting time tend, giving us an extension of the function y beyond the time tend, which is a
contradiction.

In theory, one could use the Picard–Lindelöf method numerically for ODEs where an explicit solution
formula can not be found; however, later we will learn numerical methods which are much stronger at
similar computational effort.

We come to a crucial consequence.

Proposition 1.12. Let y1 = y1(t) and y2 = y2(t) be two solutions to

y′(t) = f(t, y(t)),

where f is continuous, with continuous derivative ∂f/∂y.

Then the following holds: if y1 and y2 coincide at a certain time t∗, then they coincide always.

Proof. The initial value problem with starting time t∗ has exactly one solution, not two.

Example 1.13. The model of logistic growth

u′(t) = αu(t)− β(u(t))2, α, β > 0,

has two stationary solutions: u ≡ 0 and u ≡ α/β. If 0 < u(0) < α/β, then also u(t) for all t ∈ R must
remain between 0 and α/β, which is what we wanted to know. And by Lemma 1.11, this solution u exists
for eternity.

Then u′(t) is positive because of

u′(t) = αu(t) ·
(

1− β

α
u(t)

)
.

Therefore u is growing and bounded from above, hence limt→∞ u(t) exists, and it must be equal to α/β,
because otherwise u would not stop growing.

Next we wish to understand how errors in the initial data propagate. Consider the initial value problems

u′(t) = f(t, u), u(0) = u0,

v′(t) = f(t, v), v(0) = v0,

with |u0 − v0| � 1. Our goal is to find an estimate for |u(t)− v(t)|, where we assume the usual Lipschitz
condition on f .

Lemma 1.14. The value u(t) depends (for each fixed t) continuously on u0.
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Proof. We start with

u(t) = u0 +

∫ t

s=0

f(s, u(s)) ds,

v(t) = v0 +

∫ t

s=0

f(s, v(s)) ds,

hence also (assuming t > 0 for simplicity)

|u(t)− v(t)| ≤ |u0 − v0|+
∫ t

s=0

|f(s, u(s))− f(s, v(s))|ds

≤ |u0 − v0|+ L

∫ t

s=0

|u(s)− v(s)|ds,

e−(L+1)t|u(t)− v(t)| ≤ e−(L+1)t|u0 − v0|+ Le−(L+1)t

∫ t

s=0

e(L+1)se−(L+1)s|u(s)− v(s)|ds.

We are interested in t running in a time interval [0, tmax], hence we have 0 ≤ s ≤ t ≤ tmax.

We put w(t) = e−(L+1)t|u(t)− v(t)| for brevity of notation, and then it follows that

w(t) ≤ w(0) + Le−(L+1)t

∫ t

s=0

e(L+1)sw(s) ds

≤ w(0) + Le−(L+1)t

∫ t

s=0

e(L+1)s

(
sup

0≤z≤tmax

w(z)

)
ds

= w(0) + Le−(L+1)t

(
sup

0≤z≤tmax

w(z)

)∫ t

s=0

e(L+1)s ds

≤ w(0) + Le−(L+1)t

(
sup

0≤z≤tmax

w(z)

)
· 1

L+ 1
e(L+1)t

= w(0) +
L

L+ 1

(
sup

0≤z≤tmax

w(z)

)
,

from which we then obtain that(
sup

0≤t≤tmax

w(t)

)
≤ w(0) +

L

L+ 1

(
sup

0≤z≤tmax

w(z)

)
,

hence also

1

L+ 1

(
sup

0≤t≤tmax

w(t)

)
≤ w(0),

which can be re-arranged to

|u(t)− v(t)| ≤ (L+ 1)e(L+1)t|u0 − v0|, ∀ t ∈ [0, tmax].

Therefore |u(t)− v(t)| will be small if |u0 − v0| is small. Note however that this estimate will be only of
limited use for large values of the product (L+ 1)t.

This estimate of |u(t)− v(t)| against |u0 − v0| will in general not hold if the function f does not satisfy a
Lipschitz condition. As an example, we consider y′ =

√
|y| with the initial values u0 = 0 and v0 = 10−12.

The solutions are computed numerically with the ode45 method of Matlab, and it can be seen how even
a tiny error in the initial values grows extremely fast.

Just for completeness, we mention one final existence result:

Theorem 1.15 (Peano11). Let I ⊂ R, t0 be an interior point of I, and let f = f(t, y) be a continuous
function mapping from I × BR into Rn, with BR being a ball in Rn with radius R and centre y0. Then
the system

y′(t) = f(t, y(t)), y(t0) = y0

has at least one local solution u ∈ C1([t0 − ε, t0 + ε]→ Rn), for some small positive ε.

11Giuseppe Peano, 1858 – 1932, mathematician and linguist, inventor of the symbols ∈, ∩, ∪, ∃. He was the first to give
axiomatic definitions of the natural numbers and of abstract vector spaces. Also famous for the crazy Peano curve.
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The proof is quite long, and it would require more knowledge than we have, therefore we skip it. Note
that nothing is said about the uniqueness of the solution, and indeed the example y′ =

√
|y| with y0 = 0

shows that uniqueness can not be expected.

1.4 Comparison Principles

Now we want to compare different solutions, which is of course possible only for y and f taking values in
R1 (not Rn or Cn).

We have already one comparison principle: if u and v are solutions to{
u′(t) = f(t, u(t)),

u(0) = u0,

{
v′(t) = f(t, v(t)),

v(0) = v0,

with u0 < v0, then u(t) < v(t) for all times t for which both solutions exist, by Proposition 1.12.

Now we generalise this to initial value problems with differing right–hand sides.

Proposition 1.16. Let u and v be solutions to{
u′(t) = f(t, u(t)),

u(0) = u0,

{
v′(t) = g(t, v(t)),

v(0) = v0,

which exist on the time interval [0, T ]. Suppose that

f(t, y) ≤ g(t, y), ∀ (t, y) ∈ [0, T ]× R,
u0 < v0,

and that f , g satisfy the usual Lipschitz condition with constant L. Then u(t) < v(t) for 0 ≤ t ≤ T .
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Proof. The inequality u(t) < v(t) holds for t = 0 by assumption, and both u, v are continuous functions.
Therefore u(t) < v(t) at least on a short time interval [0, ε). Consequently, we have to bring the following
situation

u(t) < v(t), 0 ≤ t < T1 ≤ T,
u(T1) = v(T1)

to a contradiction (draw a picture !). Take t ∈ [0, T1). Then

v′(t)− u′(t) = g(t, v(t))− f(t, u(t))

≥ f(t, v(t))− f(t, u(t))

≥ −L|v(t)− u(t)|
= −L(v(t)− u(t)).

We can divide by a positive number, since t < T1:

v′(t)− u′(t)
v(t)− u(t)

≥ −L,

d

dt
ln (v(t)− u(t)) ≥ −L,∫ T1−δ

t=0

d

dt
ln(v(t)− u(t)) dt ≥ −L(T1 − δ), (0 < δ � 1),

ln(v(T1 − δ)− u(T1 − δ))− ln(v(0)− u(0)) ≥ −L(T1 − δ),

ln
v(T1 − δ)− u(T1 − δ)

v0 − u0
≥ −L(T1 − δ),

v(T1 − δ)− u(T1 − δ) ≥ e−L(T1−δ)(v0 − u0).

Now we send δ to zero and find

v(T1)− u(T1) ≥ e−LT1(v0 − u0) > 0.

But the assumption of our situation was u(T1) = v(T1), giving us 0 > 0, which is nonsense.

Question: Why did we first integrate only till T1 − δ, and have then sent δ to zero ?

This result can be made a bit stronger:

Lemma 1.17. Let the assumptions of the previous Proposition hold, but now with u0 ≤ v0 instead of
u0 < v0. Then u(t) ≤ v(t) for 0 ≤ t ≤ T .

Proof. For 0 < ε� 1, put u0,ε := u0 − ε and let uε be the solution to

u′ε(t) = f(t, uε(t)), uε(0) = uε,0.

Then uε exists up to t = T (if ε is small enough), and uε(t) < v(t) by Proposition 1.16. However,
Lemma 1.14 gives us u(t) = limε→0 uε(t), which implies u(t) ≤ v(t).

Example 1.18. Let y = y(t) be the solution to

y′(t) = t2 + y2(t), y(0) = 1.

There is no solution formula for this initial value problem. However, if x = x(t) and z = z(t) are the
solutions to

x′(t) = x2(t), x(0) = 1,

z′(t) = 1 + z2(t), z(0) = 1,

then x(t) ≤ y(t) ≤ z(t) as long as all three solutions exist and t ≤ 1. The advantage is that x and z are
easy to guess, and then it follows that y must have a pole between π/4 and 1.

Figuring out the details is an excellent homework.



Chapter 2

Special Solution Methods

In the previous chapter, we have learned under which conditions solutions exist, and now we want to find
solution formulae if possible. All equations here are scalar equations (not systems).

2.1 Equations with Separable Variables

Equations with separable variables1 are equations of the form

y′(t) = g(t) · h(y(t)),

with continuous functions g and h, and we start our investigations with the example

y′(t) = −2ty2(t), y(t0) = y0.

Here g(t) = −2t and h(y) = y2. Assuming y(t) 6= 0 we can divide:

y′

y2
= −2t.

Note that the two variables y and t have been separated: on the left-hand side only terms with y appear,
and on the right-hand side only terms with t appear.

We suppose that y2(s) 6= 0 for t0 ≤ s ≤ t, and integrate:∫ t

s=t0

y′(s)

y2(s)
ds = −

∫ t

s=t0

2sds,

=⇒ −
(

1

y(t)
− 1

y(t0)

)
= −(t2 − t20),

=⇒ 1

y(t)
=

1

y0
+ t2 − t20,

=⇒ y(t) =
1

t2 − t20 + 1
y0

.

A further example is y′ = cos2(y), and if we apply the method mindlessly, we might get a calculation like
this:

y′ = cos2(y)
?⇐⇒ dy

dt
= cos2(y)

?⇐⇒ dy

cos2(y)
= dt

?⇐⇒
∫

dy

cos2(y)
=

∫
dt

?⇐⇒ tan(y) = t+ C
?⇐⇒ y(t) = arctan(t+ C),

for arbitrary C ∈ R. After finishing this calculation we may test this candidate for a solution, and it turns
out that these functions are indeed solutions, for each C ∈ R.

1Gleichungen mit trennbaren Variablen

25
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However, now we have lost the solutions y ≡ π/2 and y ≡ −π/2, so we should try to exercise more care.

An important example are linear ODEs

y′(t) = a(t)y(t), y(t0) = y0,

with a continuous function a = a(t). Before embarking on the calculations, let us think about the shape
of the solutions. The right-hand side f = f(t, y) = a(t)y is continuous, and its derivative ∂f/∂y = a(t)
is also continuous, making the local Picard–Lindelöf theorem available, and in particular we know that
different solution trajectories do not cross, see Proposition 1.12. Now it is obvious that y ≡ 0 is a (quite
boring) solution, and we are interested in the other solutions. Then we can conclude that such an other
solution can never change its sign, and if it is zero at some time, it must be zero always.

Assuming y0 6= 0 is enough to deduce that y(t) 6= 0 for all t ∈ R, and we can divide:

y′(t)

y(t)
= a(t) =⇒ d

dt
ln |y(t)| = a(t) =⇒

∫ t

s=t0

d

ds
ln |y(s)|ds =

∫ t

s=t0

a(s) ds

=⇒ ln |y(s)|
∣∣∣s=t
s=t0

=

∫ t

s=t0

a(s) ds =⇒ ln

∣∣∣∣ y(t)

y(t0)

∣∣∣∣ =

∫ t

s=t0

a(s) ds

=⇒ |y(t)| = |y0| exp

(∫ t

s=t0

a(s) ds

)
,

and here the modulus bars can be omitted because y(t) and y0 have the same sign.

Lemma 2.1. If a = a(t) is a continuous function, then

y(t) = y0 exp

(∫ t

s=t0

a(s) ds

)
is the only solution to the initial value problem

y′(t) = a(t)y(t), y(t0) = y0.

The life span of the solution y is infinite.

The general solution formula is the following:

Proposition 2.2. Let I, J ⊂ R be open intervals, and g ∈ C(I → R), h ∈ C(J → R), with h(y) 6= 0 for
all y ∈ J . Suppose (t0, y0) ∈ I × J . Define

G(t) :=

∫ t

s=t0

g(s) ds, H(y) :=

∫ y

z=y0

1

h(z)
dz,

and assume G(I) ⊂ H(J).

Then there is exactly one solution y ∈ C1(I → R) to the initial value problem

y′(t) = g(t)h(y(t)), y(t0) = y0, (2.1)

and this solution satisfies

H(y(t)) = G(t), t ∈ I. (2.2)

Proof. The proof consists of three parts: existence of the solution, uniqueness of the solution, and demon-
strating (2.2).

The existence of the solution is secured by the Peano theorem. Now we show (2.2). If y is any solution
to (2.1), then (2.2) holds for t = t0 because of 0 = 0. On the other hand,

d

dt
H(y(t)) =

1

h(y(t))
· y′(t) =

1

h(y(t))
· g(t) · h(y(t)) = g(t) =

d

dt
G(t).

Therefore, both sides of (2.2) always have the same time derivative, and both sides coincide at one time,
hence they coincide always.
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Now we come to the uniqueness of the solution y. The function H = H(y) has derivative 1/h(y) which
never changes its sign, making H strictly monotone, hence invertible with inverse function H−1. This
gives us

y(t) = H−1(G(t))

for each solution y to (2.1). Because of G(I) ⊂ H(J), the expression H−1(G(t)) is meaningful.

Note that there are three obstacles to overcome:

• finding a primitive function G of g,

• finding a primitive function H of 1/h,

• finding an inverse function H−1 to H,

and each obstacle could be insurmountable.

2.2 Substitution and Homogeneous Differential Equations

Consider the ODE

y′(t) = f(ay + bt+ c)

with fixed real parameters a, b, c. Setting

z(t) := ay(t) + bt+ c

gives

z′(t) = ay′(t) + b = af(z) + b,

which is an ODE whose variables (t, z) are separated.

Homogeneous ODE

Definition 2.3. A term P (u, v) is positively homogeneous of order α if

P (λu, λv) = λαP (u, v)

for all u, v and all λ ∈ R+.

In this sense, the left-hand side as well as the right-hand side of a linear homogeneous equation
Ax = 0 are both homogeneous of order one, which explains the expression homogeneous linear
system.

Consider the ODE

y′(t) = f

(
y(t)

t

)
with a right-hand side homogeneous of order zero in the variables (t, y). A substitution z(t) = y(t)/t
gives

z′(t) =
1

t
y′(t)− 1

t2
y(t) =

1

t
f(z)− 1

t
z =

1

t
(f(z)− z),

and again the variables (t, z) can be separated. Another example for a homogeneous ODE is

y′(t) = g

(
ay + bt

cy + dt

)
, a, b, c, d ∈ R,

because of (ay + bt)/(cy + dt) = (ay/t+ b)/(cy/t+ d).



28 CHAPTER 2. SPECIAL SOLUTION METHODS

Bernoulli DE

The Bernoulli2 equation has the form

y′(t) = a(t)y(t) + b(t)(y(t))α

for some α ∈ R. If α is a fractional number, y(t) should be nonnegative. In case of α = 0, this is
a linear inhomogeneous ODE (to be studied in the next chapter), and the equation is separable for
α = 1. Hence we may assume α 6= 0, 1, and then the substitution z(t) := y(t)1−α gives

z′(t) = (1− α)y−αy′(t) = (1− α)y−α(ay + byα) = (1− α)a(t)z(t) + (1− α)b(t),

which is a linear inhomogeneous ODE.

Riccati DE

The Riccati3 equation can be understood as an “inhomogeneous” version of the Bernoulli equation,

y′(t) = k(t)(y(t))2 + g(t)y(t) + h(t),

with continuous functions k, g, h.

We present two substitutions which bring us to other differential equations.

First we suppose that y∗ is a known solution, and we wish to find all the other solutions y. Then
we can write y = y∗ + u with unknown u, and it turns out that

u′ = y′ − y′∗ = (ky2 + gy + h)− (ky2
∗ + gy∗ + h)

= k(y∗ + u)2 − ky2
∗ + g(y − y∗) = k(2y∗u+ u2) + gu

= k(t)u2 + (2k(t)y∗(t) + g(t))u,

which is a Bernoulli equation.

Second we consider the substitution

w(t) = exp

(
−
∫ t

t0

k(s)y(s) ds

)
,

for some fixed value t0. Then w′ = w · (−ky), and therefore

w′′ = w′ · (−ky)− wk′y − wky′ = w · (−ky)2 − wk′y − wk
(
ky2 + gy + h

)
= −wk′y − wkgy − wkh = −wk′ w

′

−wk
− wkg w′

−wk
− wkh

=
k′

k
w′ + gw′ − wkh,

and now the advantage is that this differential equation is linear (although still hard to solve by a
formula).

It should be noted that Riccati equations (in particular in matrix form) appear in the theory of
controlling vibrations in mechanical systems.

2.3 Power Series Expansions
(Or How to Determine the Sound of a Drum)

We are interested in the eigenfrequencies of a drum, which is geometrically described by

Ω = {(x, y) ∈ R2 : x2 + y2 < R2},
2named after Jacob Bernoulli, 1654 – 1705, not to be confused with his doctoral students Nicolaus I Bernoulli

or Johann Bernoulli (who found the B.-l’Hospital rule and was doctoral adviser of Euler) or the other family members:
Nicolaus II Bernoulli, Daniel Bernoulli (well-known for the B. principle in aerodynamics), Johann II Bernoulli and
his sons Johann III Bernoulli and Jakob II Bernoulli, all of them mathematicians / physicists.

3Jacopo Francesco Riccati, 1676 – 1754
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and u = u(t, x, y) denotes the elongation at time t and position (x, y) of the membrane. From physics we
get the PDE

mutt = div(K(x, y) gradu)

with m = m(x, y) as mass density and K = K(x, y) characterising the elasticity properties of the mem-
brane. The operators div and grad only act on (x, y), not t.

The membrane is clamped at the boundary ∂Ω, hence

u(t, x, y) = 0 if x2 + y2 = R2.

Eigenfrequencies can be found by the ansatz

u(t, x, y) = cos(λt)v(x, y),

giving us

−mλ2v = div(K grad v).

The function v should not be zero everywhere (this would correspond to silence), and this problem is also
called an eigenvalue problem.

Experience tells us that a drum can not produce every frequency of sound, and our goal is to find the
possible ones. This is hard for general functions m and K, which is why we assume m = 1 and K ≡ const..

Then our problem is to find non-zero solutions v to{
−λ2v(x, y) = K4 v(x, y), (x, y) ∈ Ω,

v(x, y) = 0, (x, y) ∈ ∂Ω.

Remark 2.4. Consider the vector space U = L2(Ω) with the scalar product 〈f, g〉U :=
∫

Ω
fg dx, and the

operator 4 with domain of definition

D(4) := {f ∈ L2(Ω): 4 f ∈ L2(Ω), f = 0 on ∂Ω}.

Then 4 is a symmetric operator:

〈4 f, g〉U = 〈f,4 g〉U , f, g ∈ D(4),

by Green’s formula from the second semester. We could consider 4 as a self-adjoint operator, and
the theory of self-adjoint matrices nourishes the hope that the eigenvalues of 4 are real, and that the
eigenfunctions of 4 give rise to an orthonormal basis of U = L2(Ω). They do indeed, but we can neither
prove nor explain this.

We introduce polar coordinates,

x = r cosϕ, y = r sinϕ,

and then we have the Jacobi matrix

∂(x, y)

∂(r, ϕ)
=

(
xr xϕ
yr yϕ

)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
,

and the inverse map (x, y) 7→ (r, ϕ) has as Jacobi matrix the inverse matrix:

∂(r, ϕ)

∂(x, y)
=

(
rx ry
ϕx ϕy

)
=

(
xr xϕ
yr yϕ

)−1

=
1

r

(
r cosϕ r sinϕ
− sinϕ cosϕ

)
.

Put w(r, ϕ) = v(x, y). Then

vx = wrrx + wϕϕx = cosϕ · wr −
sinϕ

r
· wϕ,

vy = wrry + wϕϕy = sinϕ · wr +
cosϕ

r
· wϕ,
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or, written as operator identity,

∂

∂x
= cosϕ

∂

∂r
− sinϕ

r

∂

∂ϕ
,

∂

∂y
= sinϕ

∂

∂r
+

cosϕ

r

∂

∂ϕ
.

Then we quickly find that

4 =

(
∂

∂r

)2

+
1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
,

and our eigenvalue problem turns into
−λ2w(r, ϕ) = K

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
w(r, ϕ), (r, ϕ) ∈ (0, R)× [0, 2π],

w(R,ϕ) = 0, ϕ ∈ [0, 2π],

lim
r→0
|w(r, ϕ)| <∞, ϕ ∈ [0, 2π].

(2.3)

Question: What is the purpose of the last condition in (2.3) ?

Our permanent assumption is that a sufficiently large number of derivatives of w exists. From w(r, ϕ) =
w(r, ϕ+ 2π) for all (r, ϕ) we then learn that a Fourier series expansion is possible:

w(r, ϕ) =
a0(r)

2
+

∞∑
n=1

(
an(r) cos(nϕ) + bn(r) sin(nϕ)

)
,

and the convergence of the series is fast because of the smoothness assumption on w.

Question: Prove the following: if a function f = f(ϕ) is 2π–periodic and L times continuously differen-
tiable, then the Fourier coefficients an, bn behave like O(n−L) for n→∞.

Next we plug the Fourier series expansion into (2.3):

− λ2

K

(
a0

2
+

∞∑
n=1

(an cos(nϕ) + bn sin(nϕ))

)

=
1

2

(
a′′0 +

1

r
a′0

)
+

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

) ∞∑
n=1

(an cos(nϕ) + bn sin(nϕ)) .

We commute the Laplacian and
∑∞
n=1(. . . ) (this step needs a justification !):

− λ2

K

(
a0

2
+

∞∑
n=1

(an cos(nϕ) + bn sin(nϕ))

)

=
1

2

(
a′′0 +

1

r
a′0

)
+

∞∑
n=1

(
cos(nϕ)

(
a′′n +

1

r
a′n −

n2

r2
an

)
+ sin(nϕ)

(
b′′n +

1

r
b′n −

n2

r2
bn

))
,

which can be re-ordered to

0 =
1

2

(
a′′0 +

1

r
a′0 +

λ2

K
a0

)
+

∞∑
n=1

cos(nϕ)

(
a′′n +

1

r
a′n +

(
λ2

K
− n2

r2

)
an

)

+

∞∑
n=1

sin(nϕ)

(
b′′n +

1

r
b′n +

(
λ2

K
− n2

r2

)
bn

)
.

This is a Fourier series expansion of the zero function (on the left–hand side), but all Fourier coefficients
of the zero function are zero, which means

0 = a′′0(r) +
1

r
a′0(r) +

λ2

K
a0(r), ∀ r ∈ (0, R),

0 = a′′n(r) +
1

r
a′n(r) +

(
λ2

K
− n2

r2

)
an(r), ∀ r ∈ (0, R),

0 = b′′n(r) +
1

r
b′n(r) +

(
λ2

K
− n2

r2

)
bn(r), ∀ r ∈ (0, R).
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Moreover, we have the boundary conditions

a0(R) = an(R) = bn(R) = 0,

lim
r→0
|a0(r)| <∞, lim

r→0
|an(r)| <∞, lim

r→0
|bn(r)| <∞.

These differential equations are all very similar, which is the reason why we now only consider an. For
n ≥ 0, we set

an(r) =: cn

(
λ√
K
r

)
, s :=

λ√
K
r,

and then we get

a′n(r) =
λ√
K
c′n(s), a′′n(r) =

λ2

K
c′′n(s),

0 =
λ2

K
c′′n(s) +

λ√
K
· 1

s
· λ√

K
c′n(s) +

(
λ2

K
− λ2

K
· n

2

s2

)
cn(s),

which simplifies to

c′′n(s) +
1

s
c′n(s) +

(
1− n2

s2

)
cn(s) = 0, 0 < s <

λ√
K
R,

cn

(
λ√
K
R

)
= 0,

lim
s→0
|cn(s)| <∞.

This ODE is called Bessel4 differential equation, and we want to solve it.

And here comes the method: a power series expansion. We make the ansatz

cn(s) =

∞∑
k=0

γks
α+k, γ0 6= 0,

with some unknown coefficients γk (which also depend on n) and some parameter α ∈ R (which is maybe
not an integer). By linearity, we may assume γ0 = 1. A converging power series can be differentiated
term-wise, as we have learned in the second semester. Then

c′n(s) =

∞∑
k=0

γk(α+ k)sα+k−1,

c′′n(s) =

∞∑
k=0

γk(α+ k)(α+ k − 1)sα+k−2,

and plugging this into the Bessel differential equation gives

0 =

∞∑
k=0

γk(α+ k)(α+ k − 1)sα+k−2 +

∞∑
k=0

γk(α+ k)sα+k−2 +

∞∑
k=0

(−γk)n2sα+k−2 +
∞∑
k=0

γks
α+k

=

∞∑
k=0

γk

(
(α+ k)2 − n2

)
sα+k−2 +

∞∑
k=0

γks
α+k.

The smallest power sα−2 occurs for k = 0 in the left sum, but γ0 = 1 6= 0, hence we find

0
!
= (α2 − n2)

with the two solutions α = n and α = −n. The last one violates lims→0 |cn(s)| <∞, hence α = n. Then
we have to solve

0
!
=

∞∑
k=1

γk

(
(n+ k)2 − n2

)
sn+k−2 +

∞∑
k=0

γks
n+k =

∞∑
k=1

γk(2nk + k2)sn+k−2 +

∞∑
k=0

γks
n+k.

4 Friedrich Wilhelm Bessel, 1784 – 1846. He generalised the Bessel functions which were defined by Daniel Bernoulli.
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Comparing powers of sn−1 gives γ1 = 0, and in general we have

γk(k2 + 2kn) + γk−2 = 0,

consequently γ3 = γ5 = · · · = 0. And for k = 2m+ 2 as an even number, it follows that

γ2m+2 = − γ2m

(2m+ 2)2 + 2 · 2n · (2m+ 2)
= − γ2m

(2m+ 2)(2m+ 2n+ 2)
.

From γ0 = 1 we then find that

γ2m =
(−1)m

2 · 4 · 6 · . . . · (2m) · (2 + 2n) · (4 + 2n) · . . . · (2m+ 2n)

=
(−1)m

2m ·m! · 2m(1 + n)(2 + n)(3 + n) · . . . · (m+ n)
.

Now the function cn has been found, and we only have to make sure that the power series for cn converges
(if this series had a convergence radius of zero, we would not have gained anything). However, the estimate

|γ2m| ≤
1

m!

is quite easy to see, and then the convergence radius is +∞. (In the first year, we had learned how to
compute the convergence radius of a power series using a root criterion or a quotient criterion.)

It is common practice to define γ0 slightly different from our choice, leading to

Jn(s) :=
1

2nn!
cn(s) =

∞∑
m=0

(−1)m

m!(m+ n)!

(s
2

)2m+n

, s ∈ R ⊂ C. (2.4)

These are the Bessel functions of first kind.

We have almost forgotten the boundary condition

cn

(
λ√
K
R

)
= 0,

which will determine λ.

Lemma 2.5. The eigenfrequencies λ of a drum are given by

λ = jn,i

√
K

R
, n ∈ N0, i ∈ N+,

with jn,i as the ith positive zero of the Bessel function Jn, and R the radius of the drum, K the elasticity
coefficient.

Hence we need a deeper understanding of where the zeroes of the Bessel functions are located. Absolutely
everything (including a list of zeroes) about these functions can be found in the 800 pages of [23], but
also [1] is an excellent reference. From there, the following formulas can be extracted:

Jn(x) =
(x

2

)n 1

n!
+ O(xn+2) for x→ 0, usable for 0 < x

<∼ n

2
, (2.5)

Jn(x) =

√
2

πx
cos
(
x− nπ

2
− π

4

)
+ O(x−3/2) for x→ +∞, usable for x > 2n, (2.6)

jn,1 = n+ 1.8557571n1/3 + O(n−1/3) for n→∞.

In particular, the smallest zero of J0 is j0,1 = 2.4048256 . . . which gives us the ground frequency of our
drum. For growing R, the ground frequency gets lower, which matches our experience. And for higher
tension of the membrane, K gets bigger, and also the pitch gets higher, as expected.

One more interesting property of the Bessel function is that the zeroes of Jn+1 are always between the
zeroes of Jn, in the sense of jn,1 < jn+1,1 < jn,2 < jn+1,2 < . . . , and this can be proved analytically.
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2.4 Exact Differential Equations

In explaining what exact differential equations are, it is perhaps easier to start with the strategy of how
to solve them, and then it will naturally follow how exact differential equations look like.

The key idea is that solving an equation

E(x, y) = const.

for y is considered easy, but solving an ODE of the form y′(x) = f(x, y(x)) is considered hard. More
theoretically: if we assume that gradE is never (0, 0), then the implicit function theorem from the second
semester tells us that near each point (x0, y0), the equation E(x, y) = const. can be transformed into
x = x(y) or y = y(x), and the solution set of all the points (x, y) ∈ R2 for which E(x, y) = const. is a

curve in the plane. For instance, E(x, y) = x2 + y2 !
= R2 describes a circle of radius R, and this circle can

also be expressed as

y = y(x) = +
√
R2 − x2 or y = y(x) = −

√
R2 − x2,

x = x(y) = +
√
R2 − y2 or x = x(y) = −

√
R2 − y2,

x = x(t), y = y(t),

where the representations in the first line do not hold in neighbourhoods of (+R, 0), (−R, 0); the repre-
sentations of the second line are not valid in neighbourhoods of (0,+R), (0,−R); and the representations
of the third line are not uniquely determined (we know already from the second semester that various
parametrisations can describe the same curve).

In general, E(x, y) = const. implies after differentiating with respect to x that

Ex + Eyy
′(x) = 0,

and also

E(x, y) = const. =⇒ Exx
′(y) + Ey = 0.

And finally

E(x, y) = const. =⇒ Exx
′(t) + Eyy

′(t) = 0.

We have y′(x) = dy
dx , x′(y) = dx

dy , and then the three ODEs can be written in a formally unified form as

Ex(x, y) dx+ Ey(x, y) dy = 0.

In the example of the circle, we have

x+ y(x)y′(x) = 0,

x(y)x′(y) + y = 0,

x(t)x′(t) + y(t)y′(t) = 0.

Definition 2.6. A differential equation

f(x, y) + g(x, y)y′(x) = 0 (or f(x, y) dx+ g(x, y) dy = 0)

is called exact if a scalar function E = E(x, y) (called potential) exists with

Ex(x, y) = f(x, y), Ey(x, y) = g(x, y),

valid for all (x, y) under consideration.

Lemma 2.7. Let the ODE f(x, y)+g(x, y)y′(x) = 0 be exact, with the initial condition y(x0) = y0. Then
fy(x, y) = gx(x, y) for all (x, y), and if E is the potential of the vector field (f, g), then the solution curve
y = y(x) (if it exists) satisfies

E(x, y(x)) = E0 for all x,

where E0 is determined by E0 := E(x0, y0).



2.4. EXACT DIFFERENTIAL EQUATIONS 35

Proof. By the Schwarz theorem,

fy = Exy = Eyx = gx,

giving the first claim. The second claim follows from

d

dx
E(x, y(x)) = Ex + Eyy

′(x) = f + gy′ = 0,

hence E is constant along a solution curve.

In many cases, the function E is the “total energy” of a closed system.

Consider the equation for a pendulum,

ϕ′′(t) + sinϕ(t) = 0,

which can not be solved by a solution formula (involving only functions known from school). But we can
set

x(t) := ϕ(t), y(t) := ϕ′(t),

with the conclusion

x′(t) = y(t) =: g(x, y), y′(t) = − sinx(t) =: −f(x, y),

and now we trivially have

f(x, y) · g(x, y) + g(x, y) · (−f(x, y)) = 0,

sinx · dx

dt
+ y(t) · dy

dt
= 0.

The integrability condition fy = gx holds, and R2 is simply connected, hence a potential E exists, which
turns out to be

E(x, y) = − cosx+
1

2
y2 + C,

with C as a constant of integration which can be set to zero. Therefore, the solution ϕ = ϕ(t) to the
pendulum equation satisfies

− cosϕ(t) +
1

2

(
ϕ′(t)

)2

= − cosϕ0 +
1

2

(
ϕ′(0)

)2

for all t ∈ R, which is of course known as conservation of mechanical energy.

We still have not found ϕ = ϕ(t), but we know E(ϕ,ϕ′) ≡ E0, giving the possibility of expressing ϕ′ in
terms of ϕ (or ϕ in terms of ϕ′).

As a second practical example, we consider the famous model of Lotka5 and Volterra6 about a prey
population of size x(t) and a predator population of size y(t) which solve the system

x′(t) = x(t) · (α− βy(t)), y′(t) = y(t) · (−γ + δx(t)), α, β, γ, δ > 0.

Because of the nonlinearities, we can not expect to find a solution formula. As before, we set

g(x, y) = x · (α− βy) = x′, −f(x, y) = y · (−γ + δx) = y′.

Then trivially

f · g + g · (−f) = 0,

y(γ − δx) · dx

dt
+ x(α− βy) · dy

dt
= 0.

5 Alfred James Lotka, 1880 – 1949, american mathematician, statistician, biophysicist
6 Vito Volterra, 1860 – 1940, italian mathematician and physicist
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This is not an exact differential equation, because fy 6= gx. But if we succeed in finding a multiplier
M = M(x, y) with the property that (Mf)y = (Mg)x then the ODE is transformed into an exact DE.
Geometrically spoken: the solution curve in the x − y−plane remains the same, we are simply choosing
another parametrisation of the curve (M should never be zero). In the 19th century, solving an ODE was
called integrating this ODE, and from that epoch such a function M is called integrating factor7.

In general, finding such a factor M is highly non-trivial, but for the Lotka–Volterra model, M(x, y) =
1/(xy) does the trick, giving us(γ

x
− δ
) dx

dt
+

(
α

y
− β

)
dy

dt
= 0,

and now a potential is

E(x, y) = γ lnx− δx+ α ln y − βy, x, y > 0.

This function is concave (meaning that the graph is always under the tangent plane), and for (x, y)
approaching the boundary of (0,∞)× (0,∞), E goes to −∞. Then the points (x, y) solving E(x, y) = E0

form a loop in the x− y−plane.

Figure 2.1: The potential E of the Lotka–Volterra model. In this diagram, E is constant along the
egg-shaped curves.

7integrierender Faktor



Chapter 3

Linear Differential Equations and
Systems

3.1 Linear Differential Equations

A linear differential equation is

y′(t) = a(t)y(t) + f(t), (3.1)

with y, a, f as continuous functions from R to R, and an initial value problem is obtained when (3.1) is
complemented with the initial condition

y(t0) = y0. (3.2)

By the Picard–Lindelöf theory, we know that (3.1), (3.2) is uniquely solvable, and the solution y exists on
all of R1.

Our strategy is the following: first we forget about (3.2) and find all solutions to (3.1), and among them
we then select that one which also fulfils (3.2).

We simplify even more and neglect f (only for a moment). Then all solutions to y′(t) = a(t)y(t) are given
by

y(t) = C exp

(∫ t

s=t0

a(s) ds

)
,

with C running through R. For brevity of notation, we put

a+(t) :=

∫ t

s=t0

a(s) ds.

Now we bring back f into the differential equation, and our hope is to find a solution to (3.1) via the
ansatz

y(t) = C(t) exp(a+(t)),

with C as a function. Every solution y can be expressed like this, because if y is a solution, then we can
always pull out a factor exp(a+(t)) since exp takes never the value zero. Then it should hold that

y′(t) = C ′(t) exp(a+(t)) + C(t) exp(a+(t))a(t)

!
= a(t)y(t) + f(t)

= a(t)C(t) exp(a+(t)) + f(t),

which turns into

C ′(t) exp(a+(t))
!
= f(t),

=⇒ C ′(t) = exp(−a+(t))f(t) =⇒ C(t) =

∫ t

s=t0

exp(−a+(s))f(s) ds+ C0,

37
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with C0 ∈ R as an additional integration constant. This brings us to

y(t) = C(t) exp(a+(t))

= exp(a+(t))

∫ t

s=t0

exp(−a+(s))f(s) ds+ C0 exp(a+(t)),

and C0 is still available for choice. To satisfy the initial condition (3.2), we observe that a+(t0) = 0, giving
us C0 = y0.

Lemma 3.1. Let a = a(t) and f = f(t) be continuous functions. Then the unique solution to the initial
value problem (3.1), (3.2) is given by

y(t) = exp

(∫ t

s=t0

a(s) ds

)
y0 +

∫ t

s=t0

exp

(∫ t

r=s

a(r) dr

)
f(s) ds. (3.3)

This formula is known as Duhamel’s formula1, or as variation of constants formula.

We conclude the consideration of linear differential equations with the remark that

• the solutions to the linear homogeneous DE y′(t) = a(t)y(t) form a linear space (vector space) of
dimension one. Recall that L := d

dt − a(t) is a linear operator, and the set of solutions y to y′ = ay
is exactly kerL, and the kernel of a linear map is always a vector space, as we have shown it in the
first semester.

• the solutions to the linear inhomogeneous DE y′(t) = a(t)y(t)+f(t) form an affine space of dimension
one.

In a first attempt at generalising the above results to systems, we consider homogeneous systems

y′(t) = A(t)y(t), y : R→ Rn, A : R→ Rn×n,

and a first guess of the solution formula is

y(t)
?
= exp (A+(t))C, A+(t) :=

∫ t

s=t0

A(s) ds,

with a fixed vector C ∈ Rn. Here, exp of a matrix is defined via the power series:

expB :=

∞∑
k=0

1

k!
Bk, B ∈ Rn×n.

But the solution formula is wrong, because

d

dt
exp(A+(t))C 6= A(t) exp(A+(t))C, (3.4)

since

d

dt
exp(A+(t)) =

d

dt

∞∑
k=0

1

k!
(A+(t))k =

∞∑
k=0

d

dt

(
1

k!
(A+(t))k

)
,

and plugging this into (3.4) gives

0 · C +
1

1!
AC +

1

2!
(A+A+AA+)C +

1

3!
(A+A+A+A+AA+ +AA+A+)C + . . .

on the left-hand side, but the right-hand side of (3.4) is

AIC +
1

1!
AA+C +

1

2!
AA+A+C + . . . ,

and now we are stuck because (in general) AA+ 6= A+A.

Unfortunately, the solution formula to y′(t) = A(t)y(t) + F (t) will be quite a bit more complicated !

1 Jean–Marie Constant Duhamel, 1797 – 1872, french mathematician and physicist
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3.2 Exp of a Matrix, and (detA)′

For our studies on systems, we need some tools. The first shall be the exp of a matrix, defined as

expA :=

∞∑
k=0

1

k!
Ak, A ∈ Cn×n.

To answer the question of convergence of this series, we need appropriate norms for a matrix.

Norms have the purpose of making our work easier. To this end, some conditions have to be met.

For the space Cn, the norm ‖x‖2 :=
√
|x1|2 + · · ·+ |xn|2 is natural. We wish a matrix norm ‖·‖2 to

behave like this:

‖Ax‖2 ≤ ‖A‖2 · ‖x‖2 , ∀ A ∈ Cn×n, ∀ x ∈ Cn, (3.5)

‖AB‖2 ≤ ‖A‖2 · ‖B‖2 , ∀ A,B ∈ Cn×n.

Note how these inequalities make it possible to “pull the norm bars onto each factor”.

Moreover, we wish these inequalities to be sharp: for each matrix A, a vector x∗ 6= ~0 shall exist such that
‖Ax∗‖2 = ‖A‖2 · ‖x∗‖2 with equality sign (otherwise we always waste something when we pull the norm
bars onto each factor).

The first stab at the definition of ‖A‖ is the Frobenius2 norm ‖A‖F :=
√∑

j,k |ajk|2, which indeed

satisfies (3.5), because

(Ax)1 =

n∑
j=1

a1jxj = (a11, a12, . . . , a1n) · (x1, . . . , xn)>,

and now the Cauchy–Schwarz inequality gives

|(Ax)1| ≤
√
|a11|2 + · · ·+ |a1n|2 ·

√
|x1|2 + · · ·+ |xn|2,

similarly for the other components (Ax)k.

However, now the unit matrix has norm
√
n, which is quite a waste for large n.

The correct choice is

‖A‖2 := sup {‖Ax‖2 : x ∈ Cn with ‖x‖2 ≤ 1} .

The unit ball {x ∈ Cn : ‖x‖2 ≤ 1} is a compact subset of Cn, and from the first semester we know that
a continuous function on a compact set attains its supremum, which in our situation means that there is
an x∗ with ‖x∗‖2 = 1 such that ‖A‖2 = ‖Ax∗‖2.

By the very definition of this norm via the supremum, we have (3.5), and this is sharp. Moreover, we
have

‖AB‖2 = max{‖ABx‖2 : ‖x‖2 ≤ 1}
≤ max{‖A‖2 · ‖Bx‖2 : ‖x‖2 ≤ 1}
= ‖A‖2 ·max{‖Bx‖2 : ‖x‖2 ≤ 1} = ‖A‖2 · ‖B‖2 .

Question: Show that ‖A‖2 can be computed via ‖A‖2 =
√
λmax(A∗A), with λmax as the largest eigen-

value of the self-adjoint positive semi-definite matrix A∗A.

Now we have constructed a norm on the vector space Cn×n, which is compatible to all the operations
(multiplication with a scalar, with a vector, with another matrix, addition of matrices) in a most beautiful
manner, and in particular, we have∥∥∥∥ 1

k!
Ak
∥∥∥∥

2

=
1

k!
‖A · . . . ·A‖2 ≤

1

k!
‖A‖k2 .

2 Ferdinand Georg Frobenius, 1849 – 1917
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Then the convergence of the series defining expA follows by the general majorisation principle from the
first semester, since

∑∞
k=0

1
k!M

k is finite for all M ∈ R, in particular for M = ‖A‖2.

As expected from a similar relation in C, we have

expA = lim
m→∞

(
I +

A

m

)m
, (3.6)

with I as identity matrix, and a proof can be found in § 15 of [2]. Further rules in the matrix calculus are

• if AB = BA then (A+B)m =
∑m
k=0

(
m
k

)
AkBm−k,

• if AB = BA then exp(A+B) = exp(A) exp(B),

• if A = A∗ then exp(iA) is unitary,

• if A ∈ Rn×n is skew-symmetric (that means A> = −A) then exp(A) is orthogonal.

Try to prove them all !

Next we need to differentiate a determinant with respect to a parameter.

Lemma 3.2. Let P , Q(ε) ∈ Cn×n with ‖Q(ε)‖2 = O(ε2) for ε→ 0. Then, as ε→ 0,

det(I + εP +Q(ε)) = 1 + ε traceP + O(ε2),

with traceP =
∑n
j=1 pjj as usual.

Proof. Put A = I + εP +Q(ε) with entries ajk. Expanding detA gives us n! products to be summed up.
And we distinguish these n! products as follows:

all n factors of this product are on the diagonal of A: there is only one product of that form,
namely a11a22 . . . ann.

exactly n− 1 factors of this product are on the diagonal of A: this never happens (you can try
it for n = 3, 4).

at least two factors of this product are off-diagonal: then this product is O(ε2).

Therefore, we have

detA = a11a22 . . . ann + O(ε2)

= (1 + εp11)(1 + εp22) . . . (1 + εpnn) + O(ε2)

= 1 + ε(p11 + p22 + · · ·+ pnn) + O(ε2),

which finishes the proof.

Example 3.3. Put P = B, Q = 0, ε = 1/m for m� 1. Then

det

(
I +

B

m

)
= 1 +

traceB

m
+ O(m−2),

=⇒ det

((
I +

B

m

)m)
=

(
det

(
I +

B

m

))m
=

(
1 +

traceB

m
+ O(m−2)

)m
.

Sending m to infinity and utilising (3.6) give

det exp(B) = etraceB . (3.7)

Lemma 3.4. Let B = B(t) be twice continuously differentiable, and B(t0) invertible. Then(
d

dt
detB

)
(t0) = detB(t0) trace

(
B−1(t0)B′(t0)

)
= detB(t0) trace

(
B′(t0)B−1(t0)

)
.
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Proof. We have, for t→ t0,

B(t) = B(t0) +B′(t0) · (t− t0) + O((t− t0)2)

= B(t0)
(
I +B−1(t0)B′(t0)(t− t0) + O((t− t0)2)

)
=
(
I +B′(t0)B−1(t0)(t− t0) + O((t− t0)2)

)
B(t0),

and consequently

detB(t) = detB(t0) det
(
I +B−1(t0)B′(t0)(t− t0) + O((t− t0)2)

)
= detB(t0)

(
1 + trace(B−1(t0)B′(t0))(t− t0) + O((t− t0)2)

)
= detB(t0) + detB(t0) trace(B−1(t0)B′(t0)) · (t− t0) + O((t− t0)2),

detB(t)− detB(t0)

t− t0
= detB(t0) trace(B−1(t0)B′(t0)) + O(t− t0),

which gives the first formula, and the second is shown similarly.

It is not necessary that B be twice differentiable; once is enough (but the proof less easy).

3.3 Linear Systems with General Coefficients

We start with homogeneous systems

y′(t) = A(t)y(t), y : R→ Cn, A : R→ Cn×n. (3.8)

Proposition 3.5. Let y(1), . . . , y(n) be solutions to (3.8). If the vectors y(1)(t0), . . . , y(n)(t0) are linearly
independent vectors in Cn for some t0 ∈ R, then the vectors y(1)(t), . . . , y(n)(t) are linearly independent
vectors in Cn for all times t.

Proof. We arrange the vector functions y(1),. . . , y(n) to a matrix Y :

Y (t) :=

 | |
y(1)(t) . . . y(n)(t)
| |

 .

Then the systems (3.8) turn into Y ′(t) = A(t)Y (t).

We know that Y (t0) has full rank, hence detY (t0) 6= 0, and by continuity then also detY (t) 6= 0 for t
near t0. For such t, we then have

d

dt
detY (t) = detY (t) · trace(Y ′(t)Y −1(t)) = detY (t) · traceA(t),

which is a scalar linear homogeneous ODE, which can be solved by the solution formula from Lemma 2.1,

detY (t) = detY (t0) · exp

(∫ t

s=t0

traceA(s) ds

)
, for t near t0.

Clearly, exp(. . . ) never vanishes, and then it follows that detY (t) can never be zero.

Definition 3.6 (Wronski determinant). For solutions y(1), . . . , y(n) to (3.8), the determinant of Y (t)
is called Wronski3 determinant, and Y (t) is called Wronski matrix.

This determinant has the following use: showing directly that solutions y(1), . . . , y(n) are linearly indepen-
dent is hard, because they live in the vector space C1(R→ Cn) which is of infinite dimension. However,
now we have learned that it suffices to pick a time t0 and check the linear independence of the vectors
y(1)(t0), . . . , y(n)(t0) as vectors in Cn.

3 Josef–Maria Hoëné de Wronski, 1778 – 1853, czech / polish / french mathematician
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Example 3.7. We want to find all solutions u = u(t) to the scalar ODE

u′′′(t) + a2(t)u′′(t) + a1(t)u′(t) + a0(t)u(t) = 0. (3.9)

To this end, we define a vector function

y(t) =

 u(t)
u′(t)
u′′(t)

 ,

and then we obtain the system

y′(t) =

 0 1 0
0 0 1

−a0(t) −a1(t) −a2(t)

 y(t) = A(t)y(t),

which is an equivalent transformation, by Proposition 1.6. We define y(1), y(2), y(3) as solutions to
y′(t) = A(t)y(t) with the initial conditions

y(1)(t0) = (1, 0, 0)>, y(2)(t0) = (0, 1, 0)>, y(3)(t0) = (0, 0, 1)>.

Then detY (t0) = 1, hence these functions y(1), y(2), y(3) are linearly independent, and then also the first
components u(1), u(2), u(3) of the vectors y(1), y(2), y(3) must be linearly independent. But these u(1), u(2),
u(3) solve (3.9), with the initial conditions

u(1)(t0) = 1, u′(1)(t0) = 0, u′′(1)(t0) = 0,

u(2)(t0) = 0, u′(2)(t0) = 1, u′′(2)(t0) = 0,

u(3)(t0) = 0, u′(3)(t0) = 0, u′′(3)(t0) = 1.

Our remote goal is to find a solution formula like (3.3). Note that there expressions like exp(
∫ t
s=t0

a(s) ds)

played a crucial rôle . The equivalent to these exponentials will now be written as X(t, t0), to be defined
as follows:

Definition 3.8 (Fundamental solution). A function X = X(t1, t2) which maps from R×R into Cn×n
is called fundamental solution if

• the dependence of X from the first time argument is of regularity4 C1,

• for all t, s ∈ R, we have ∂
∂tX(t, s) = A(t)X(t, s),

• for all t ∈ R, we have X(t, t) = I, the identity matrix.

Lemma 3.9. If A = A(t) is continuous, then exactly one fundamental solution X exists.

Proof. We believe in a matrix version of the Picard–Lindelöf theorem.

Lemma 3.10. If A = A(t) is continuous, then the following holds:

• the solution y = y(t) to y′(t) = A(t)y(t) with initial condition y(t0) = y0 is given by

y(t) = X(t, t0)y0, ∀ t ∈ R,

• for arbitrary t0, t1, t2 ∈ R, we have

X(t2, t1)X(t1, t0) = X(t2, t0).

Proof.

4regularity means smoothness
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• Put z(t) := X(t, t0)y0. Then we find z′(t) = ∂tX(t, t0)y0 = A(t)X(t, t0)y0 = A(t)z(t), as well as
z(t0) = X(t0, t0)y0 = y0. Therefore the functions y and z solve the same initial value problem, hence
z(t) = y(t) for all times.

• Choose y0 ∈ Cn freely, and let y be the solution to y′ = Ay with y(t0) = y0. From the first •, we get

y(t1) = X(t1, t0)y0, y(t2) = X(t2, t0)y0,

but also y(t2) = X(t2, t1)y(t1) = X(t2, t1)X(t1, t0)y0, which brings us to

X(t2, t1)X(t1, t0)y0 = X(t2, t0)y0.

But if this equality holds for all y0 ∈ Cn, then the matrices must be equal.

We may set t2 = t0 with the consequence X(t0, t1)X(t1, t0) = I, or

X(t0, t1) =
(
X(t1, t0)

)−1

,

showing us that the dependence of X(t0, t1) from the second variable t1 must also be of regularity C1.

The invertibility of the matrix X is no surprise, because (the proof of) Proposition 3.5 gives us

detX(t1, t0) = exp

(∫ t1

s=t0

traceA(s) ds

)
6= 0.

Now that the fundamental solution X has been found (at least in an abstract sense), we have a deep look
at (3.3) and guess the following:

Lemma 3.11. Let A = A(t) and f = f(t) be continuous functions. Then the unique solution to the
initial value problem

y′(t) = A(t)y(t) + f(t), y(t0) = y0

is given by

y(t) = X(t, t0)y0 +

∫ t

s=t0

X(t, s)f(s) ds. (3.10)

Proof. For t = t0, we find the expression

X(t0, t0)y0 +

∫ t0

s=t0

. . . ds = y0,

and therefore the right-hand side of (3.10) satisfies the initial condition. And differentiating the right-hand
side of (3.10) with respect to t gives

∂

∂t
X(t, t0)y0 +

∂

∂t

∫ t

s=t0

X(t, s)f(s) ds

= A(t)X(t, t0)y0 +X(t, t)f(t) +

∫ t

s=t0

∂

∂t
X(t, s)f(s) ds

= A(t)X(t, t0)y0 + f(t) +

∫ t

s=t0

A(t)X(t, s)f(s) ds

= A(t)X(t, t0)y0 +A(t)

∫ t

s=t0

X(t, s)f(s) ds+ f(t)

= A(t)

(
X(t, t0)y0 +

∫ t

s=t0

X(t, s)f(s) ds

)
+ f(t),

which was our aim.
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Up to now, the fundamental solution X has been found only in an abstract way, but we have no formula
for X. This gap will be closed now.

Proposition 3.12. The fundamental solution X = X(t, t0) to the matrix A = A(t) is given by

X(t, t0) =

∞∑
k=0

X(k)(t, t0)

with X(0)(t, t0) ≡ I, and the other X(k) are recursively defined by

X(k)(t, t0) =

∫ t

s=t0

A(s)X(k−1)(s, t0) ds, k ≥ 1.

Sketch of proof. Keep t0 fixed, and we restrict the variable t to a time interval [t0 − T, t0 + T ], for some
T , which can be huge. We choose a number M with ‖A(s)‖2 ≤ M for all s ∈ [t0 − T, t0 + T ] (maybe M
depends on T , but this is no problem). Then we find the estimates∥∥∥X(0)(t, t0)

∥∥∥
2

= 1,∥∥∥X(1)(t, t0)
∥∥∥

2
≤
∫ max(t,t0)

s=min(t,t0)

‖A(s)‖2 ·
∥∥∥X(0)(s, t0)

∥∥∥
2

ds ≤M |t− t0|,∥∥∥X(2)(t, t0)
∥∥∥

2
≤
∫ max(t,t0)

s=min(t,t0)

‖A(s)‖2 ·M |s− t0|ds ≤
(M |t− t0|)2

2
,

∥∥∥X(3)(t, t0)
∥∥∥

2
≤
∫ max(t,t0)

s=min(t,t0)

‖A(s)‖2 ·
(M |s− t0|)2

2
ds ≤ (M |t− t0|)3

3!
,

and continuing in this manner gives∥∥∥X(k)(t, t0)
∥∥∥

2
≤ (M |t− t0|)k

k!
, k ≥ 0,

and therefore the series
∑∞
k=0X

(k)(t, t0) indeed converges uniformly.

By definition, X solves

∂tX(t, t0) = A(t)X(t, t0), X(t0, t0) = I.

As in the proof of the Picard–Lindelöf Theorem, we transform this equivalently into an integral equation,

X(t, t0) = I +

∫ t

s=t0

A(s)X(t, t0) ds.

It remains to verify that

∞∑
k=0

X(k)(t, t0)
?
= I +

∫ t

s=t0

A(s)

∞∑
k=0

X(k)(s, t0) ds,

but this is checked quickly: just note that the uniform convergence of the series
∑∞
k=0 . . . allows to

interchange the integration and the summation, as we have learned in the second semester.

This explicit formula for the fundamental solution is mainly of theoretical interest, since computing all
the matrices X(k) gets tedious very quickly, and (carefully chosen) numerical methods have a better ratio
between precision and effort anyway, as we will see in a later chapter.

And finally, some comments on the geometric structure of solution sets.

• solutions to the linear homogeneous system y′(t) = A(t)y(t) form a vector space of dimension n. A
basis is given by that functions y(1), . . . , y(n) with y(j)(t0) = ej , where ej = (0, . . . , 1, . . . , 0) is the
canonical j-th basis vector.

• solutions to the inhomogeneous system y′(t) = A(t)y(t) + f(t) form an affine space of dimension n.
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3.4 Linear Systems and Equations with Constant Coefficients

Now we consider a constant matrix A ∈ Cn×n, and the initial value problem is

y′(t) = Ay(t) + f(t), y(t0) = y0. (3.11)

Lemma 3.13. The fundamental solution to a constant matrix A is

X(t, t0) = exp(A(t− t0)) =

∞∑
k=0

1

k!
Ak(t− t0)k.

Proof. Either we check directly the definition, or we follow Proposition 3.12.

Then the solution to (3.11) is

y(t) = eA(t−t0)y0 +

∫ t

s=t0

eA(t−s)f(s) ds.

Next we show how to compute exp(At), and to make the idea more clear, we choose a matrix A ∈ C6×6

with

• an eigenvalue λ1 of algebraic multiplicity 1 and eigenvector u1,

• an eigenvalue λ2 of algebraic multiplicity 5 and geometric multiplicity 2, with chains of eigenvectors
and principal vectors

u2 → p2,1, u3 → p3,1 → p3,2.

Then we put

S =

 | | | | | |
u1 u2 p2,1 u3 p3,1 p3,2

| | | | | |

 ,

and the Jordan normal form then is

S−1AS = D +N

=


λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ2 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ2 0
0 0 0 0 0 λ2

+



0 0 0 0 0 0

0
0

0 1
0 0

0 0 0
0 0 0

0
0
0

0 0
0 0
0 0

0 1 0
0 0 1
0 0 0

 ,

or A = S(D +N)S−1.

Now exp(At) =
∑∞
k=0

1
k!A

ktk, and

Ak = S(D +N)S−1 · S(D +N)S−1 · . . . · S(D +N)S−1 = S(D +N)kS−1,

giving us

exp(At) = S exp(Dt+Nt)S−1.

We quickly check that DN = ND, and therefore

exp(At) = S exp(Dt) exp(Nt)S−1.
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Now exp(Dt) is easy:

exp(Dt) =


eλ1t 0 0 0 0 0

0 eλ2t 0 0 0 0
0 0 eλ2t 0 0 0
0 0 0 eλ2t 0 0
0 0 0 0 eλ2t 0
0 0 0 0 0 eλ2t

 ,

and exp(Nt) needs a bit more care:

exp(Nt) = I + (Nt) +
1

2!
N2t2,

and the power series stops here since N3 = 0. Such matrices N are called nilpotent, which means that a
certain power of N is the zero matrix. Observe that

N2 =



0 0 0 0 0 0

0
0

0 0
0 0

0 0 0
0 0 0

0
0
0

0 0
0 0
0 0

0 0 1
0 0 0
0 0 0

 , exp(Nt) =



1 0 0 0 0 0

0
0

1 t
0 1

0 0 0
0 0 0

0
0
0

0 0
0 0
0 0

1 t t2/2
0 1 t
0 0 1

 ,

and then we combine these results to

exp(At) = S exp(Dt) exp(Nt)S−1

= S



eλ1t 0 0 0 0 0

0
0

eλ2t teλ2t

0 eλ2t
0 0 0
0 0 0

0
0
0

0 0
0 0
0 0

eλ2t teλ2t t2eλ2t/2
0 eλ2t teλ2t

0 0 eλ2t

S
−1.

Now we wish to evaluate exp(At)y0. We expand y0 into the new basis (u1, u2, p2,1, u3, p3,1, p3,2):

y0 = α1u1 + α2u2 + α2,1p2,1 + α3u3 + α3,1p3,1 + α3,2p3,2 = S(α1, α2, . . . , α3,2)>,

exp(At)y0 = S exp(Dt) exp(Nt)(α1, . . . , α3,2)>

= S

α1


eλ1t

0
0
0
0
0

+ α2


0
eλ2t

0
0
0
0

+ α2,1


0

teλ2t

eλ2t

0
0
0

+ α3


0
0
0
eλ2t

0
0

+ α3,1


0
0
0

teλ2t

eλ2t

0

+ α3,2


0
0
0

t2eλ2t/2
teλ2t

eλ2t




= α1e

λ1tu1 + (α2 + α2,1t)e
λ2tu2 + α2,1e

λ2tp2,1 + (α3 + α3,1t+ α3,2t
2/2)eλ2tu3

+ (α3,1 + α3,2t)e
λ2tp3,1 + α3,2e

λ2tp3,2.

Now the term exp(At)y0 is understood, and
∫ t
s=0

exp(A(t − s))f(s) ds can be handled in the same style:
for each s, expand f(s) into the new basis of eigenvectors and principal vectors, and continue as above.

Now we come to scalar equations of higher order n, with constant coefficients:

u(n)(t)+an−1u
(n−1)(t)+ · · ·+a2u

′′(t)+a1u
′(t)+a0u(t) = f(t), u(k)(0) = u0,k, 0 ≤ k ≤ n−1, (3.12)

with the u0,0, u0,1, . . . , u0,n−1 as initial values for the derivatives of order up to n− 1.

Theoretically, we could transfer this higher order scalar equation into a first order system, as we have
done it in Example 3.7, and then apply the solution formula from (3.10). This approach works, but often
we are faster when we directly deal with the higher order equation.

Constructing the solution is done in three steps:
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• first, we find all solutions to the homogeneous problem, with f ≡ 0 and ignoring all u0,k. This
representation involves n freely selectable constants α1, . . . , αn.

• second, we find one solution to the inhomogeneous problem with the original f , still ignoring all
u0,k.

• third, we add the above obtained parts of the solutions and choose the constants α1, . . . , αn in such
a way that the initial conditions hold.

We come to the first step, finding all solutions to

u(n)(t) + an−1u
(n−1)(t) + · · ·+ a2u

′′(t) + a1u
′(t) + a0u(t) = 0,

where an−1, . . . , a0 ∈ C are constants. We can also say that we want to determine the kernel of a
differential operator L,

L =
dn

dtn
+ an−1

dn−1

dtn−1
+ · · ·+ a2

d2

dt2
+ a1

d

dt
+ a0.

Definition 3.14 (characteristic polynomial). The characteristic polynomial to the operator L is

χ(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0.

By the Fundamental Theorem of Algebra, this polynomial has n roots λj in the complex plane (counted
according to their multiplicity), and we can factorise:

χ(λ) = (λ− λ1)µ1(λ− λ2)µ2 · · · (λ− λk)µk ,

with µj as multiplicity of the zero λj , and λi 6= λj for j 6= j. We clearly have µ1 + µ2 + · · ·+ µk = n.

Note that also the operator L can be factorised:

L =

(
d

dt
− λ1

)m1
(

d

dt
− λ2

)m2

· · ·
(

d

dt
− λk

)mk
This is possible because the aj are constant.

Question: Think about why

d2

dt2
− 2t

d

dt
+ t2 6=

(
d

dt
− t
)2

.

Lemma 3.15. The kernel of L is of dimension n, and its basis is given by functions t 7→ tl exp(λjt), for
0 ≤ l ≤ µj − 1.

Sketch of proof. In order to not get drowned in an ocean of indices, we take n = 5 and consider the special
fifth order operator

L =

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)3

as an example. A solution to Lu = 0 is uniquely determined by the values of u(0), u′(0), u′′(0), u(3)(0),
u(4)(0), which are five numbers. Therefore the dimension of L can not be more than five, and we only
have to guess five linearly independent elements of kerL.

The function u1(t) = exp(λ1t) belongs to kerL, because of

Lu1 =

(
d

dt
− λ2

)(
d

dt
− λ3

)3(
d

dt
− λ1

)
u1 =

(
d

dt
− λ2

)(
d

dt
− λ3

)3

0 = 0.

Similarly for the functions u2(t) = exp(λ2t) and u3(t) = exp(λ3t). Next we note that(
d

dt
− λ
)(

tp exp(λt)
)

= ptp−1 exp(λt), p ∈ N0,
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and consequently also the function u4(t) = t exp(λ3t) belongs to the kernel, since

Lu4 =

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)3 (
t exp(λ3t)

)
=

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)2 (
exp(λ3t)

)
=

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)
0 = 0.

And finally, we have u5(t) = t2 exp(λ3t):

Lu5 =

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)3 (
t2 exp(λ3t)

)
=

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)2 (
2t exp(λ3t)

)
=

(
d

dt
− λ1

)(
d

dt
− λ2

)(
d

dt
− λ3

)(
2 exp(λ3t)

)
= 0.

It only remains to check the linear independence of u1, . . . , u5, which could be done with the Wronski
matrix Y (t), and we can choose t = 0:

Y (0) =


u1(0) u2(0) u3(0) u4(0) u5(0)
u′1(0) u′2(0) u′3(0) u′4(0) u′5(0)
u′′1(0) u′′2(0) u′′3(0) u′′4(0) u′′5(0)
u′′′1 (0) u′′′2 (0) u′′′3 (0) u′′′4 (0) u′′′′5 (0)
u′′′′1 (0) u′′′′2 (0) u′′′′3 (0) u′′′′4 (0) u′′′′5 (0)



=


1 1 1 0 0
λ1 λ2 λ3 1 0
λ2

1 λ2
2 λ2

3 2λ2 2
λ3

1 λ3
2 λ3

3 3λ2
2 6λ3

λ4
1 λ4

2 λ4
3 4λ3

2 12λ2
3

 .

Here we have made fruitful use of the Leibniz formula:(
d

dt

)m
(v(t)w(t)) =

m∑
l=0

(
m

l

)
v(l)(t)w(m−l)(t).

Question: Prove the Leibniz formula.

Now we can check by direct computation that detY (0) 6= 0. This is doable, but tedious, and difficult to
generalise to arbitrary operators L.

Another approach to the proof of the linear independence of u1, . . . , u5 is more algebraic in nature.
Consider the equation

α1u1 + α2u2 + α3u3 + α4u4 + α5u5 = 0, α1, . . . , α5 ∈ C,

with 0 as the zero function, and we want to show that α1 = · · · = α5 = 0. If α5 6= 0, then u5 can be
written as linear combination of the other uj ,

u5 = β1u1 + β2u2 + β3u3 + β4u4, β1, . . . , β4 ∈ C.

Now remove one factor (∂t−λ3) from L, giving us the operator L1 = (∂t−λ1)(∂t−λ2)(∂t−λ3)2. Then u1,
. . . , u4 belong to kerL1, but u5 does not. Recalling that kerL1 is a vector space, we find a contradiction,
hence α5 = 0. Now we assume α4 6= 0, and then we get

u4 = β1u1 + β2u2 + β3u3, β1, . . . , β3 ∈ C,

and considering the operator L2 = (∂t − λ1)(∂t − λ2)(∂t − λ3) brings us again a contradiction, hence
α4 = 0. Therefore, 0 = α1u1 +α2u2 +α3u3, with u1, u2, u3 ∈ kerL2, and looking at L2 instead of L gives
us the Wronski matrix

Y (t) =

u1(t) u2(t) u3(t)
u′1(t) u′2(t) u′3(t)
u′′1(t) u′′2(t) u′′3(t)

 , Y (0) =

 1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

 .
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To show that detY (0) 6= 0, we recall the theory of Vandermonde5 determinants

Vn(λ1, . . . , λn) := det


1 1 . . . 1
λ1 λ2 . . . λn
...

...
. . .

...
λn−1

1 λn−1
2 . . . λn−1

n

 .

Some cunning ideas allow us to evaluate these determinants quickly:

Keep λ1, . . . , λn−1 frozen and let λn run through C. Then Vn(λ1, . . . , λn) is a polynomial in the only
variable λn of degree n− 1, and it can be found by expanding the determinant along the last column:

Vn(λ1, . . . , λn) = Vn−1(λ1, . . . , λn−1) · λn−1
n + ? λn−2

n + · · ·+ ? λn + ? , (3.13)

where we do not care what the missing coefficients are. On the other hand, the determinant vanishes if
two columns coincide, and therefore the polynomial (3.13) has the n− 1 zeroes λn = λ1, . . . , λn = λn−1,
giving us the decomposition of Vn into linear factors:

Vn(λ1, . . . , λn) = ? (λn − λ1) · . . . · (λn − λn−1), (3.14)

with some unknown leading coefficient in the box. Comparing (3.13) and (3.14) gives us

Vn(λ1, . . . , λn) = Vn−1(λ1, . . . , λn−1) · (λn − λ1)(λn − λ2) · . . . · (λn − λn−1),

and by induction we then find

Vn(λ1, . . . , λn) =
∏
j<k

(λk − λj),

which is not zero if all the λi are distinct.

In the second step, we intend to find one solution uinh to the inhomogeneous problem

u(n)(t) + an−1u
(n−1)(t) + · · ·+ a1u

′(t) + a0u(t) = f(t).

One approach is the variation of constants. We make the ansatz

u(t) = C1(t)u1(t) + · · ·+ Cn(t)un(t),

with the uj as the solutions found in the first step. Then we find (and set)

u′(t) =

n∑
j=1

(
C ′j(t)uj(t) + Cj(t)u

′
j(t)
) !

=

n∑
j=1

Cj(t)u
′
j(t),

u′′(t) =

n∑
j=1

(
C ′j(t)u

′
j(t) + Cj(t)u

′′
j (t)

) !
=

n∑
j=1

Cj(t)u
′′
j (t),

. . .

u(n−1)(t) =

n∑
j=1

(
C ′j(t)u

(n−2)
j (t) + Cj(t)u

(n−1)
j (t)

)
!
=

n∑
j=1

Cj(t)u
(n−1)
j (t),

u(n)(t) =

n∑
j=1

(
C ′j(t)u

(n−1)
j (t) + Cj(t)u

(n)
j (t)

)
!
= f(t)−

n−1∑
k=0

aku
(k)(t) = f(t)−

n∑
j=1

Cj(t)

n−1∑
k=0

aku
(k)
j (t),

5 Alexandre–Théophile Vandermonde, 1735–1796, french musician, chemist and mathematician. This determinant
appears nowhere in his four mathematical papers, and it is unknown why it is named after him.
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which turns into the system
u1 u2 . . . un
u′1 u′2 . . . u′n
...

...
. . .

...

u
(n−2)
1 u

(n−2)
2 . . . u

(n−2)
n

u
(n−1)
1 u

(n−1)
2 . . . u

(n−21
n




C ′1
C ′2
...

C ′n−1

C ′n

 =


0
0
...
0
f

 ,

or (C ′1, . . . , C
′
n)> = Y −1(t)(0, . . . , 0, f)>, from which the Cj can be found by integration.

Another approach is to guess the uinh by a special ansatz:

• if f = f(t) is a polynomial in t, then uinh can be found as a polynomial, typically of the same
degree, in exceptional cases of higher degree,

• if f = f(t) is a multiple of exp(κt), then uinh can be found as a multiple of exp(κt), in exceptional
cases as exp(κt) multiplied by a polynomial of t,

• if f is a linear combination of the above, then uinh can be found as appropriate linear combination,

• if f = f(t) = exp(at) cos(bt), then we can either write f(t) = (exp((a+ ib)t) + exp((a− ib)t))/2 and
proceed as above, or we try to find uinh as linear combination of exp(at) cos(bt) and exp(at) sin(bt).

And in the third step, we add up:

u(t) = α1u1(t) + · · ·+ αnun(t) + uinh(t),

and choose the αj in such a way that the initial conditions in (3.12) are fulfilled.



Chapter 4

Flows

4.1 General Remarks

Imagine a flowing fluid or gas, or a solid which is able to be deformed elastically (or plastically). At time
0, it occupies a domain Ω0 ⊂ Rn, and at time t, a domain Ωt. Of course, these domains may overlap. A
particle, which is at the position a ∈ Ω0 at time 0, moves to a position x ∈ Ωt at time t, and we write
this as

x = Φ(t, t0, a).

We can write Φ(t, t0) for this map a 7→ x, and the following properties are physically plausible:

Φ(t, t) = id, ∀ t ∈ R,
Φ(t2, t1) ◦ Φ(t1, t0) = Φ(t2, t0), ∀ t0, t1, t2 ∈ R.

We also suppose that this map Φ(t, t0) is a smooth diffeomorphism. This means that Φ(t, t0) maps Ωt0
bijectively onto Ωt, the map a 7→ x is infinitely differentiable, and the inverse map x 7→ a is also infinitely
differentiable. We also assume that the derivatives of Φ(t, t0, a) with respect to t and to t0 exist, up to
any order.

Now we look at one special particle which is at a ∈ Ω0 at the starting time 0. This particle moves along
the curve

t 7→ Φ(t, 0, a), t ∈ [0,∞),

and its velocity is

U(t, x) :=
∂

∂t
Φ(t, 0, a) if x = Φ(t, 0, a).

51
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Think of a physical quantity of this particle (and its neighbour particles): velocity, acceleration, tempera-
ture, mass density, pressure. A formula of this quantity could refer to this particle via the variables (t, x),
with x being the position at time t, which are the Euler coordinates.

Or the formula for this quantity at time t could refer to this particle using the variable a, which was the
position at time zero. These are the Lagrange coordinates.

Example 4.1. The Eulerian velocity at a particle x at time t is U(t, x).

The Lagrangian velocity of the same particle is ∂tΦ(t, 0, a), where a and x are related via x = Φ(t, 0, a),
or a = Φ(0, t, x).

The Eulerian description is more popular because it needs no translation step from x back to a.

How to do this translation if only the velocity field U = U(t, x) is known, but Φ is not ?

Given are a time t∗ > 0 and a point x∗ ∈ Ωt∗ . Then the trajectory x = x(t) of that particle solves the
initial value problem

x′(t) = U(t, x(t)), x(t∗) = x∗.

We just have to solve this initial value problem, and then the starting position is found as a = x(0).

Although the Lagrangian coordinates are less used, they are still needed.

Definition 4.2. The Lagrangian acceleration is defined as ∂2
t Φ(t, 0, a).

Lemma 4.3. Then the Eulerian acceleration is computed as

γ(t, x) = ∂tU(t, x) + ((U · ∇)U)(t, x),

with U · ∇ :=
∑n
j=1 Uj∂j, and ∇ = (∂1, . . . , ∂n) contains only the spatial derivatives.

Proof. We have (remember that x = Φ(t, 0, a), and U , Φ are vector-valued)

∂2
t Φ(t, 0, a) =

∂

∂t

∂

∂t
Φ(t, 0, a) =

d

dt
U(t, x(t)) =

d

dt
U(t,Φ(t, 0, a))

= ∂tU(t, x) +

n∑
j=1

∂U

∂xj
(t, x) · ∂Φj

∂t
(t, 0, a) = ∂tU(t, x) +

n∑
j=1

Uj(t, x) · ∂U
∂xj

(t, x).

More generally, we have: if H = H(t, x) is a physical quantity expressed in Eulerian coordinates, and
G = G(t, a) is the same quantity expressed in Lagrangian coordinates, both connected via x = Φ(t, 0, a),
then the derivatives transform like this:

∂G

∂aj
=

n∑
k=1

∂H

∂xk
· ∂Φk
∂aj

,
∂G

∂t
=
∂H

∂t
+

n∑
k=1

∂H

∂xk
· Uk(t, x) =

∂H

∂t
+ (U · ∇)H.

Now we consider balance equations1. Consider a scalar function C = C(t, x), and define

K(t) =

∫
Ωt

C(t, x) dx.

For instance, C could be the mass density (mass per volume), and then K(t) would be the mass of the
domain Ωt. Or C could be the energy density (energy per volume), giving K as total energy of Ωt. We
would like to know how K(t) changes with time.

Lemma 4.4. It holds

d

dt
K(t) =

∫
Ωt

Ct(t, x) dx+

∫
Ωt

div(CU)(t, x) dx.

1Bilanzgleichungen
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Proof. The key problem is that the domain of integration, appearing in the definition of K, is changing
with time. We overcome this trouble by first going back to the Lagrangian description, then evaluating
the time derivative, and finally transforming to the Euler coordinates.

The map Φ(t, 0) : a → x is a diffeomorphism, which implies that the Jacobi matrix ∂Φ
∂a (t, 0, a) is always

invertible. Then the determinant of this Jacobi matrix is never zero. And because this determinant is one
for t = 0, we find that

det
∂Φ

∂a
(t, 0, a) > 0

always. This gives, by substitution of x against a,

K(t) =

∫
Ω0

C(t,Φ(t, 0, a))

∣∣∣∣det
∂Φ

∂a
(t, 0, a)

∣∣∣∣ da,

and the modulus bars around the determinant are not needed, as already seen. Write J(t, a) :=
det ∂Φ

∂a (t, 0, a). Then dx = J(t, a) da and

K ′(t) =

∫
Ω0

(
d

dt
C(t,Φ(t, 0, a))

)
· J(t, a) da+

∫
Ω0

C(t,Φ(t, 0, a)) · (∂tJ(t, a)) da.

We know already that

d

dt
C(t,Φ(t, 0, a)) = Ct(t, x) + (U(t, x) · ∇)C(t, x),

and then the first integral turns into∫
Ωt

Ct(t, x) + (U(t, x) · ∇)C(t, x) dx.

Now we only have to understand the second integral. By our formula for the derivative of a determinant,

∂tJ(t, a) = J(t, a) · trace
(
(∂t∂aΦ(t, 0, a)) · (∂aΦ(t, 0, a))−1

)
.

Here ∂aΦ(t, 0, a) is the Jacobi matrix of the map a 7→ x.

On the other hand, the Jacobi matrix of the inverse map x 7→ a is ∂xΦ(0, t, x), and this is the inverse
matrix of ∂aΦ(t, 0, a). Therefore we have found

∂tJ(t, a) = J(t, a) · trace ((∂t∂aΦ(t, 0, a)) · (∂xΦ(0, t, x))) .

We continue to see a as a = a(x) = Φ(0, t, x). Then we have

∂Ui
∂xj

(t, x) =
∂

∂xj

∂Φi
∂t

(t, 0, a(x)) =

n∑
k=1

∂2Φi
∂t∂ak

· ∂ak
∂xj

=

n∑
k=1

∂2Φi(t, 0, a)

∂t∂ak
· ∂Φk(0, t, x)

∂xj
,

which brings us

divU(t, x) =

n∑
j=1

∂Uj
∂xj

(t, x) =

n∑
j=1

n∑
k=1

∂2Φj(t, 0, a)

∂t∂ak
· ∂Φk(0, t, x)

∂xj

= trace ((∂t∂aΦ(t, 0, a)) · (∂xΦ(0, t, x))) .

Therefore, ∂tJ(t, a) = divU(t, x) · J(t, a), and the second integral becomes∫
Ω0

C(t,Φ(t, 0, a)) · divU(t,Φ(t, 0, a)) · J(t, a) da =

∫
Ωt

C(t, x) divU(t, x) dx,

hence we conclude that

K ′(t) =

∫
Ωt

Ct(t, x) + (U(t, x) · ∇)C(t, x) dx+

∫
Ωt

C(t, x) divU(t, x) dx.

The remainder of the proof is left to the reader.
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Example 4.5. Put C(t, x) = %(t, x) as mass density. Then K(t) is the mass of the moving domain Ωt,
and an axiom from physics is that K(t) ≡ const.. Consequently,

0 =

∫
Ωt

%t(t, x) + div(%U)(t, x) dx.

However, the domain Ωt can be chosen arbitrarily, because we are allowed to focus our attention to a
subset of all the particles. Then we find

∂t%+ div(%U) = 0, (4.1)

which is known as conservation of mass in Eulerian coordinates.

Example 4.6. Put C(t, x) ≡ 1. Then K(t) equals the volume of the moving domain Ωt, and our conclu-
sion then is

d

dt
vol(Ωt) =

∫
Ωt

divU(t, x) dx.

Example 4.7. Consider the Lorenz system from meteorology, which we can rewrite as x′(t) = U(x), orx1

x2

x3

′ = U(x) =

 σ(x2 − x1)
%x1 − x2 − x1x3

−βx3 + x1x2

 ,

with positive parameters σ, β, %. We find that divU = −σ − 1 − β which is a negative constant. Hence
the volume vol(Ωt) solves

d

dt
vol(Ωt) = −(σ + 1 + β) vol(Ωt),

with the explicit solution vol(Ωt) = exp(−(σ + 1 + β)t) vol(Ω0).

We are still not able to solve the Lorenz system (and we will never be), but at least we can say that, for
large times, the solution trajectories must stay inside a domain of R3 with extremely small volume if the
initial values at time zero are chosen from a bounded set of R3.

Example 4.8. Consider the system x′(t) = Bx, with a constant matrix B ∈ Rn×n. Then Φ(t, 0, a) =
X(t, 0)a = exp(Bt)a, and the flow transports the domain Ω0 to Ωt = exp(Bt)Ω0, which is obtained via
multiplication of the matrix exp(Bt) to any point a ∈ Ω0. Then the Jacobian matrix is ∂Φ

∂a (t, 0, a) =
X(t, 0) = exp(Bt), hence dx = J(t, a) da = det(exp(Bt)) da, and the substitution rule then gives

vol(Ωt) =

∫
Ωt

1 dx =

∫
Ω0

1 · J(t, a) da = det(exp(Bt))

∫
Ω0

1 da = det(exp(Bt)) vol(Ω0).

On the other hand, we have divU = traceB, hence

d

dt
vol(Ωt) =

∫
Ωt

trace(B) dx = trace(B) vol(Ωt),

with the explicit solution vol(Ωt) = etrace(B)t vol(Ω0). Comparing both formulae for vol(Ωt) gives
det(exp(Bt)) = etrace(B)t.

We have proved (3.7) a second time !

Example 4.9 (Conservation of phase space volume2). Consider a mechanical system with d degrees
of freedom, with the generalised coordinates q1, . . . , qd, and the generalised momentums p1, . . . , pd. We
assume that this is a Hamiltonian system3, which means that there is a function H = H(q, p) with

q′(t) =
∂H

∂p
(q, p),

p′(t) = −∂H
∂q

(q, p).

2Erhaltung des Phasenraumvolumens
3Hamiltonsches System
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We can put z(t) := (q(t), p(t))> and obtain a system z′(t) = U(z) which generates a flow in the 2d-
dimensional space. We quickly check that divU ≡ 0, and the conclusion then is

vol(Ωt) = vol(Ω0).

The domain Rdq ×Rdp is called phase space4, and Ω0, Ωt are subsets in it. Therefore we have shown one of
the key results of analytical mechanics and statistical physics: the flow generated by a Hamiltonian system
preserves the phase space volume.

This is also known as Theorem of Liouville5.

Remark 4.10. For completeness, we mention that two further balance equations are of high importance in
fluid dynamics, complementing the local conservation of mass from (4.1). The first is the local conservation
of momentum,

∂t(%U) + div(%U ⊗ U) = f + div σ.

The left-hand side is the total acceleration, and the right-hand side contains the vectorial density f of
external forces acting on each molecule (imagine gravity) and the divergence of the stress tensor σ, which
is a 3 × 3 matrix introduced in the script of the first semester. We remark that U ⊗ U is a symmetric
3× 3 matrix with entries UjUk, and div is applied on each row separately.

And the final balance equation is the local conservation of energy

∂t

(
%

(
e+

1

2
|U |2

))
+ div

(
%U

(
e+

1

2
|U |2

))
= 〈f, U〉+ r + div(σU − q),

with e = e(t, x) being the interior energy per mass (a certain thermodynamical quantity), and %
2 |U |

2 is
the volume density of the kinetic energy. The left-hand side is the total time derivative of both energies
together. On the right-hand side, we have 〈f, U〉 as the mechanical power6, r is the density of generated
heat (imagine an exothermic chemical reaction), and q as the heat flux vector (the heat flows into the
colder region, therefore the minus).

4.2 Dynamical Systems and Stability

Definition 4.11. A dynamical system consists of the phase space Rn, the additive group (R,+), and a
flow

Φ: R× Rn → Rn,
Φ: (t, a) 7→ Φ(t, a),

with the following properties:

Φ(0, a) = a, ∀ a ∈ Rn,
Φ(t,Φ(s, a)) = Φ(t+ s, a), ∀ t, s ∈ R, ∀ a ∈ Rn,
∀ t ∈ R : Φ(t, ·) : a 7→ x is a diffeomorphism of Rn onto Rn.

Here a map of Rn onto Rn is called a diffeomorphism if it is bijective, differentiable, and the inverse maps
is also differentiable.

Example 4.12. Let x = x(t) be the solution to

x′(t) = U(x(t)), x(0) = a ∈ Rn,

with U ∈ C1(Rn → Rn). Set Φ(t, a) := x(t), assuming that x has infinite life span.

Because U does not depend itself on t, we can restrict Φ to depend only on one time variable. Our new
notation shall be to write x0 instead of a.

4Phasenraum
5 Joseph Liouville, 1809 – 1882, french mathematician
6mechanische Leistung



56 CHAPTER 4. FLOWS

Definition 4.13 (Orbits). We call γ(x0) := {Φ(t, x0) : t ∈ R} the orbit of x0 ∈ Rn, and

γ+(x0) := {Φ(t, x0) : t ≥ 0} ,
γ−(x0) := {Φ(t, x0) : t ≤ 0}

are called the forward orbit and backward orbit of x0.

Definition 4.14. A point x∗ ∈ Rn is called a stationary point or resting point of Φ if γ(x∗) = {x∗}.
A point x∗ ∈ Rn is a periodic orbit of minimal period p if Φ(p, x∗) = x∗, but Φ(t, x∗) 6= x∗ for all t with
0 < t < p.

An orbit γ(x0) is a hetero-clinic orbit if there are resting points x− and x+ such that

lim
t→−∞

Φ(t, x0) = x−, lim
t→+∞

Φ(t, x0) = x+.

Example 4.15. Consider the logistic growth model x′(t) = αx− βx2 with the resting points x∗ = 0 and
x∗ = α/β. If 0 < x0 < α/β then γ(x0) is a hetero-clinic orbit.

Lemma 4.16. Consider the differential equation

x′(t) = U(x(t))

with the associated flow Φ. Then x∗ is a resting point of Φ if and only if U(x∗) = 0.

Proof. This is the uniqueness part of the Picard–Lindelöf theorem.

Definition 4.17 (Invariant sets). A set M ⊂ Rn is called positive invariant if Φ(t, ·) maps M into
itself for all t ≥ 0.

A set M ⊂ Rn is called negative invariant if Φ(t, ·) maps M into itself for all t ≤ 0.

A set M ⊂ Rn is called invariant if it is positive invariant and negative invariant.

Example 4.18. Consider again the logistic growth model. This has the invariant sets

M1 = (α/β,∞), M2 = {α/β}, M3 = (0, α/β), M4 = {0}, M5 = (−∞, 0),

and all unions of these sets.

Definition 4.19 (Stable points). A resting point x∗ ∈ Rn is a stable point of Φ if

∀ ε > 0 ∃ δ > 0: ‖x0 − x∗‖ < δ =⇒ ‖Φ(t, x0)− x∗‖ < ε, ∀ t ≥ 0.

A resting point x∗ ∈ Rn is an asymptotically stable point of Φ if it is stable and there is a positive δ0
such that

‖x0 − x∗‖ < δ0 =⇒ lim
t→+∞

‖Φ(t, x0)− x∗‖ = 0.

A point of Rn is called unstable if it is not stable.

Example 4.20. The logistic growth model has the unstable resting point x∗ = 0 and the asymptotically
stable point x∗ = α/β.

Example 4.21. A wooden pendulum with friction has two resting positions: pendulum down (asymptoti-
cally stable) and pendulum up (unstable).

The above definition of stability does not cover stable limit cycles as sketched in the figure.

Definition 4.22 (Stable sets). A set M ⊂ Rn is called stable if

∀ ε > 0 ∃ δ > 0: dist(x0,M) < δ =⇒ dist(Φ(t, x0),M) < ε, ∀ t ≥ 0.

A set M ⊂ Rn is called asymptotically stable if it is stable and there is a positive δ0 such that

dist(x0,M) < δ0 =⇒ lim
t→+∞

dist(Φ(t, x0),M) = 0.
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Figure 4.1: A stable limit cycle

Now we look at x′(t) = U(x(t)) and ask how we can determine the stability type of a resting point.

As an example, we take the logistic growth model x′(t) = αx − βx2, and call y the deviation from the
stationary point x∗ = α/β:

x(t) = x∗ + y(t).

Then it follows that

y′(t) = x′(t) = α(x∗ + y)− β(x∗ + y)2 = αx∗ + αy − β(x∗)2 − 2βx∗y − βy2

= −αy − βy2,

and for y ≈ 0 we have |βy2| � |αy|, giving us the vague hope that the solution y behaves similarly to the
solution of the decay equation

z′(t) = −αz, |z(0)| � 1.

Theorem 4.23. Consider the system

x′(t) = U(x(t))

with U ∈ C2(Rn → Rn). Then a point x∗ is asymptotically stable if U(x∗) = 0, and additionally all
eigenvalues of U ′(x∗) have negative real part. If one eigenvalue of U ′(x∗) has positive real part, then x∗

is unstable.

Sketch of proof. We set y(t) = x(t)− x∗ and find

y′(t) = x′(t) = U(x∗ + y(t)) = U(x∗) + U ′(x∗)y + O(‖y(t)‖2).

Note that y(t) can be written as

y(t) = eU
′(x∗)ty(0) +

∫ t

s=0

eU
′(x∗)(t−s)O(‖y(s)‖2) ds,

and now we have to show that the integral term is smaller than the first term for small ‖y(0)‖.

Now we forget about the remainder term and consider only linear systems for two unknown functions
x1 = x1(t) and x2 = x2(t). For given real parameters a, b, c, d, this system shall have the form

x′(t) = Ax(t), A =

(
a b
c d

)
,
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and the eigenvalues of A are determined as

λ1,2 =
1

2

(
T ±

√
T 2 − 4∆

)
,

with T = traceA = a+ d being the trace, and ∆ = detA the determinant of A.

Depending on these two values, the flow will have one of the following types.

Case A: T 2 − 4∆ > 0: Then λ1 and λ2 are both real.

Case A1: ∆ < 0: Because of λ1λ2 = ∆ the eigenvalues λ1, λ2 have different sign, the resting
point is (x1, x2) = (0, 0). By a suitable rotation of the coordinate system (in other words: a
diagonalisation of the matrixA), the system has new unknown functions (y1, y2), and the system
will be y′1 = λ1y1, y′2 = λ2y2 with the solutions y1(t) = exp(λ1t)y1,0 and y2(t) = exp(λ2t)y2,0,
respectively. Expressed in the phase space, the solution will be

y2(t) = const.(y1(t))
λ2
λ1 ,

λ2

λ1
< 0.

The stationary point is called a saddle point.
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Figure 4.2: saddle point

Case A2: ∆ > 0 and T > 0: Then the λj are both positive, and we find the representation

y2(t) = const.(y1(t))
λ2
λ1 ,

λ2

λ1
> 0,

and the stationary point (0, 0) is an unstable node.

Case A3: ∆ > 0 and T < 0: then the λj are both negative, and we have a stable node.

Case A4: ∆ = 0 and T > 0: then λ1 = 0 and λ2 = S > 0. The differential system turns into
y′1 = 0 and y′2 = λ2y2. The resting position (y1, y2) = (0, 0) is part of a line of unstable resting
positions.

Case A5: ∆ = 0 and T < 0: then λ1 = 0 and λ2 = S < 0. The resting position (y1, y2) = (0, 0) is
part of a line of stable resting positions.

Case B: T 2 − 4∆ < 0: then the eigenvalues λ1, λ2 can not be real numbers, but we have λ1 = λ2.
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Figure 4.3: unstable node
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Figure 4.4: stable node
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Case B1: T > 0: Then <λj > 0, and we have, after a rotation,

y1(t) = y1,0e
αt cos(ωt), y2(t) = y2,0e

αt sin(ωt), α = <λj > 0.

The position (y1, y2) = (0, 0) is an unstable vortex7.
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Figure 4.5: unstable vortex

Case B2: T < 0: Then <λj < 0, and we have a stable vortex.
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Figure 4.6: stable vortex

Case B3: T = 0: The eigenvalues are, λ1,2 = ±i
√
−∆, and the solution curves in the phase space

are ellipses. The resting position is called a centre.

Case C: T 2 − 4∆ = 0:

7 instabiler Strudelpunkt
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Figure 4.7: center

Case C1: T > 0 Then A possesses an eigenvalue λ > 0 of algebraic multiplicity 2 and geometric
multiplicity 1 or 2 (we ignore the latter case). After a transformation into Jordan normal form,
we find

y1(t) = eλty1,0 + teλty2,0, y2(t) = eλty2,0,

and the resting position (y1, y2) = (0, 0) is known as degenerate unstable node.

Case C2: T < 0: Now we have λ < 0, and the resting position (y1, y2) = (0, 0) is called degenerate
stable node.

4.3 Outlook: Stability of Periodic Solutions, and
The Over Head Pendulum

(Outlook sections are not relevant to examinations)

Consider the initial value problem

z′(t) = U(z(t)), z(0) = z0,

and assume that z = z(t) is a periodic solution. Here z takes values in Rn. We would like to know how
the solution chances if z0 is chosen slightly different. Write z(t; z0) for the solution with initial value z0.

Therefore we should discuss x(t) := ∂z(t;z0)
∂z0

which is a function from R to Rn×n. Then x = x(t) solves
the matrix differential equation

x′(t) = U ′(z(t; z0))x(t), x(0) = I.

Question: Prove this.

The question now is whether x(t) stays bounded for t → ∞, which, by linearity of the equation, is
equivalent to the stability of the zero solution to x′(t) = U ′(z(t; z0))x(t).
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Figure 4.8: degenerate unstable node
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Figure 4.9: degenerate stable node



4.3. OUTLOOK: THE OVER HEAD PENDULUM 63

A more general situation is the following. Consider

x′(t) = A(t)x(t), x(t0) = x0,

with a matrix function A = A(t) which is periodic: A(t+ p) = A(t) for all t. Then we can write

x(t) = X(t, t0)x0,

with X as the well-known fundamental solution. We ask for the stability of the zero solution x ≡ 0. The
answer will flow out of the following celebrated result:

Theorem 4.24 (Floquet8’s Theorem). Let A ∈ C(R→ Cn×n) be periodic with period p. Then there
is a p-periodic function Z = Z(t) and a constant matrix B ∈ Cn×n with

X(t, 0) = Z(t) exp(Bt), ∀ t ∈ R.

A consequence then is

X(t, t0) = X(t, 0)X(0, t0) = X(t, 0)(X(t0, 0))−1

= Z(t) exp(Bt) exp(−Bt0)(Z(t0))−1 = Z(t) exp(B(t− t0))(Z(t0))−1.

Sketch of proof. First we have

I = X(0, 0) = Z(0) exp(0B) =⇒ Z(0) = I.

If the function X has the above representation, then it follows that

C := X(p, 0) = Z(p) exp(Bp) = Z(0) exp(Bp) = exp(Bp).

Now we wish to determine a matrix B ∈ Cn×n with C = exp(Bp). For simplicity, we assume that C can
be diagonalised:

C = S−1ΛS, Λ = diag(λ1, . . . , λn).

Since X(t, t0) is always invertible, also C is invertible, hence each λj is non-zero. Choose a γj ∈ C with
exp(γj) = λj . Then γj are uniquely determined up to multiples of 2πi. Now put

B :=
1

p
S−1ΓS, Γ := diag(γ1, . . . , γn).

Having chosen B, we next define Z(t) := X(t, 0) exp(−Bt), and it remains to check whether Z is indeed
p-periodic:

Z(t+ p) = X(t+ p, 0) exp(−B(t+ p)) = X(t,−p) exp(−Bp) exp(−Bt) = X(t,−p)C−1 exp(−Bt)
= X(t,−p)X(0, p) exp(−Bt) = X(t,−p)X(−p, 0) exp(−Bt) = X(t, 0) exp(−Bt) = Z(t).

Here we have made repeated use ofX(t+p, s+p) = X(t, s) for all t, s. This is true because t 7→ X(t+p, s+p)
solves

∂tΨ(t) = A(t+ p)Ψ(t) = A(t)Ψ(t), Ψ(s) = I,

and the matrix function t 7→ X(t, s) solves

∂tΨ̃(t) = A(t)Ψ̃(t), Ψ̃(s) = I.

By the uniqueness statement in the Picard–Lindelöf theorem, we have Ψ = Ψ̃, hence X(t + p, s + p) =
X(t, s) for all t, s ∈ R.

Definition 4.25 (Floquet exponents and Floquet multipliers). The eigenvalues µ1 , . . . , µn of
B are called Floquet exponents, and they are unique up to multiples of 2πi/p.

The eigenvalues λ1, . . . , λn of X(p, 0) are called Floquet multipliers, and they are unique.

8 Achille Marie Gaston Floquet, 1847–1920
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Now the structure of X has been determined, and we quickly find the stability behaviour of the zero
solution x ≡ 0 to x′(t) = A(t)x(t):

the zero state is stable if and only if all Floquet exponents µ1, . . . , µn have real part ≤ 0, and if
µj ∈ iR, then its algebraic and geometric multiplicities are the same,

the zero state is asymptotically stable if and only if all Floquet exponents have negative real part,

the zero state is asymptotically stable if and only if all Floquet multipliers are in the interior of the
unit disk of C.

Warning: It can indeed happen that the eigenvalues of A(t) are always in the open left half-plane of C,
but B has an eigenvalue of positive real part. Therefore the stability behaviour of the zero state can not
be determined from A alone. An example is given in [12], Chapter 8:

A(t) =

(
−1 + (3/2) cos2 t 1− (3/2) cos t sin t
−1− (3/2) sin t cos t −1 + (3/2) sin2 t

)
with eigenvalues − 1

4 ±
i
4

√
7 (definitely being in the left half-plane for all t), but the vector function x(t) =

(− cos t, sin t)>et/2 solves x′(t) = A(t)x(t).

We come to the example of the over head pendulum which solves

x′′(t) = ω2x, ω2 =
g

l
,

where g is the gravitational acceleration on the earth, l the length of the pendulum. The zero state is
unstable. Now we show that it can be stabilised by vertical vibrations of the point of suspension. Suppose
that the suspension point moves up and down with period 2τ and acceleration ±c. Then we get

x′′(t) =
(
ω2 + h(t)

)
x(t),

h(t) =

{
−α2 : 0 < t < τ,

+α2 : τ < t < 2τ,
α2 =

c

l
.

The amplitude of this vibration shall be a. The times of maximal elongation are t = τ/2 and t = 3τ/2,
hence

a =
c

2

(τ
2

)2
=
cτ2

8
, α2 =

c

l
=

8a

lτ2
.

In the sequel, we will select a and α suitably, and then τ will follow.

We know: if a = 0, then the resting position x = 0 is a saddle point with eigenvalues ±ω, hence unstable.

To transfer into a first order system, we set y = x and z = ẋ, with the consequence(
ẏ
ż

)
=

(
0 1

ω2 + h(t) 0

)(
y
z

)
= A(t)

(
y
z

)
.

The matrix A has jumps, but we ignore this.

The sum of the eigenvalues of A(t) is zero.

If ω2 + h(t) ≥ 0, then A has two real eigenvalues.

If ω2 + h(t) < 0, then A has two imaginary eigenvalues.

To obtain stability, it sounds reasonable that (at least for certain times) A(t) should not have eigenvalues
in the right half-plane. Therefore we prefer to arrange the constants in such a way that

α2 > ω2.

The fundamental solution then is

X(2τ, 0) = X(2τ, τ)X(τ, 0) =

(
cosh kτ 1

k sinh kτ
k sinh kτ cosh kτ

)(
cos Ωτ 1

Ω sin Ωτ
−Ω sin Ωτ cos Ωτ

)
,
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where we have put k2 := α2 + ω2 and Ω2 = α2 − ω2. The reason is that A(t) is a constant function on
each half-period, and on these intervals, X is given by Lemma 3.13.

Next we need the eigenvalues of X(2τ, 0). Because traceA(t) = 0 for each t, (3.7) gives detX(t, t0) = 1
for all t, t0, in particular detX(2τ, 0) = 1, and hence λ+ · λ− = 1. Then the eigenvalues are given by

λ± =
1

2

(
traceX(2τ, 0)±

√
(traceX(2τ, 0))2 − 4

)
.

Our goal is |λ±| ≤ 1, and to this end it is necessary to have | traceX(2τ, 0)| ≤ 2, which is equivalent to∣∣∣∣2 cosh(kτ) cos(Ωτ) +

(
k

Ω
− Ω

k

)
sinh(kτ) sinh(Ωτ)

∣∣∣∣ ≤ 2,

as can be found quickly if we know that trace(PQ) =
∑
j,k pjkqkj for all matrices P , Q of quadratic shape.

Now our assumptions shall be:

a

l
=: ε2 � 1,

g

c
=: µ2 � 1,

and from this we conclude that

kτ =
√
α2 + ω2

√
8a

c
=
√

8

√
c

l
+
g

l

√
a

c
= 2
√

2

√
a

l
+
a

l
· g
c

= 2
√

2ε
√

1 + µ2,

Ωτ =
√
α2 − ω2

√
8a

c
=
√

8

√
c

l
− g

l

√
a

c
= 2
√

2

√
a

l
− a

l
· g
c

= 2
√

2ε
√

1− µ2,

k

Ω
=

√
1 + µ2√
1− µ2

=
1 + 1

2µ
2

1− 1
2µ

2
+ O(µ4) = 1 + µ2 + O(µ4).

Then we directly get

k

Ω
− Ω

k
= 2µ2 + O(µ4),

cosh(kτ) = 1 + 4ε2(1 + µ2) +
8

3
ε4 + O(µ6 + ε6),

cos(Ωτ) = 1− 4ε2(1− µ2) +
8

3
ε4 + O(µ6 + ε6),(

k

Ω
− Ω

k

)
sinh(kτ) sin(Ωτ) = 16ε2µ2 + O(µ6 + ε6),

hence we wish to arrange that

2

(
1 + 8ε2µ2 +

16

3
ε4 − 16ε4

)
+ 16ε2µ2 < 2,

or 3µ2 < ε2 or g
c <

a
3l or τ2 < 8a2

3lg .

We take a concrete example: if l = 20cm and a = 1cm then τ < 0.01166, which corresponds to a vibration
frequency of at least 43Hz.

A thorough presentation of this topic can be found in § 28 of [2].

4.4 Geometric Investigations of Dynamical Systems

The system x′(t) = f(x) with stationary state x∗ leads, after setting x(t) =: x∗ + y(t), to

y′(t) = f ′(x∗)y +R(y), R(y) = O(‖y‖2),

and neglecting the quadratic remainder term then brings us to the system

u′(t) = f ′(x∗)u,

called the linearisation of x′(t) = f(x).
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We know

• if all the eigenvalues of f ′(x∗) are in C− = {z ∈ C : <z < 0}, then x∗ is an asymptotically stable
stationary state of the nonlinear system,

• if at least one eigenvalue of f ′(x∗) is in C+ = {z ∈ C : <z > 0}, then x∗ is an instable resting point
of the nonlinear system.

And in both cases, the orbits of the nonlinear system and of the linearised systems look very similar (up
to minor deformations) near x∗ and 0, respectively.

However, the situation changes completely if f ′(x∗) has eigenvalues on the imaginary axis — then the
stability behaviour of x∗ can depend heavily on the nonlinear term R.

To understand the situation better, so-called Lyapunov9 functions may be helpful. These are positive
definite functions near x∗.

Definition 4.26. A function V ∈ C1(Ω → R) with Ω ⊂ Rn as a neighbourhood of x∗ is called positive
definite with respect to x∗ if

V (x∗) = 0, V (x) > 0 ∀ x ∈ Ω \ {x∗}.

If V ∈ C2(Ω → R) is positive definite, and if the Hessian (∇ ⊗ ∇V )(x∗) is a strictly positive definite
matrix then the level sets10 {x ∈ Ω: V (x) = const.} are diffeomorphic to the unit sphere11, at least near
x∗. Compare Figure 2.1.

Now the key idea is to look whether the vectors f(x) cross the level sets everywhere from the outside to
the inner side. If yes, then x∗ is asymptotically stable. Note that the scalar function t 7→ V (x(t)) has
derivative

∂tV (x(t)) = ∇V (x) · x′(t) = 〈∇V (x), f(x)〉 ,

and ∇V is perpendicular to the level sets of V , and points outwards.

Proposition 4.27. Let x∗ be a stationary point to the dynamical system governed by x′(t) = f(x), and
V be positive definite with respect to x∗. Then

• if 〈∇V (x), f(x)〉 ≤ 0 for all x ∈ Ω, then x∗ is stable,

• if 〈∇V (x), f(x)〉 < 0 for all x ∈ Ω \ {x∗}, then x∗ is asymptotically stable,

• if 〈∇V (x), f(x)〉 > 0 for all x ∈ Ω \ {x∗}, then x∗ is unstable.

One example is the differential equation z′′ + 2az′ + z + z3 = 0, with 0 < a < 1. Setting x1 = z and
x2 = z′, we find the system(

x1

x2

)′
=

(
0 1
−1 −2a

)(
x1

x2

)
+

(
0
−x3

1

)
,

with the only stationary point x∗ = (0, 0)>. The Jacobi matrix is

f ′(x∗) =

(
0 1
−1 −2a

)
,

having the eigenvalues −a± i
√

1− a2, making x∗ asymptotically stable. An interesting question is about
the size of its catchment basin12, and we will find an estimate of this size using a carefully constructed
Lyapunov functional.

First we bring the matrix f ′(x∗) into a normal form. The substitution y = Px (with P ∈ R2×2 as a
matrix not yet chosen) brings us

y′ = Pf ′(x∗)P−1 · y + O(‖y‖2),

9 Aleksandr Mikhailovich Lyapunov, 1857 – 1918
10Niveaulinien, Höhenlinien
11this means that there is a diffeomorphism which maps them onto the unit sphere
12Einzugsgebiet (z.B. hydrogeologisch)
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and now P shall be selected in such a way that Pf ′(x∗)P−1 is “as nice as possible”. The typical Jordan
normal form will not work, because the eigenvalues of f ′(x∗) are non-real, and then also the eigenvectors
of f ′(x∗) will be non-real. Instead, we use the real Jordan normal form:

Lemma 4.28 (Real Jordan Normal Form). Let A ∈ R2×2. Then there is a matrix P ∈ R2×2 such
that J = PAP−1 has one of the following three forms:

J =

(
λ1 0
0 λ2

)
, J =

(
λ 1
0 λ

)
, J =

(
α β
−β α

)
,

where λ1, λ2, λ, α, β ∈ R and β 6= 0.

The proof is a nice exercise.

In our example, we take β =
√

1− a2 and

P =

(
1 0
−a β

)
, P−1 =

1

β

(
β 0
a 1

)
,

as well as y = Px. In particular, this brings y1 = x1, which is a useful information for the transformation
of the nonlinear terms. Then we get(

y1

y2

)′
=

(
−a +β
−β −a

)(
y1

y2

)
+

(
0
− 1
β y

3
1

)
.

Now the variables y1 and y2 play the same rôle in the linear principal part (as can be seen from the
coinciding entries on the diagonal), and it seems reasonable to try our luck with

V (y1, y2) =
1

2a
(y2

1 + y2
2).

This gives, after some computation,〈
∇yV , f(P−1x)

〉
= −(y2

1 + y2
2)− 1

aβ
y3

1y2,

and now the question comes up where this is negative. We conjecture that this expression is negative
at least in a circle with radius r0 about the origin. If y2

1 + y2
2 ≤ r2

0, then |y3
1y2| = y2

1 |y1y2| ≤ r2
0|y1y2| ≤

r2
0

1
2 (y2

1 + y2
2), by the Binomi13 formula, and now we should make sure that

1

aβ
|y3

1y2| ≤ y2
1 + y2

2 ⇐=
r2
0

2aβ
≤ 1

which holds, for instance, if r0 =
√

2aβ.

Hence we have shown: if the starting point (y1(0), y2(0))> is in a ball about the origin with radius r0,
then the trajectory is attracted to the origin. This is just a lower estimate; in reality, the catchment basin
is certainly larger. After transforming back to the x variables, the basin becomes an ellipse.

For describing the long time asymptotics of a dynamical system, we need one more concept.

Definition 4.29. Let Φ be a flow on Rn, and x0 ∈ Rn. Then the sets

ω(x0) :=

{
y ∈ Rn : ∃ sequence (tk)k∈N with tk ↗ +∞ and y = lim

k→+∞
Φ(tk, x0)

}
,

α(x0) :=

{
y ∈ Rn : ∃ sequence (tk)k∈N with tk ↘ −∞ and y = lim

k→+∞
Φ(tk, x0)

}
are called ω limit set and α limit set, respectively.

13Ernesto Binomi, 1210–1331, sikinian mathematician
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For an understanding of the choice of the letters, look at the greek ABC.

From the definition we quickly deduce that14

ω(x0) =
⋂
t≥0

γ+(Φ(t, x0)),

α(x0) =
⋂
t≤0

γ−(Φ(t, x0)).

If the trajectory starting in x0 approaches a limit point, then ω(x0) is exactly that one limit point. If the
trajectory starting in x0 approaches a periodic cycle (in the sense of Figure 4.1), then ω(x0) is that limit
cycle. And if the forward orbit γ+(x0) is unbounded, then ω(x0) might be the empty set.

Proposition 4.30. Let γ+(x0) be bounded. Then ω(x0) is compact, non-empty, invariant, and connected.

Proposition 4.31 (Invariance principle). Let V ∈ C(Rn → R) and k ∈ R. Put

Ω = {x ∈ Rn : V (x) < k}.

We assume that V ∈ C1(Ω→ R), and that

〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ Ω.

Define S = {x ∈ Ω: 〈∇V (x), f(x)〉 = 0}, and M as the biggest invariant subset of S.

Then the following holds: each forward orbit that starts in Ω and stays bounded possesses an ω limit set
which is contained in M .

In many situations, the function V grows to infinity at the “boundary” of Rn:

Proposition 4.32. Let V ∈ C1(Rn → R) with V (x) → +∞ for ‖x‖ → +∞. Furthermore, suppose
〈∇V (x), f(x)〉 ≤ 0 for all x ∈ Rn.

Then each forward orbit is bounded, and each forward orbit has its ω limit set in M , the biggest invariant
subset of

{x ∈ Rn : 〈∇V (x), f(x)〉 = 0}.

To apply this knowledge, we return to the differential equation

z′′ + 2az′ + z + z3 = 0.

We set x1 = z and x2 = z′, hence(
x1

x2

)′
=

(
0 1
−1 −2a

)(
x1

x2

)
−
(

0
x3

1

)
.

The positive number a can be understood as friction coefficient. If a = 0, then we obtain a conservative
system with the energy

V (x1, x2) =
1

2
(x2

1 + x2
2) +

1

4
x4

1.

In that case, the orbits are running along the level sets V (x1, x2) = const.

Now assume a > 0:

∂tV (x1(t), x2(t)) = 〈∇V (x), f(x)〉 =

〈(
x1 + x3

1

x2

)
,

(
x2

−x1 − 2ax2 − x3
1

)〉
= −2ax2

2 ≤ 0.

14 Here the over-bar denotes the topological closure, which means that you augment the set γ±(Φ(t, x0)) with all its cluster
points.
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For the invariance principle, we note that

V ∈ C1(R2 → R),

V (x)→ +∞ if ‖x‖ =
√
x2

1 + x2
2 →∞.

Hence each forward orbit is bounded, and its ω limit is contained in the biggest invariant subset of{
x ∈ R2 : 〈∇V (x), f(x)〉 = 0

}
=
{
x ∈ R2 : x2

2 = 0
}
.

Therefore, we should look for the biggest invariant subset M of {x ∈ R2 : x2 = 0}.
For x∗ ∈ M we have the representation x∗ = (x∗1, x

∗
2) = (x∗1, 0). Next Φ(t, x∗) remains in M , because M

is invariant. Consequently we have

Φ(t, x∗) = (x1(t), 0).

On the other hand, ∂tx1(t) = x2 = 0, which gives us x1(t) = x∗1 for all t ∈ R. Additionally,

0 = ∂t0 = ∂tx2(t) = −x1 − 2ax2 − x3
1 = −x1 − x3

1 = −x1(1 + x2
1),

and therefore x∗1 = x1(t) = 0. As a consequence, the biggest invariant subset M of {x ∈ R2 : x2 = 0} is
{(0, 0)}, and each forward orbit is approaching this point.

Therefore, the catchment basin of the origin is the whole R2.

Concerning a system x′ = f(x), we would like to know how ω(x0) might look like. A particularly nice
answer is possible in the case of n = 2.

Theorem 4.33 (Poincare15 — Bendixson16). Let f ∈ C2(R2 → R2), and assume the forward orbit
γ+(x0) as bounded. Then exactly one of the following cases occurs:

1. ω(x0) is a periodic orbit,

2. for each y ∈ ω(x0) the following holds: α(y) as well as ω(y) consist only of resting points.

Key ideas of the proof are:

• the Jordan curve theorem which states that each closed Jordan curve splits R2 into two parts: an
interior part, and an exterior part,

• different solution trajectories can not cross.

Possible ω limit sets are the red parts in Figure 4.10. Red balls denote the resting points.

Note that an analogous version of the Theorem of Poincare–Bendixson can not hold in R3, as the example
of the Lorenz model shows:

x′ = σ(y − x),

y′ = %x− y − xz,
z′ = −βz + xy,

where σ = 10, % = 28 and β = 8/3. Then one can show that the solution curves remain bounded
if the initial value is in a small neighbourhood of the origin. The orbit then will stay near a surface
in R3 consisting of two sheets, but one can not predict when the orbit will be on one sheet, or the
other sheet, because this depends in a very sensitive way on the initial values. Therefore we have: the

15 Jules Henri Poincaré, 1854–1912, The Last Universalist
16 Ivar Otto Bendixson, 1861–1935, swedish mathematician
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Figure 4.10:

forward orbit γ+(x0) is bounded, but the ω limit set of x0 is not a periodic orbit, and also the relation
“y0 ∈ ω(x0) =⇒ ω(y0) is a resting point” does not hold.

As an application, we consider the Brusselator, which was proposed by Prigogine and Lefever ([18]) 1968
as a simplified model of the Belouzov Zhabotinskii reaction:

x′ = a− x− bx+ x2y,

y′ = bx− x2y,

with a and b as positive constants. The quantities x und y describe concentrations of chemical substances,
and therefore they should never be negative.

To determine resting positions, we add up the equations x′ = 0 and y′ = 0, giving us a − x = 0, hence
x = a. Together with bx− x2y = 0 we then find y = b

a . Linearisation then gives

f ′ =

(
−1− b+ 2xy x2

b− 2xy −x2

)
, f ′(a, b/a) =

(
b− 1 a2

−b −a2

)
.

The trace is b− a2 − 1, and the determinant is det f ′ = a2 > 0. If we suppose

b > a2 + 1,

then the matrix f ′ possesses two eigenvalues in the right half-plane, making the resting point (a, b/a)
unstable.

Lemma 4.34. If b > a2 + 1, then this dynamical system has a periodic orbit in the first quadrant
{(x, y) ∈ R2 : x > 0, y > 0} of R2.
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Proof. We choose a domain Ω ⊂ R2 by the following inequalities:

x > 0, y > 0, x+ y < c1, y − x < c2.

If the parameters c1 und c2 are selected sufficiently large and positive, then one can show that, for each
of the four boundary lines, the vector field f points into Ω. Therefore Ω is positive invariant.

Now choose an arbitrary point p ∈ Ω. Then γ+(p) stays forever in Ω, hence γ+(p) is bounded. If ω(p)
were not periodic, then, according to the Theorem of Poincare and Bendixson, ω(q) would consist solely
of resting points of f , for each q ∈ ω(p). However, f has exactly one resting point, namely (a, b/a), and
this one is repulsive. Therefore, ω(p) must be periodic.

To be specific, we explain how to choose the numbers c1 and c2. We start with the line x+ y = c1, which
has the normal vector (1, 1)>, not necessarily normalized. The vector field f points inwards if and only if
the scalar product (x′, y′) · (1, 1) is non-positive, which boils down to

0
!
≥ x′ + y′ = (a− x− bx+ x2y) + (bx− x2y) = a− x,

which is true for x ≥ a, whatever the value c1 is.

Next we consider the line y = x+c2 with normal vector (−1, 1)>. Here the condition on the scalar product
becomes

0
!
> (−1, 1) · (x′, y′) = (−a+ x+ bx− x2y) + (bx− x2y) = −a+ (2b+ 1)x− 2x2y

= −a+ (2b+ 1)x− 2x2(x+ c2),

and we wish this to be negative, where it is enough to consider x between 0 and a. Using the elementary
inequality |uv| ≤ 1

2 (u2 + v2), we then find

− a+ (2b+ 1)x− 2x2(x+ c2) = −a+
√
a · (2b+ 1)x√

a
− 2x2(x+ c2)

≤ −a+
1

2

(
a+

(2b+ 1)2x2

a

)
− 2x2(x+ c2)

≤ −1

2
a+ x2

(
(2b+ 1)2

2a
− 2c2

)
,

and this will be negative if we choose c2 large enough. After that we select c1 in such a way that the lines
y = x+ c2 and x+ y = c1 intersect at a point which has x-coordinate larger than a.

We conclude this chapter with a criterion which can exclude periodic orbits in the plane.

Proposition 4.35 (Criterion of Bendixson). Let Ω ⊂ R2 be a simply connected domain, and f ∈
C2(Ω → R2), with div f of constant sign and nowhere zero (except isolated points). Then the system
x′(t) = f(x) has no periodic orbit in Ω.

Proof. Assume that Γ were a periodic orbit in Ω. Then the interior S of Γ is simply connected, and the
Gauß integral theorem gives us∮

Γ

f1 dx2 − f2 dx1 =

∫∫
S

div f dx1 dx2.

The left side is zero, because (f1, f2)> is a tangential vector on Γ, but the right side is not zero because
div f has constant sign. This is a contradiction.
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Chapter 5

Numerical Methods

This part follows [21].

We wish to solve a differential equation or a system

y′(t) = f(t, y(t)), y(t0) = y0 (5.1)

using numerical methods. The key idea is to define points in time

tj = t0 + jh, j = 1, 2, 3, . . . , 0 < h� 1,

and to search for values ηj which approximate y(tj), with a good relation between error and effort. The
number h is called time step size.

The exact solution will always be y = y(t), and the approximate values are called ηj (but ηj(h) would be
more precise).

5.1 Explicit Methods

By Taylor expansion, we have

y(tj+1) = y(tj + h) = y(tj) + y′(tj)h+
1

2
y′′(tj + θh)h2 (0 < θ < 1)

= y(tj) + f(tj , y(tj))h+
1

2
y′′(tj + θh)h2,

and neglecting the quadratic term gives us a first algorithm:

• set η0 := y0,

• for j = 1, 2, . . . , set ηj+1 := ηj + f(tj , ηj)h.

This is known as the Explicit Euler Method. As a toy model, we solve y′ = y with initial value y(0) = 1
and ask for the numerical approximation at time t = 1:

h 10−1 10−2 10−3 10−4 10−5 10−6 10−7

error 0.12 0.013 0.0014 0.00014 1.359 · 10−5 1.359 · 10−6 1.359 · 10−7

runtime (seconds) 0.0005 0.001 0.005 0.037 0.27 2.76 27.1

As a side remark, the toy model y′ = −y has smaller errors. For instance, h = 10−7 gives the error
1.84 · 10−8 then.

It seems that we need better methods, and a more systematic treatment.

Definition 5.1. A one-step method1 to the initial value problem (5.1) has the form

1Einschrittverfahren

73
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• η0 := y0,

• for j = 1, 2, . . . , set ηj+1 := ηj + Φ(tj , ηj , h)h,

where Φ is a certain function.

The explicit Euler method is described by Φ(t, η, h) = f(t, η), and our goal shall be to no longer neglect
the quadratic term y′′(tj + θh)h2 as we did above.

Definition 5.2 (local error, consistent method). For a time t∗ and a point y∗, let y = y(t) be the
exact solution to y′(t) = f(t, y(t)) with initial condition y(t∗) = y∗. Put

∆(t∗, y∗, h) :=

{
1
h (y(t∗ + h)− y(t∗)) : h > 0,

f(t∗, y∗) : h = 0.

Then τ(t∗, y∗, h) := ∆(t∗, y∗, h)− Φ(t∗, y∗, h) is called the local discretisation error of the method Φ.

The method Φ is called consistent if limh→0 τ(t∗, y∗, h) = 0.

The method Φ is of order p if τ(t∗, h∗, y) = O(hp) for h→ 0.

The term τ measures the deviation between the exact difference quotient and the approximate difference
quotient when we go from j to j + 1.

Example 5.3. Concerning the explicit Euler method, we note

y(t∗ + h) = y(t∗) + y′(t∗)h+
1

2
y′′(t∗ + θh)h2 = y(t∗) + f(t∗, y∗)h+

1

2
y′′(t∗ + θh)h2,

from which we obtain that (for h > 0)

∆(t∗, y∗, h) = f(t∗, y∗) +
1

2
y′′(t∗ + θh)h,

which brings us to

τ(t∗, y∗, h) =
h

2
y′′(t∗ + θh) =

h

2

d

dt
f(t, y(t))∣∣t=t∗+θh

if we are willing to assume that f is sufficiently smooth (in this case, f ∈ C1 is enough). Therefore the
Euler method has consistence order one.

Another example is the Heun2 method with

Φ(tj , ηj , h) :=
1

2

(
f(tj , ηj) + f(tj + h, ηj + f(tj , ηj)h)

)
.

Writing f1 and f2 for the partial derivatives of f , we then get

Φ(t∗, y∗, h) =
1

2

(
2f(t∗, y∗) + f1(t∗, y∗) · h+ f2(t∗, y∗) · f(t∗, y∗)h+ O(h2)

)
= f(t∗, y∗) +

f1(t∗, y∗) + f2(t∗, y∗)f(t∗, y∗)

2
h+ O(h2).

The local discretisation error then is

τ(t∗, y∗, h) =
1

h
(y(t∗ + h)− y(t∗))− Φ(t∗, y∗, h)

= y′(t∗) +
h

2
y′′(t∗) +

h2

3!
y′′′(t∗) + O(h3)

−
(
f(t∗, y∗) +

f1(t∗, y∗) + f2(t∗, y∗)f(t∗, y∗)

2
h+ O(h2)

)
=
h

2

(
y′′(t∗)− f1(t∗, y∗)− f2(t∗, y∗)f(t∗, y∗)

)
+ O(h2).
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h 10−1 10−2 10−3 10−4 10−5 10−6 10−7

error 0.0042 4.5 · 10−5 4.53 · 10−7 4.53 · 10−9 4.53 · 10−11 4.08 · 10−13 5.9 · 10−13

runtime 0.0085 0.0014 0.0084 0.058 0.53 5.47 53.04

Table 5.1: The Heun method applied to y′ = y with y(0) = 1 and y(1) =?

Now y is the exact solution, hence y′ = f(t, y(t)), and then also y′′(t) = f1(t, y(t)) + f2(t, y(t))y′(t), which
implies τ(t∗, y∗, h) = O(h2). The consistency order of the Heun method is two.

Again, we play with our toy model y′ = y, y(0) = 1, getting results as in Table 5.1. For a chosen step size
h, the effort (and the runtime) has doubled in comparison to the explicit Euler method, but the errors
are much smaller.

One more example is the classical method of Runge3 and Kutta4

Φ(tj , ηj , h) =
1

6
(K1 + 2K2 + 2K3 +K4),

K1 = f(tj , ηj),

K2 = f

(
tj +

h

2
, ηj +

h

2
K1

)
,

K3 = f

(
tj +

h

2
, ηj +

h

2
K2

)
,

K4 = f (tj + h, ηj + hK3)

which has the consistency order 4, as can be shown by a lengthy calculation, see also the table for a
numerical example.

h 10−1 10−2 10−3 10−4 10−5 10−6 10−7

error 2.08 · 10−6 2.25 · 10−10 2.09 · 10−14 1.11 · 10−14 5.77 · 10−15 5.77 · 10−14 5.93 · 10−13

runtime 0.003 0.0021 0.016 0.11 1.06 11.5 106

Table 5.2: The Runge Kutta method applied to y′ = y with y(0) = 1 and y(1) =?

The three methods presented so far fit into the framework of the general Runge Kutta methods with s
stages, which are of the form

Φ(tj , ηj , h) =

s∑
m=1

bmKm,

Km = f

(
tj + cmh, ηj + h

m−1∑
l=1

amlKl

)
, m = 1, . . . , s,

0∑
l=1

:= 0.

It is custom to arrange the coefficients in a table:

The discretisation error measures how much we deviate from the exact solution after one time step. This
is just a local description, and what is more interesting is a global error.

Definition 5.4 (global error, convergent method). The global discretisation error is defined as

e(tj , h) := ηj(h)− y(tj), t0 ≤ tj = t0 + jh ≤ T.

For a fixed t and some m ∈ N, we define a step size

hm :=
t− t0
m

.

Then the method Φ is called convergent if

lim
m→∞

e(t, hm) = 0

for all t ∈ [t0, T ] and all f ∈ C1([t0, T ]× Rn) with bounded derivatives f1, f2.

2 Karl Heun, 1859 – 1929
3 Carl David Tolmé Runge, 1856 – 1927
4 Martin Wilhelm Kutta, 1867 – 1944
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c1
b1

=
0

1
(explicit Euler method)

c1
c2 a21

b1 b2

=
0
1 1

1
2

1
2

(Heun’s method)

c1
c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

=

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(Runge Kutta method)

The local and global errors are connected by the following result:

Proposition 5.5. Let y = y(t) be the exact solution to (5.1), and Φ be continuous on

G := {(t, z, h) ∈ [t0, T ]× Rn × R : |z − y(t)| ≤ γ, 0 ≤ h ≤ h0}

for some positive numbers γ and h0. Suppose that there are numbers M and N such that∥∥∥Φ(t, η(1), h)− Φ(t, η(2), h)
∥∥∥ ≤M ∥∥∥η(1) − η(2)

∥∥∥
for all (t, η(1), h), (t, η(2), h) ∈ G, and

‖τ(t, y(t), h)‖ ≤ Nhp, ∀ t ∈ [t0, T ], ∀ h ≤ h0.

Then there is a number h∗ with 0 < h∗ ≤ h0 such that the global discretisation error is bounded like this:

‖e(t, hm)‖ ≤ hpm
N

M

(
eM(t−t0) − 1

)
for all t ∈ [t0, T ] and all hm = (t− t0)/m with hm ≤ h∗.

A proof can be found in [21].

In theory, this estimate of e(t, hm) could be used to choose that hm which is optimal for the desired
accuracy. In practice however, the constants M and N are almost never known.

Choosing a good step size is not easy. As the table for the Runge Kutta method shows, the error will
increase if h becomes too small. This seems to contradict the above estimate of e(t, hm), but that estimate
does not take into account the finite computing precision of the microprocessors: typically, they compute
with about 16 decimal digits, and in our case the solution is between 100 and 101, which forecasts rounding
errors of size 10−15 which will dominate the overall error for small step size h. Moreover: the number of
time steps is inversely proportional to the time step size, and each time step introduces rounding errors
into the computation. Clearly, these rounding errors could accumulate.

Therefore it is desirable to find a method of automatically selecting a good step size, without human
intervention. And indeed, this can be done. A deeper look at the table for the Euler method and the
Heun method suggests that the error is not just a random number, but has some structure in it. More
precisely, we have:

Proposition 5.6 (Asymptotic expansion of the global error). Suppose that the function f = f(t, y)
is (N + 2) times continuously differentiable on [t0, T ] × Rn, and all the derivatives are bounded. Let
η = ηj(h) be the approximate solution to (5.1), constructed by a one-step method Φ of order p, with
p ≤ N . Then the error e(t, h) possesses an asymptotic expansion of the form

e(t, h) = hpep(t) + hp+1ep+1(t) + · · ·+ hNeN (t) + hN+1EN+1(t, h),

with ep(t0) = 0, and for all t ∈ [t0, T ], all h = (t−t0)/m, m ∈ N. The functions ek = ek(t) are independent
of h, and the remainder term EN+1 is bounded in h, for all t.
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A very elegant proof is in [21].

Typically, the functions ek are unknown, but this does not matter, as we see now: Suppose that hpep(t)
is the biggest term in the asymptotic expansion, which is certainly true for small h. Perform the compu-
tations with step size h, and with step size h/2. Then we get known values η(h), η(h/2) both referring to
the same time t, and y(t) is unknown. But we have

η(h) = y(t) + hpep(t) + O(hp+1),

η(h/2) = y(t) + 2−phpep(t) + O(hp+1),

which directly gives

2−phpep(t) =
η(h)− η(h/2)

2p − 1
+ O(hp+1).

Our assumption was that the remainder term O(hp+1) is much smaller than the leading term hpep of the
asymptotic expansion, and we find the approximation

η(h/2)− y(t) ≈ η(h)− η(h/2)

2p − 1

for the global discretisation error. This gives us a tool for the automatic selection of the optimal step size
h, adjusted to the desired accuracy of the numerical solution.

Another method of step size control5 is to couple a Runge Kutta method of order p with a Runge Kutta
method of order p+1, and to use the difference of the approximations as a means for estimating the global
error, and then to adjust the time step size for the next step. If both methods use the same parameters
cm and aml, but differ only in the parameters bm, then it is only a negligible additional effort to use both
methods in parallel, since the number of evaluations of f remains the same. This is of particular relevance
if evaluating the function f requires high numerical cost. For instance, the ode45 method of matlab
couples a fourth order method and a fifth order method, exploiting the famous scheme of Dormand and
Prince established in 1980.

Finally, a remark about where the expression one-step method6 comes from. By definition of the method
Φ, the new value ηj+1 is computed (in a sometimes quite complicated way) from the old value ηj alone.
However, it might be a good idea to use more information for the computation of ηj+1, for instance, the
values of ηj−1, ηj−2, . . . ηj−d for some fixed d. Such methods are called multi-step methods7, which will
not be discussed in this course. They can be quite difficult to handle: for instance, a consistent method
need not be convergent, in contrast to Proposition 5.5. And also the step size control is obviously more
complicated.

5.2 Implicit Methods

Consider the initial value problem

y′(t) = Ay, y(0) =

(
1
0

)
, A =

(
998 1998
−999 −1999

)
as a toy model. The eigenvalues of A are −1 and −1000, and the exact solution is

y(t) =

(
2e−t − e−1000t

−e−t + e−1000t

)
.

Now we try to solve this problem with the explicit Euler method of step size h. Then we have the iteration
scheme ηj+1 = (I + hA)ηj for j ≥ 1, which has the explicit solution

ηj =

(
2(1− h)j − (1− 1000h)j

−(1− h)j + (1− 1000h)j

)
.

5Schrittweitensteuerung
6Einzelschrittverfahren
7Mehrschrittverfahren
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The exact solution y = y(t) decays if t approaches +∞, but limj→∞ ηj = 0 holds only if |1− 1000h| < 1,
with the consequence h < 2

1000 . We make two observations: the term e−1000t does not contribute anything
to the solution y(t) for t & 1, but this term forces us to choose h very small, which makes the computational
effort very large. All the explicit Runge Kutta methods have the same drawback.

Definition 5.7 (Stiff differential equations). A linear system of differential equations y′ = Ay with
constant coefficients is called stiff8 if A has at least one eigenvalue with real part � 1, and if

S(A) :=
maxj |<λj(A)|
minj |<λj(A)|

is large (typical values are S(A) ∼ 103 . . . 106).

A system y′(t) = f(t, y) (not necessarily linear) is called stiff if the value S(A) with A = fy(t, y) as Jacobi
matrix is large.

Stiff systems always come up when the physical system under consideration has effects which live on very
different time scales. Many problems from chemistry or biology are stiff.

We go back to the introductory example. The matrix A from there has eigenvalues λ1, λ2, both in the
left half-plane. The exact solution is y(t) = exp(At)y0, and exp(At) has eigenvalues exp(λ1t), exp(λ2t),
both in the interior of the unit ball of C. Therefore, y(t) decays for t → ∞. On the other hand, the
approximate solution has the representation ηj = (I + hA)jy0, and I + hA has eigenvalues 1 + hλ1 and
1 + hλ2. These should also be in the interior of the unit ball, otherwise limj→∞ ηj 6= 0.

Replacing the explicit Euler method by another explicit Runge Kutta method would give us the recursion
ηj+1 = g(hA)ηj for some function g, and then also ηj = (g(hA))jy0. For instance, the explicit Euler
method has g(z) = 1 + z. The behaviour of ηj for large j will only be correct if the numbers g(hλ1) and
g(hλ2) are in the unit ball. This function g is called stability function.

Definition 5.8 (A–stable). A one-step method is called A–stable (or absolutely stable) if its stability
function g satisfies

<z < 0 =⇒ |g(z)| < 1.

We directly see that the explicit Euler method is not A–stable, and with some effort one can show that
explicit methods of Runge Kutta type are never A–stable.

This trouble can be resolved when we go to implicit methods. As an example, we construct the implicit
Euler method:

y(tj) = y(tj+1 − h) = y(tj+1)− y′(tj+1)h+
1

2
h2y′′(tj+1 − θh) (0 < θ < 1)

= y(tj+1)− f(tj+1, yj+1)h+
1

2
h2y′′(tj+1 − θh),

and neglecting the remainder term gives us the recursion

ηj+1 = ηj + hf(tj+1, ηj+1).

The unknown term ηj+1 appears on both sides, which explains the name of the method.

Going back to the introductory example once again, we have f(y) = Ay, hence ηj+1 = ηj +hAηj+1, which
brings us

η0 := y0, ηj+1 = (I − hA)−1ηj ,

and then also

ηj = (I − hA)−jy0.

8steif
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Now the eigenvalues of (1− hA) are 1− hλ1 and 1− hλ2 which have real part > 1, because λ1, λ2 are in
the left half-plane. Therefore the eigenvalues of (I − hA)−1 are automatically in the unit ball, as desired.

The stability function of the implicit Euler method is g(z) = 1/(1− z).
The implicit Euler method fits into the framework of general implicit Runge Kutta methods which are of
the form

Φ(tj , ηj , h) =

s∑
m=1

bmKm,

Km = f

(
tj + cmh, ηj + h

s∑
l=1

amlKl

)
, m = 1, . . . , s,

and they can be symbolised by a scheme like this:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

In each step ηj → ηj+1, a nonlinear system has to be solved, which can be accomplished by a variant of
Newton’s method, for instance.

5.3 Symplectic Methods

9

We consider the harmonic oscillator equation z′′(t) + z = 0 with initial values z(0) = 1 and z′(0) = 0.
Setting y = (y1, y2)> = (z, z′)> and transferring to a first order system we get

y′ = Ay, y(0) =

(
1
0

)
, A =

(
0 1
−1 0

)
. (5.2)

Then y(t) = exp(At)y(0) as usual. Note that A is skew-adjoint (which means A> = −A), and we know
already that then exp(A) is a unitary matrix, hence also exp(At). In the second semester we have learnt
that multiplication with a unitary matrix does not change the length of a vector, and therefore

‖y(t)‖2 = ‖y(0)‖2 , ∀ t ∈ R.

This is no surprise because ‖y(t)‖2 = |z(t)|2 + |z′(t)|2 is just the mechanical energy of the system. On the
other hand, Ω0 ⊂ R2 is mapped by the flow to Ωt = exp(At)Ω0, which is simply a rotated copy of Ω0.
This corresponds to the Theorem of Liouville about the preservation of the phase space volume.

When we try to solve numerically the system (5.2) by the explicit and implicit Euler methods, we get
approximate solutions as in the Figures 5.1 and 5.2, and the long time behaviour is completely wrong.

The deeper reason: the explicit Euler scheme is ηj+1 = (I+hA)ηj , hence ηj = (I+hA)jη0, and the matrix
(I+hA)j is not orthogonal, since det(I+hA) = 1+h2 > 1. Therefore the volume of the phase space grows
by the factor (1+h2) at each iteration step. Conversely, the implicit Euler scheme is ηj+1 = (I−hA)−1ηj ,
hence ηj = (I − hA)−jη0, and now det(I − hA)−1 = (1 + h2)1 < 1, which makes the phase space volume
shrink by the factor (1 + h2)−1 at each step.

Choosing a smaller h would not help much, since then the number of time steps would grow. Considered
at the end time T , the total factor then is

(1 + h2)T/h =

(
1 +

hT

T/h

)T/h
≈ ehT if

T

h
� 1.

9See [20] and [11].
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Figure 5.1: Solving numerically the harmonic oscillator with the explicit Euler method
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Figure 5.2: Solving numerically the harmonic oscillator with the implicit Euler method

Looking at these examples we get the impression that, for instance, simulating the motion of the planets
of our solar system numerically over a period of millions of years would be infeasible using typical explicit
or implicit Runge Kutta methods.

The main problem is that the system (5.2) possesses conservation properties which are no longer present
in the above numerical schemes.

Definition 5.9. A system of differential equations is called a Hamiltonian10 system if it has the form

q′(t) =
∂H(q, p)

∂p
, p′(t) = −∂H(q, p)

∂q
,

with q : Rt → Rn, p : Rt → Rn, H : R2n → R. The function H is called Hamiltonian.

In case of (5.2), we have n = 1 and y1 = q1, y′1 = y2 = p1, and H = p2
1 + q2

1 .

We know already that, along a solution (q, p) = (q, p)(t),

• the energy H(q(t), p(t)) is constant,

• the phase space volume
∫

Ωt
dq dp is conserved (Theorem of Liouville).

We can improve the second • heavily:

Theorem 5.10. The Hamiltonian flow preserves the symplectic11 form ω =
∑n
j=1 dqj ∧ dpj.

10 Sir William Rowan Hamilton, 1805–1865, irish physicist, astronomer, mathematician
11 Where does the adjective come from ? All linear mappings in the R2n that preserve a nondegenerate, skew-symmetric,

bilinear form are elements of the symplectic group. And the name symplectic group goes back to Hermann Weyl (1885–
1955), see [24] for the following quotation:

The name “complex group” formerly advocated by me in allusion to line complexes, as these are defined by the



5.3. SYMPLECTIC METHODS 81

The symplectic form is a two-form, and we should explain how to work with such objects:

• a zero-form is a smooth scalar function RN → R,

• a one-form is written as f1(y) dy1 + f2(y) dy2 + · · · + fN (y) dyN , and it can be integrated along a
curve in RN , giving us a curve integral of second kind,

• a two-form is written as∑
j<k

fjk(y) dyj ∧ dyk,

and it can be integrated over a two-dimensional surface patch S ⊂ RN , which is done as follows:

Parametrise S with parameters (u1, u2) ∈ R2. Then y1 = y1(u1, u2), . . . , yN = yN (u1, u2) for the
points on S. Cut the parameter domain into many small rectangles using a grid whose axis are
parallel to the u1- and u2- axis, and whose mesh widths are ∆u1 = du1 and ∆u2 = du2. This
grid in the parameter domain corresponds to a grid on the surface patch S, which cuts S into many
small pieces which look like slightly deformed parallelograms. Then the integral

Ijk =

∫
S

fjk(y) dyj ∧ dyk

is evaluated via

dyj =
∂yj
∂u1

du1 +
∂yj
∂u2

du2,

dyj ∧ dyk =

(
∂yj
∂u1

du1 +
∂yj
∂u2

du2

)
∧
(
∂yk
∂u1

du1 +
∂yk
∂u2

du2

)
=
∂yj
∂u1

∂yk
∂u1

du1 ∧ du1 +
∂yj
∂u2

∂yk
∂u2

du2 ∧ du2

+
∂yj
∂u1

∂yk
∂u2

du1 ∧ du2 +
∂yj
∂u2

∂yk
∂u1

du2 ∧ du1.

Now dul ∧ dum = −dum ∧ dul, in particular dul ∧ dul = 0, hence

dyj ∧ dyk = det

(
∂1yj ∂2yj
∂1yk ∂2yk

)
· du1 ∧ du2,

and du1 ∧ du2 equals the area of the small grid rectangle in the parameter domain.

• in RN , an N–form is

f(y) dy1 ∧ dy2 ∧ . . . ∧ dyN = f(y) dy1 . . . dyN ,

which can be integrated over domains of RN .

The wedge product has the following properties:

• it is linear in each factor,

• it is anti-commutative and associative,

• the wedge product with N factors from RN behaves like a determinant function:

v1 ∧ v2 ∧ . . . ∧ vN = ∆N (v1, . . . , vN ).

vanishing of antisymmetric bilinear forms, has become more and more embarrassing through collision with the
word “complex” in the connotation of complex number. I therefore propose to replace it by the corresponding
Greek adjective “symplectic”. Dickson calls the group the “Abelian linear group” in homage to Abel who first
studied it.
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The exterior derivative d behaves as follows:

it turns K–forms into (K + 1)–forms, in a linear manner,

if f = f(y) is a zero-form (hence a function), then df =

N∑
j=1

∂f
∂yj

dyj , (5.3)

if % = f(y) dyi1 ∧ dyi2 ∧ . . . ∧ dyiK is a K–form, then d% = ( df) ∧ dyi1 ∧ dyi2 ∧ . . . ∧ dyiK , (5.4)

with df evaluated by (5.3),

d d = 0. (5.5)

As an example, take N = 2 and f as a function. Then

df = (∂1f) dy1 + (∂2f) dy2,

d df = ( d∂1f) ∧ dy1 + ( d∂2f) ∧ dy2

= (∂2
1f dy1 + ∂1∂2f dy2) ∧ dy1 + (∂1∂2f dy1 + ∂2

2f dy2) ∧ dy2

= ∂2
1f dy1 ∧ dy1 + ∂2

2f dy2 ∧ dy2 + (∂1∂2f)( dy2 ∧ dy1 + dy1 ∧ dy2)

= 0.

Note that the classical calculus rules rot grad = 0 and div rot = 0 have their deeper origin in d d = 0.

Now we come back to the Hamiltonian system with n degrees of freedom. Put y = (y1, . . . , y2n)> =
(q1, . . . , qn, p1, . . . , pn)> and write the system as

y′(t) = J∇yH(y), J =

(
0 In
−In 0

)
.

The volume form in the phase space Rnq × Rnp is dq dp = dq1 . . . dqn dp1 . . . dpn = dq1 ∧ . . . ∧ dpn.

Lemma 5.11. The volume form is a multiple of ωn:

dq dp = ± 1

n!
ωn, ω =

n∑
j=1

dqj ∧ dpj .

Proof. We consider n = 2 only and leave the other n to the reader:

ω2 = ( dq1 ∧ dp1 + dq2 ∧ dp2)2

=
(

dq1 ∧ dp1 ∧ dq1 ∧ dp1

)
+
(

dq1 ∧ dp1 ∧ dq2 ∧ dp2

)
+
(

dq2 ∧ dp2 ∧ dq1 ∧ dp1

)
+
(

dq2 ∧ dp2 ∧ dq2 ∧ dp2

)
= 0−

(
dq1 ∧ dq2 ∧ dp1 ∧ dp2

)
+
(

dq1 ∧ dq2 ∧ dp2 ∧ dp1

)
+ 0 = −2 dq dp.

The Liouville Theorem as proved in Example 4.9 corresponds to the conservation of the volume form,
hence the conservation of ωn.

But Theorem 5.10, which we prove right now, is much stronger than the Liouville theorem, because the
conservation of ω implies the conservation of ω2, ω3, . . . , ωn.

Proof of Theorem 5.10. Let y = y(t) = (q(t), p(t)) be the solution to y′(t) = J∇H(y) with the initial
values

y0 = (y0
1 , . . . , y

0
2n)> = (q0

1 , . . . , p
0
n)>.

Then q(t) and p(t) depend on the initial values, and in the sense of a total differential we have

dyl =

2n∑
k=1

∂yl
∂y0

k

dy0
k, 1 ≤ l ≤ 2n. (5.6)
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We wish to show that

0
!
=

d

dt
ω =

d

dt

n∑
j=1

dqj ∧ dpj =

n∑
j=1

((
d

dt
dqj

)
∧ dpj + dqj ∧

(
d

dt
dpj

))
.

Now we have (using (5.6) backwards in the last step)

d

dt
dqj =

d

dt

2n∑
k=1

∂qj
∂y0

k

dy0
k =

2n∑
k=1

(
∂

∂y0
k

∂qj
∂t

)
dy0
k =

2n∑
k=1

(
∂

∂y0
k

∂H(q, p)

∂pj

)
dy0
k

=

2n∑
k=1

2n∑
l=1

∂2H(q, p)

∂yl∂pj

∂yl
∂y0

k

dy0
k =

2n∑
l=1

∂2H(q, p)

∂yl∂pj
dyl,

d

dt
dpj = −

2n∑
l=1

∂2H(q, p)

∂yl∂qj
dyl,

and collecting the pieces we then find

n∑
j=1

((
d

dt
dqj

)
∧ dpj + dqj ∧

(
d

dt
dpj

))

=

n∑
j=1

2n∑
l=1

(
∂2H(q, p)

∂yl∂pj
dyl ∧ dpj −

∂2H(q, p)

∂yl∂qj
dqj ∧ dyl

) ∣∣∣ ∧ anti-commutates

=

n∑
j=1

2n∑
l=1

(
∂2H(q, p)

∂pj∂yl
dyl ∧ dpj +

∂2H(q, p)

∂qj∂yl
dyl ∧ dqj

)

=

2n∑
k=1

2n∑
l=1

∂2H(q, p)

∂yk∂yl
dyl ∧ dyk =

2n∑
k=1

(
2n∑
l=1

∂2H(q, p)

∂yk∂yl
dyl

)
∧ dyk

∣∣∣ (5.3) backwards

=

2n∑
k=1

(
d
∂H

∂yk

)
∧ dyk

∣∣∣ (5.4) backwards, with f = ∂H
∂yk

and K = 1,

=

2n∑
k=1

d

(
∂H

∂yk
dyk

) ∣∣∣ d is linear

= d

(
2n∑
k=1

∂H

∂yk
dyk

) ∣∣∣ (5.3) backwards

= d dH
∣∣∣ (5.5)

= 0,

which was our goal.

Definition 5.12. A numerical scheme ηj 7→ ηj+1 = ηj + hΦ(tj , ηj , h) is called symplectic if it preserves
the symplectic form, i.e.,

n∑
k=1

dηj+1,k ∧ dηj+1,k+n =

n∑
k=1

dηj,k ∧ dηj,k+n.

To construct a symplectic scheme for y′(t) = J∇H(y), we make the ansatz of a Runge Kutta scheme of
one stage (see Table 5.3), which is a compact form of writing

Φ(tj , ηj , h) = b1K1, K1 = J∇H(ηj + ha11K1). (5.7)

For simplicity, take n = 1, and write

ηj = (%j , πj)
>, K1 = (K1,1,K1,2)>,
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a11

b1

Table 5.3: The easiest symplectic scheme

with %j approximating q(tj), and πj approximating p(tj). Then the scheme can be written as

%j+1 = %j + hb1K1,1, πj+1 = πj + hb1K1,2,

K1,1 =
∂H

∂p
(%j + ha11K1,1, πj + ha11K1,2), (5.8)

K1,2 = −∂H
∂q

(%j + ha11K1,1, πj + ha11K1,2). (5.9)

Our goal is d%j+1 ∧ dπj+1 = d%j ∧ dπj . Now

d%j+1 = d%j + hb1 dK1,1, dπj+1 = dπj + hb1 dK1,2,

and therefore

d%j+1 ∧ dπj+1 = d%j ∧ dπj

+ hb1

(
d%j ∧ dK1,2 + dK1,1 ∧ dπj

)
+ h2b21 dK1,1 ∧ dK1,2

= d%j ∧ dπj

+ hb1

(
d(%j + ha11K1,1) ∧ dK1,2 + dK1,1 ∧ d(πj + ha11K1,2)

)
(5.10)

+ h2(b21 − 2b1a11) dK1,1 ∧ dK1,2. (5.11)

Choosing b1 = 2a11 eliminates (5.11). To kill (5.10), we observe that (5.8) and (5.9) give

dK1,1 =
∂2H

∂q∂p
d(%j + ha11K1,1) +

∂2H

∂p2
d(πj + ha11K1,2),

dK1,2 = −∂
2H

∂q2
d(%j + ha11K1,1)− ∂2H

∂q∂p
d(πj + ha11K1,2),

and plugging this into (5.10) gives the desired cancellation, because of d(%j+ha11K1,1)∧ d(%j+ha11K1,1) =
0, and d(πj + ha11K1,2) ∧ d(πj + ha11K1,2) = 0, and also du ∧ dv + dv ∧ du = 0, for arbitrary terms u
and v.

Lemma 5.13. The implicit Runge Kutta method (5.7) with a11 = 1/2 and b1 = 1 (commonly called
Implicit Midpoint method) is symplectic and consistent of order two.

Proof. Only the consistency is not yet proved, and this is a wonderful exercise in Taylor expansions.

Remark 5.14. Another symplectic scheme is the Symplectic Euler scheme:

%j+1 = %j + h
∂H

∂p
(%j , πj+1), πj+1 = πj − h

∂H

∂q
(%j , πj)

valid if the Hamiltonian splits into kinetic and potential energy in the sense of H(q, p) = T (p) + V (q).

Concerning the energy conversation, Ge and Marsden have shown (1988) that, in the general case, a
symplectic method can not conserve both the symplectic form and the Hamiltonian. However, typically
one can find another Hamiltonian Hh, with H −Hh = O(h), such that the symplectic scheme preserves
Hh (except for exponentially small errors), over periods of length O(h−1). This is much better than the
standard Runge Kutta methods.



Chapter 6

Boundary Value Problems and
Eigenvalues

Young Irving Joshua Bush, who later took the name of Matrix. . . grew up a
devout believer in the biblical prophecies of his parents’ faith, and owing to a
natural bent in mathematics, was particularly intrigued by the numerical
aspects of those prophecies. At the age of seven he surprised his father by
pointing out that there was 1 God, 2 testaments, 3 persons in the Trinity,
4 Gospels, 5 books of Moses, 6 days of creation, and 7 gifts of the Holy Spirit.
“What about 8?” his father had asked.
“It is the holiest number of all,” the boy replied, “The other numbers with
holes are 0, 6, and 9, and sometimes 4, but 8 has two holes, therefore it is the
holiest.”

Martin Gardner 1

6.1 Introduction

Consider a vibrating string2 of length L. The elongation at position x shall be called u(t, x), and of course
the string is fixed at the end points. Then the differential equation is

utt(t, x)− c2uxx(t, x) = 0, 0 < x < L, 0 ≤ t <∞,
u(t, 0) = u(t, L) = 0, 0 ≤ t <∞,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, L),

(6.1)

with c as the sound speed on the string, u0 as the initial elongation, and u1 as the initial velocity.

This is a hard problem, but we wish to find at least some solutions, and make the ansatz u(t, x) = a(t)v(x),
which brings us to

v′′(x)

v(x)
=

a′′(t)

c2a(t)
= const. = −λ,

because the left side does not depend on t, and therefore the right side can not depend on t.

Then we obtain an ODE for v:

v′′(x) + λv(x) = 0, x ∈ (0, L), v(0) = v(L) = 0. (6.2)

This is a second order differential equation together with an additional condition, with the following
differences to what we have studied so far:

1 The Magic Numbers of Dr. Matrix, New York: Prometheus, 1985, p.4.
2Saite

85
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• we do not have prescribed initial values of v(0) and v′(0), but prescribed boundary values v(0)
and v(L). Therefore this problem is called a boundary value problem3 in contrast to initial value
problems4.

• there is an unknown parameter λ, which has not been determined yet. We have always the zero
function v ≡ 0 as a solution to (6.2), but this function is boring. We will learn that interesting
solutions v (which are defined to be not the zero function) exist only for special values of λ.

This theory which we will develop now has many similarities to the theory of eigenvalues and eigenvectors
of a matrix A ∈ Cn×n known from the second semester.

Now we discuss (6.2) in a more general setting: the function v and the parameter λ may take complex
values. Our goal is to find all non-trivial solutions v. This means v(x) 6= 0 at least for some x, which we
write as v 6≡ 0.

Step 1: λ must be real and non-negative: to show this, we introduce the scalar product

〈v, w〉L2(0,L) :=

∫ L

x=0

v(x)w(x) dx.

Then we have

λ 〈v, v〉L2(0,L) = λ

∫ L

x=0

v(x)v(x) dx

= −
∫ L

x=0

v′′(x)v(x) dx

= −v′(x)v(x)
∣∣∣x=L

x=0
+

∫ L

x=0

v′(x)v′(x) dx

= 0 +

∫ L

x=0

v′(x)v′(x) dx

= 〈v′, v′〉L2(0,L) ,

which implies λ =
〈v′,v′〉
〈v,v〉 . Note that the division is possible because of v 6≡ 0. Now 〈v′, v′〉 ∈ R≥0

and 〈v, v〉 ∈ R≥0 by definition of the scalar product, hence λ ∈ R≥0.

Step 2: λ can not be zero: assume λ were zero, then 〈v′, v′〉 = 0, hence v′ ≡ 0, implying v ≡ const.,
bringing us to v ≡ 0 due to the boundary condition. Contradiction.

Step 3: λ is positive: this can happen sometimes, and we discuss an explicit construction of the solu-
tion. All solutions to v′′(x) + λv(x) = 0 with positive λ are given as

v(x) = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
, c1, c2 ∈ C,

and the boundary condition v(0) = 0, v(L) = 0 give first c1 = 0, and then c2 sin(
√
λL) = 0, which

has a non-trivial solution c2 6= 0 if and only if
√
λL ∈ πN+, or

λ =
π2k2

L2
, k = 1, 2, 3, . . . .

From this discussion we learn that introducing function vector spaces of L2 type with appropriate choice
of scalar product, together with partial integration, can give us some insights with little effort.

To get an overview, we compare linear initial value problems 5 and linear boundary value problems:

3Randwertproblem
4Anfangswertprobleme
5lineare Anfangswertprobleme
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linear IVP linear BVP

We look for functions y = y(t) (scalar or vec-
torial) with t often being the time variable.

We look for functions y = y(t) (scalar or vec-
torial) with t often being the space variable.

Scalar IVPs for a higher order equation can be
transformed into a first order system.

Scalar BVPs for a higher order equation can
be transformed into a first order system.

IVPs to first order systems are always
uniquely solvable (Theorem 1.8).

BVPs to first order systems are often uniquely
solvable, but they can also be unsolvable (Ex-
ample 6.2), or there can be more than one so-
lution (the string example from above).

You have an almost complete understanding
of the behaviour of solutions if you have found
the Fundamental Solution X.

You have an almost complete understanding
of the behaviour of solutions (in the case
of unique solvability) if you have found the
Green’s Function G (Proposition 6.3).
The function vector space L2([a, b] → Cn)
with its scalar product

〈f, g〉L2([a,b]) :=

n∑
j=1

∫ b

a

f(t)g(t) dt

gives a deeper understanding of the BVP, even
more so when you play with partial integra-
tion.

6.2 Solutions to First Order BVPs

We consider the boundary value problem to a vector-valued function y,{
y′(t) = F (t)y(t) + g(t), a ≤ t ≤ b,

Ay(a) +By(b) = c,
(6.3)

where F ∈ C([a, b]→ Cn×n), g ∈ C([a, b]→ Cn), and A,B ∈ Cn×n, c ∈ Cn-

From (3.10) we know that a solution y = y(t) to y′(t) = F (t)y(t) + g(t) must satisfy

y(t) = X(t, a)y(a) +

∫ t

s=a

X(t, s)g(s) ds

with X as fundamental solution

∂tX(t, t0) = F (t)X(t, t0), X(t0, t0) = I, t, t0 ∈ R.

Proposition 6.1. The following statements are equivalent:

1. the BVP (6.3) is uniquely solvable for any g ∈ C([a, b]→ Cn) and any c ∈ Cn,

2. the characteristic matrix

CX := A+BX(b, a)

is invertible,

3. the homogeneous BVP

y′(t) = F (t)y(t), Ay(a) +By(b) = 0

possesses only the trivial solution.
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Proof. The boundary condition Ay(a) +By(b) = c is equivalent to

c = Ay(a) +B

(
X(b, a)y(a) +

∫ b

s=a

X(b, s)g(s) ds

)

= CXy(a) +B

∫ b

s=a

X(b, s)g(s) ds,

or

CXy(a) = c−B
∫ b

s=a

X(b, s)g(s) ds. (6.4)

(1) =⇒ (3): This is obvious since (3) is a special case of (1).

(3) =⇒ (2): We wish to show that kerCX = {0}. Let ya be an element of kerCX . Define a function
y = y(t) by y(t) = X(t, a)ya. Then y solves y′(t) = F (t)y(t) and Ay(a) + By(b) = 0, by (6.4).
However, by the assumption of (3), y must be the zero function. In particular, y must take the value
zero at t = a. Hence 0 = y(a) = ya. Therefore kerCX = {0}, as desired.

(2) =⇒ (1): The function g and the vector c are given, then there is exactly one vector y(a) ∈ Cn that

satisfies (6.4). Then y(t) = X(t, a)y(a) +
∫ t
a
X(t, s)g(s) ds solves (6.3). And (6.3) can not have

another solution z = z(t), because then also z(a) solves (6.4), hence CX(y(a) − z(a)) = 0, which
gives us y(a)− z(a) = 0 by invertibility of CX . But then z(t) = y(t) for all t.

Example 6.2. Show that the BVP

y′(t) =

(
0 1
−1 0

)
y(t), 0 ≤ t ≤ π,(

1 0
0 0

)
y(0) +

(
0 0
1 0

)
y(π) =

(
1
0

)
is unsolvable.

Next we discuss a BVP with homogeneous boundary condition:{
y′(t) = F (t)y(t) + g(t), a ≤ t ≤ b,

Ay(a) +By(b) = 0.
(6.5)

Proposition 6.3. Suppose that CX is invertible. Then there is at least one matrix-valued function

G = G(t, s) : [a, b]× [a, b]→ Cn×n,

called Green’s function6 with the following properties:

1. G is continuous on the triangle {(t, s) : a ≤ t < s ≤ b}, and G is continuous on the triangle
{(t, s) : a ≤ s ≤ t ≤ b},

2. on the diagonal of (a, b)× (a, b), G jumps:

G(t+ 0, t)−G(t− 0, t) = In, a < t < b,

3. for each g ∈ C([a, b]→ Cn), the function y = y(t) given by

y(t) =

∫ b

s=a

G(t, s)g(s) ds

is the unique solution to (6.5).

6 George Green, 1793–1841, attended school for one year, was the first to present a mathematical theory of electricity
and magnetism
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Definition 6.4 (Green’s Function). Every function G with these three properties is called Green’s
function or Green’s matrix.

Proof. By Proposition 6.1, the unique solution y exists and is given by

y(t) =

∫ t

s=a

X(t, s)g(s) ds+X(t, a)y(a),

CXy(a) = −B
∫ b

s=a

X(b, s)g(s) ds,

which brings us to

y(t) =

∫ t

s=a

X(t, s)g(s) ds+X(t, a)C−1
X

(
−B

∫ b

s=a

X(b, s)g(s) ds

)

=

∫ t

s=a

X(t, s)g(s) ds+

∫ b

s=a

(
−X(t, a)C−1

X BX(b, s)
)
g(s) ds,

and now it remains to choose

G(t, s) =

{
X(t, s)−X(t, a)C−1

X BX(b, s) : a ≤ s ≤ t ≤ b,
0−X(t, a)C−1

X BX(b, s) : a ≤ t < s ≤ b.

The jump relation (2) is now easily seen from X(t, t) = In.

The formulae for G in both triangles look quite different, which is unaesthetic, because the times a and b
should have equal rights. From

In = C−1
X CX = C−1

X (A+BX(b, a)) = C−1
X A+ C−1

X BX(b, a) (6.6)

we conclude that

X(t, s)−X(t, a)C−1
X BX(b, s) = X(t, a)X(a, s)−X(t, a)C−1

X BX(b, a)X(a, s)

= X(t, a)
(
In − C−1

X BX(b, a)
)
X(a, s)

= X(t, a)C−1
X AX(a, s),

which gives us the more symmetric formula

G(t, s) =

{
X(t, a)C−1

X AX(a, s) : a ≤ s ≤ t ≤ b,
−X(t, a)C−1

X BX(b, s) : a ≤ t < s ≤ b.
(6.7)

Lemma 6.5. If CX is invertible then there is exactly one Green’s function.

Proof. Suppose that G̃ were another Green’s function. Then both G and G̃ are continuous on the triangle
{(t, s) : a ≤ t ≤ s ≤ b}, and they are both continuous on the other triangle. Then the same holds for the
difference

H(t, s) = G(t, s)− G̃(t, s).

Moreover, H has no jump across the diagonal:

H(t+ 0, t)−H(t− 0, t) = (G(t+ 0, t)−G(t− 0, t))− (G̃(t+ 0, t)− G̃(t− 0, t)) = In − In = 0,

hence H is continuous on the square (a, b)× (a, b). We also have the representation

y(t) =

∫ b

s=a

G(t, s)g(s) ds =

∫ b

s=a

G̃(t, s)g(s) ds

for the unique solution y to (6.5), for each continuous g. Then

0 =

∫ b

s=a

H(t, s)g(s) ds, a ≤ t ≤ b,
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for each continuous function g = g(s). Now choose a time t∗, and choose an index l ∈ {1, . . . , n}. Put
g(s) = (hl1(t∗, s), . . . , hln(t∗, s))

> as the adjoint of the l-th row of H(t∗, s). This choice gives us then

0 =

∫ b

s=a

n∑
k=1

|hlk(t∗, s)|2 ds,

which is possible only for hlk(t∗) ≡ 0 for all k, because the matrix H is continuous. Now choose an
arbitrary t∗, and an arbitrary l, and repeat.

Hence G = G̃, contradicting our assumption.

Lemma 6.6. Let G be a Green function. Then: for each fixed s ∈ [a, b], the function G 7→ G(t, s) solves

∂tG(t, s) = F (t)G(t, s), ∀ t ∈ [a, b] \ {s},
AG(a, s) +BG(b, s) = 0 provided s 6= a, s 6= b.

Proof. By Lemma 6.5 and (6.7), we have

G(t, s) = X(t, a)P±(s),

for a certain matrix function P+ if t ≥ s, and a certain matrix function P− for t < s. But we know that
∂tX(t, a) = F (t)X(t, a).

Finally, for s 6∈ {a, b} the following calculation is valid:

AG(a, s) +BG(b, s)

= A
(
−X(a, a)C−1

X BX(b, s)
)

+B
(
X(b, a)C−1

X AX(a, s)
)

=
(
−AC−1

X BX(b, a) +BX(b, a)C−1
X A

)
X(a, s)

∣∣∣ exploit (6.6)

=
(
−A(In − C−1

X A) +BX(b, a)C−1
X A

)
X(a, s)

=
(
−A+ (A+BX(b, a))C−1

X A
)
X(a, s)

=
(
−A+ CXC

−1
X A

)
X(a, s)

= 0.

All these discussions can be generalised a bit. Instead of the fundamental matrix X, we may take any
matrix valued function Y = Y (t) which solves Y ′(t) = A(t)Y (t), and whose values are invertible matrices.
Remember that according to Proposition 3.5 it is enough to check that detY (t) 6= 0 for one special time t.

Then we have Y (t) = X(t, a)Y (a), or X(t, a) = Y (t)Y −1(a), which implies CX = A+BY (b)Y −1(a), and
this is invertible if and only if

CY := AY (a) +BY (b)

is invertible. We also have X(b, a) = Y (b)Y −1(a) as well as X(a, s) = Y (a)Y −1(s), from which we obtain

G(t, s) =

{
Y (t)C−1

Y AY (a)Y −1(s) : a ≤ s ≤ t ≤ b,
−Y (t)C−1

Y BY (b)Y −1(s) : a ≤ t < s ≤ b.
(6.8)

Whatever matrix Y we choose here, the Green’s matrix G will always be the same. A good selection of
Y might simplify the calculations, as we will see in the next section.

6.3 Second Order Scalar BVPs

Now we will apply the results of the previous section to
u′′(t) + a1(t)u′(t) + a0(t)u(t) = f(t), a ≤ t ≤ b,

α0u(a) + α1u
′(a) = ca,

β0u(b) + β1u
′(b) = cb,

(6.9)
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where we assume (α0, α1) 6= (0, 0) and (β0, β1) 6= (0, 0) to stay away from trivialities. For convenience, we
abbreviate the differential equation and the boundary conditions as

Λu = f, Rau = ca, Rbu = cb. (6.10)

Here Λ = d2

dt2 +a1
d
dt +a0 is a differential operator. In this section we always assume that all the functions

and boundary data are real-valued. Then we can omit the conjugation in the scalar products.

To obtain a first order system, we set

y(t) =

(
u(t)
u′(t)

)
,

and then we find

y′(t) =

(
0 1

−a0(t) −a1(t)

)
y(t) +

(
0
f(t)

)
=: F (t)y(t) + g(t),

Ay(a) +By(b) :=

(
α0 α1

0 0

)
y(a) +

(
0 0
β0 β1

)
y(b) =

(
ca
cb

)
=: c,

compare (6.3). If u1 and u2 are two linearly independent solutions to Λu = 0, then we define their Wronski
matrix Y and their Wronski determinant W as

Y (t) =

(
u1(t) u2(t)
u′1(t) u′2(t)

)
, W (t) = detY (t),

and we know that W (t) is never zero.

The matrix CY , whose invertibility determines the solvability of (6.9), is

CY := AY (a) +BY (b) =

(
α0u1(a) + α1u

′
1(a) α0u2(a) + α1u

′
2(a)

β0u1(b) + β1u
′
1(b) β0u2(b) + β1u

′
2(b)

)
=

(
Rau1 Rau2

Rbu1 Rbu2

)
.

Lemma 6.7. The problem (6.9) is uniquely solvable for all f , ca, cb if and only if detCY 6= 0. This
property does not depend on the choice of the Wronski matrix Y .

There is nothing wrong with this approach, but it has some drawbacks:

• the Wronski determinant W (t) is not easy to compute or understand,

• from the introduction we know that scalar products and partial integrations can be helpful in
understanding what is going on. However, in our case we have

〈Λu, v〉 =

∫ b

t=a

(
u′′(t) + a1(t)u′(t) + a0(t)u(t)

)
v(t) dt

=

∫ b

t=a

u(t) ·
(
v′′(t)− (a1(t)v(t))′ + a0(t)v(t)

)
dt+ (boundary terms),

and the big parenthesis7 in the last line looks quite different from Λv.

• if we intend to compute G(t, s) from (6.8), we have to multiply five matrices, and two of them are
the inverses of other matrices. This is an exercise which most people with a sense for beauty prefer
to avoid.

In the following we assume that (6.9) is uniquely solvable, because otherwise there is not much we can do.

We should refine our approach a bit. Define

p(t) := exp

(∫ t

s=a

a1(s) ds

)
7Klammer ( )
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and observe that p′(t) = p(t)a1(t). This function p is never zero, and multiplying with a non-zero function
never gives trouble:

p(t)u′′(t) + p(t)a1(t)u(t) + p(t)a0(t)u(t) = p(t)f(t),

but this is nothing else than(
p(t)u′(t)

)′
+ p(t)a0(t)u(t) = p(t)f(t).

We fix m := pa0 and define a new differential operator L:

Lu :=
d

dt

(
p

d

dt
u

)
+mu,

and then we have to solve

Lu = pf, Rau = ca, Rbu = cb.

By a simple shift in the unknown function u, we may suppose ca = cb = 0.

Concerning the question for the Wronski determinant W (t), a quick calculation persuades us of the
Lagrange identity

vLw − wLv =
d

dt

(
p det

(
v w
v′ w′

))
, (6.11)

valid for all functions v and w (they need not be solutions of whatever equation). Choosing v = u1 and
w = u2, we then get

p(t)W (t) = const., a ≤ t ≤ b,

in particular p(t)W (t) = p(a)W (a). Note that p(a) = 1.

Concerning the question about the partial integrations, we remark that

〈Lv,w〉 = 〈v, Lw〉+ (boundary terms),

for all functions v and w. This looks good.

And now we compute the Green’s matrix. To this end and for reasons of computational beauty, we take
carefully selected solutions u1 and u2: let u1 be a solution with

Λu1 = 0, Rau1 = 0, Rbu1 6= 0, (6.12)

and let u2 be a solution with

Λu2 = 0, Rau2 6= 0, Rbu2 = 0. (6.13)

Such functions u1 and u2 do exist, because of our assumption that (6.9) be uniquely solvable for all f and
c. Then we find

CY =

(
Rau1 Rau2

Rbu1 Rbu2

)
=

(
0 Rau2

Rbu1 0

)
, C−1

Y =
1

detCY

(
0 −Rau2

−Rbu1 0

)
.

Exercise: Recall the formula for the inverse of a 2× 2 matrix.

We also have

AY (a) =

(
α0 α1

0 0

)(
u1(a) u2(a)
u′1(a) u′2(a)

)
=

(
0 Rau2

0 0

)
,

BY (b) =

(
0 0
β0 β1

)(
u1(b) u2(b)
u′1(b) u′2(b)

)
=

(
0 0

Rbu1 0

)
,
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from which we gain

C−1
Y AY (a) =

1

−(Rau2)(Rbu1)

(
0 −Rau2

−Rbu1 0

)(
0 Rau2

0 0

)
=

(
0 0
0 1

)
,

C−1
Y BY (b) =

(
1 0
0 0

)
,

and now (6.8) turns into

G(t, s) =


Y (t)

(
0 0

0 1

)
Y −1(s) : a ≤ s ≤ t ≤ b,

−Y (t)

(
1 0

0 0

)
Y −1(s) : a ≤ t < s ≤ b.

Before we simplify this further, note that this G gives us the solution y to the first order system y′(t) =

F (t)y(t) + g(t) via y(t) =
∫ b
s=a

G(t, s)g(s) ds. But in our case,

y(t) =

(
u(t)
u′(t)

)
, g(s) =

(
0

f(s)

)
,

and we are mainly interested in u which is the first component of y. Hence

u(t) =

∫ b

s=a

G12(t, s)f(s) ds,

and the other three entries of G are of limited interest only. The inverse Y −1(s) is found via

Y −1(s) =

(
u1(s) u2(s)
u′1(s) u′2(s)

)−1

=
1

detY (s)

(
u′2(s) −u2(s)
−u′1(s) u1(s)

)
=

1

W (s)

(
u′2(s) −u2(s)
−u′1(s) u1(s)

)
.

The final result then is

G12(t, s) =

{
u2(t)u1(s)
W (s) : a ≤ s ≤ t ≤ b,

u1(t)u2(s)
W (s) : a ≤ t ≤ s ≤ b,

(6.14)

and W (s) can be computed via W (s) = p(a)W (a)
p(s) =

u1(a)u′2(a)−u2(a)u′1(s)
p(s) .

We summarise:

Theorem 6.8. Let a0, a1 ∈ C([a, b]→ R) be given. Put p(t) = exp(
∫ t
s=a

a1(s) ds), and define Λ, Ra, Rb
as in (6.10). Suppose that the fully homogeneous problem (6.9) with f ≡ 0, ca = cb = 0 has only the zero
solution. Define u1, u2 by (6.12), (6.13), and G12 by (6.14).

Then the unique solution u to the half-homogeneous problem (6.9) with ca = cb = 0 is given by

u(t) =

∫ b

s=a

G12(t, s)f(s) ds, a ≤ t ≤ b,

for each continuous function f . The Green function G12 (given in (6.14)) is continuous on [a, b]× [a, b].
The term W = u1u

′
2−u2u

′
1 in (6.14) is the Wronskian of (u1, u2). The function t 7→ p(t)W (t) is constant.

The first derivative with respect to t jumps with height one:

∂1G12(t+ 0, t)− ∂1G12(t− 0, t) = 1, a < t < b.

For fixed s, and t 6= s, G12 solves the ODE ΛG12(·, s) = 0 with respect to the variable t.

For fixed s 6∈ {a, b}, G12(·, s) solves the boundary conditions RaG12(·, s) = 0 and RbG12(·, s) = 0.

We can also consider the BVP
Lu(t) = f(t), a ≤ t ≤ b,
Rau = 0, Rbu = 0,

Lu :=
d

dt

(
p

du

dt

)
+mu,
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with p ∈ C1([a, b] → R) taking only positive values on [a, b], and m continuous on [a, b]. All coefficients
are real-valued.

Then the (by assumption unique) solution u is given by

u(t) =

∫ b

s=a

G12(t, s)f(s) ds,

and now G12 is written as

G12(t, s) =

{
u2(t)u1(s)
p(a)W (a) : a ≤ s ≤ t ≤ b,
u1(t)u2(s)
p(a)W (a) : a ≤ t ≤ s ≤ b,

with G12 continuous on the square [a, b]× [a, b], but ∂tG12 has a jump of height 1/p(t) across the diagonal.

We conclude this section with a small result on the zeros of solution to the homogeneous problem.

Proposition 6.9. Let u1 and u2 be two linearly independent solutions to Lu = 0. If ta and tb > ta are
two consecutive8 zeros of u1, then u2 must have a zero between ta and tb.

Proof. The Wronski determinant W (t) = u1(t)u′2(t)−u2(t)u′1(t) is never zero, and it has no jumps. Hence
W always has the same sign.

Then we have

W (ta) = 0− u2(ta)u′1(ta), W (tb) = 0− u2(tb)u
′
1(tb).

Because ta and tb are two consecutive zeros of u1, the derivatives u′1(ta) and u′1(tb) must have different
sign. On the other hand, W (ta) and W (tb) must have the same sign. This is only possible of u2(ta) and
u2(tb) have different sign.

6.4 Playing in Hilbert Spaces

Definition 6.10 (Hilbert Space). A vector space H over the field C is called a Hilbert space if it has
a scalar product

〈·, ·〉H : H ×H→ C,

which generates a norm via ‖v‖H :=
√
〈v, v〉H, under which H is a complete normed space (each Cauchy

sequence in H converges in H).

We start with an example.

Ground space: H = Cn with the scalar product 〈v, w〉 :=
∑n
j=1 vjwj .

Linear operator A : z 7→ Az with A ∈ Cn×n

Domain of A 9: D(A) contains all z ∈ H for which Az makes sense (Az ∈ H). Hence D(A) = H = Cn.

Adjoint operator A∗ and its domain: the vector space D(A∗) contains all w ∈ H for which A∗w
makes sense, and such that

〈Az,w〉H = 〈z,A∗w〉H , ∀ z ∈ D(A), ∀ w ∈ D(A∗).

In our case, D(A∗) = H and A∗ = A>.

Self-adjoint operator: A is self-adjoint if A = A∗ and D(A) = D(A∗).

8aufeinanderfolgend
9Definitionsbereich von A
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Eigenvalues of self-adjoint A: if Az = λz with z 6= 0, then

λ 〈z, z〉H = . . . = λ 〈z, z〉H ,

hence λ ∈ R (fill in the gap yourself).

Eigenvectors to different eigenvalues for self-adjoint A: if Az = λz and Aw = µw with λ 6= µ
then 〈z, w〉H = 0 because of

λ 〈z, w〉H = . . . = µ 〈z, w〉H .

Spectral theorem: if A is self-adjoint, then an ONB (u1, . . . , un) can be selected from the eigenvectors
of A (the proof is a bit harder than the previous two). If µ1 < µ2 < · · · < µm are the distinct
eigenvalues of A ∈ Cn×n (with m ≤ n), and Pj is the orthogonal projector of H onto ker(A− µjI)
(the eigenspace to the eigenvalue µj), then

I =

m∑
j=1

Pj , A =

m∑
j=1

µjPj .

The first equation means that the eigenvectors span H, or

H = ker(A− µ1I)⊕ ker(A− µ2I)⊕ . . .⊕ ker(A− µmI).

The second equation means that, on the eigenspace ker(A− µjI), A acts as a multiplication by µj .

Next we consider boundary value problems (sometimes called Sturm10–Liouville BVPs):
Λu = λu, a ≤ t ≤ b,
Rau = 0, Rbu = 0,

Λ = a2(t)
d2

dt2
+ a1(t)

d

dt
,

and we assume that a2 and a1 are continuous and R–valued, and a2 is strictly positive. Note that the
differential equation Λu = λu can be equivalently rewritten as

Lu = λqu,
1

q
Lu = λu,

Lu :=
d

dt

(
p(t)

d

dt
u

)
,

p(t) := exp

(∫ t

s=a

a1(s)

a2(s)
ds

)
,

q(t) :=
p(t)

a2(t)
.

The functions p and q are assumed to be strictly positive on the finite interval [a, b]. The differences
to (6.9) are: a2 is present (for greater generality), a0 is dropped (for ease of notation), and u can be
C–valued.

Ground space: H contains all functions u : [a, b]→ C with∫ b

t=a

|u(t)|2q(t) dt <∞,

and H is equipped with the scalar product

〈v, w〉H :=

∫ b

t=a

v(t)w(t)q(t) dt.

10 Jacques Charles François Sturm, 1803–1855
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Linear operator: the most interesting linear operator is Λ = 1
qL.

Domain of Λ: D(Λ) contains all functions u ∈ H for which Λu makes sense (this means Λu ∈ H), and
for which additionally Rau = 0 and Rbu = 0. In our situation D(Λ) ( H, and typically the elements
u of D(Λ) satisfy a2u

′′ ∈ H, which means that the elements of D(Λ) are smoother than those of H.

Adjoint operator Λ∗ and its domain: D(Λ∗) contains all w ∈ H for which Λ∗w ∈ H and additionally

〈Λv, w〉H = 〈v,Λ∗w〉H , ∀v ∈ D(Λ), ∀w ∈ D(Λ∗).

By the Lagrange identity (6.11), we have

〈Λv, w〉H =

∫ b

t=a

1

q
(Lv)wq dt =

∫ b

t=a

(Lv)w dt =

∫ b

t=a

vLw dt+

∫ b

t=a

d

dt

(
p det

(
w v
w′ v′

))
dt

=

∫ b

t=a

v · 1

q
Lw · q dt+ pdet

(
w v
w′ v′

) ∣∣∣b
t=a

= 〈v,Λw〉H + p det

(
w v
w′ v′

) ∣∣∣b
t=a

.

Now we have to make sure that the boundary term p det(. . . )|bt=a is zero. We know already that
Rav = 0 and Rbv = 0, because of the assumption v ∈ D(Λ). The boundary conditions R∗aw = 0 and
R∗bw = 0 for the operator Λ∗ have to be designed in such a way that this boundary term vanishes.

Self-adjoint operators: we define that the operator Λ is self-adjoint if Λ = Λ∗ and D(Λ) = D(Λ∗).

Eigenvalues of self-adjoint Λ: if Λu = λu with u ∈ D(Λ) = D(Λ∗) and u 6= 0 then

λ 〈u, u〉H = . . . = λ 〈u, u〉H ,

hence λ ∈ R. From now on, we assume that all functions are real-valued, and then the conjugation
bars in the integrals can be omitted.

Eigenfunctions to different eigenvalues: if Λu = λu and Λv = µv with λ 6= µ, then 〈u, v〉H = 0
because of

λ 〈u, v〉H = . . . = µ 〈u, v〉H .

Eigenfunctions to the same eigenvalue: if Λu = λu and Λv = λv, then u, v are linearly dependent.
This means that each eigenvalue of Λ has multiplicity one. The reason is this: we know

Rau = 0 =⇒ α0u(a) + α1u
′(a) = 0,

Rav = 0 =⇒ α0v(a) + α1v
′(a) = 0,

which can be reformulated as(
u(a) u′(a)
v(a) v′(a)

)(
α0

α1

)
=

(
0
0

)
,

but (α0, α1) 6= (0, 0), by assumption. Therefore W (a) = 0, with W as Wronski determinant of (u, v).

Spectral theorem: if Λ is a Sturm–Liouville operator, then it has eigenvalues λ1 > λ2 > . . . which
approach −∞, and the associated eigenfunctions u1, u2,. . . (scaled to norm one) form an ONB of
H: for each f ∈ H, there are unique numbers γ1, γ2, . . . ∈ C such that

f =

∞∑
j=1

γjuj , ‖f‖2H =

∞∑
j=1

|γj |2.

The coefficients γj can be found via γj = 〈f, uj〉H.

Unfortunately, the proof is beyond our reach, see §37–§40 of [13] for details.

The projector Pj of H onto ker(Λ− λjI) = span(uj) is given by

Pjg = 〈g, uj〉H uj .
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Then we have

I =

∞∑
j=1

Pj (valid when applied to functions from H), (6.15)

Λ =

∞∑
j=1

λjPj (valid when applied to functions from D(Λ)). (6.16)

As a concrete example, we take a2 ≡ 1 and a1 ≡ 0, giving us p = q = 1:
d2

dt2
u(t) = λu(t), 0 ≤ t ≤ π,

u(0) = 0, u(π) = 0.

We have H = L2((0, π)) with the scalar product

〈v, w〉H =

∫ π

t=0

v(t)w(t) dt.

The operator is L = Λ = d2

dt2 , and its domain D(Λ) = D(L) consists of all those functions v ∈ H with
v′′ ∈ H = L2((0, π)) and v(0) = v(π) = 0. Now we determine D(Λ∗). A function w ∈ H belongs to D(Λ∗)
if w′′ ∈ H and

det

(
w v
w′ v′

) ∣∣∣π
t=0

= 0

provided that v ∈ D(Λ). Since nothing is known about the values of v′ on the boundary, we need
w(0) = w(π) = 0. These are the same boundary conditions as for v, and therefore D(Λ) = D(Λ∗),
Λ = Λ∗, which makes Λ self-adjoint.

The spectral theorem says that the eigenfunctions of L form an ONB of H. These eigenfunctions are

uj(t) =
sin(jt)

‖sin(j·)‖L2((0,π))

, j = 1, 2, . . . , (6.17)

and the associated eigenvalues are λj = −j2.

Equation (6.15) says that each function f ∈ H = L2((0, π)) can be expanded like this:

f(t) =

∞∑
j=1

γj sin(jt), γj =

∫ π
t=0

f(t) sin(jt) dt∫ π
t=0

sin2(jt) dt
.

As a second example, we take again p = q = 1, but now other boundary conditions:
d2

dt2
u(t) = λu(t), 0 ≤ t ≤ π,

u′(0) = 0, u′(π) = 0.

We have again H = L2((0, π)) with the same scalar product. The domain D(Λ) of Λ consists of those
functions v ∈ H with v′′ ∈ L2((0, π)) and v′(0) = v′(π) = 0. By a similar computation as in the previous
example, we find D(Λ∗) = D(Λ) and Λ = Λ∗. Therefore, Λ is self-adjoint, and its eigenfunctions are the
elements of an ONB of H. These eigenfunctions are

uj(t) =
cos(jt)

‖cos(j·)‖L2((0,π))

, j = 0, 1, 2 . . . , (6.18)

and the associated eigenvalues are λj = −j2. Be careful: now j starts at zero instead of one.

According to (6.15), each function f ∈ H = L2((0, π)) can be expanded like this:

f(t) =

∞∑
j=0

γj cos(jt), γj =

∫ π
t=0

f(t) cos(jt) dt∫ π
t=0

cos2(jt) dt
.
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6.5 Orthogonal Polynomials

• now we will consider special BVPs of “almost–Sturm–Liouville” type,

• the eigenfunctions of these BVPs are polynomials, which form an orthogonal family with respect to
a certain scalar product,

• these polynomials give rise to an orthogonal basis of the ground space,

• and (of course !) we will find numerous applications in physics.

Take an interval (a, b) ⊂ R. This interval might be of infinite length (recall that the intervals of traditional
Sturm–Liouville BVPs are always bounded).

Choose a weight function11 q = q(t), which is real valued and positive on (a, b). On the end-points of the
interval, p and q might take the value zero, and q might have a pole (this is prohibited for traditional
Sturm–Liouville BVPs).

Consider the vector space H of all functions u : (a, b)→ R with∫ b

t=a

u2(t)q(t) dt <∞.

We equip this space with the scalar product

〈u, v〉H :=

∫ b

t=a

u(t)v(t)q(t) dt.

We wish that each polynomial u is a member of H. Therefore, if (a, b) is an unbounded interval, the

weight function q must decay fast for t going to infinity; otherwise the integral
∫ b
t=a

u2(t)q(t) dt will not
be finite.

We start with the infinite family (t0, t1, t2, . . . ) of polynomials. These are linearly independent.

The Gram–Schmidt procedure then gives us a family of polynomials (p0, p1, . . . ) with

〈pj , pk〉H = 0 if j 6= k,

and each pj has degree j. We do not care whether these pj have norm equal to one or not.

Each polynomial Q can be written as a linear combination of the pj , and this linear combination involves
only a finite number of the pj .

It is unclear whether the family (p0, p1, . . . ) is an orthogonal basis of H, because it might happen that
these pj span only a smaller sub-space of H, but not the full H. The next lemma tells us that we are
lucky if (a, b) is an interval of finite length.

Lemma 6.11. If (a, b) is a bounded interval, then (p0, p1, . . . ) is a complete orthogonal system in H.

Sketch of proof. Assume the opposite. Then span(p0, p1, . . . ) ( H, where span(p0, p1, . . . ) is the set of
all the linear combinations of the pj (where each linear combination contains only a finite number of
summands). And the over-line means that we take the topological closure12: we add all the cluster
points13 of the set to it.

Then there is an element of H which is not in V := span(p0, p1, . . . ). This element can be decomposed
into a part parallel to V , and a part orthogonal to V (here we need that V is a closed set). Call the
orthogonal part f . Clearly f 6= 0.

Then 〈f, pj〉H = 0 for each polynomial pj from the orthogonal system. We assume that f is continuous
(this is the part where our proof has a gap. See [14] for how to close it).

11Gewichtsfunktion
12topologischer Abschluß
13Häufungspunkte
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We recall the Weierstraß approximation theorem from the second semester: if f is a continuous function
on the bounded interval [a, b], then, for each positive ε, we find a polynomial Qε which approximates f
up to a uniform error of size ε:

|f(t)−Qε(t)| < ε, ∀ t ∈ [a, b].

At this point we need that [a, b] is bounded. This Qε can be written as a finite linear combination of the
pj . Therefore,

〈f,Qε〉H = 0.

Then we can conclude that

0 < 〈f, f〉H = 〈f, f −Qε〉H ≤
∫ b

t=a

|f(t)| · |f(t)−Qε(t)| · q(t) dt < ε

∫ b

t=a

|f(t)| · q(t) dt.

Now send ε to zero to obtain a contradiction.

Our approach is now coming from the other side: first we invent a family of polynomials (p0, p1, . . . ), and
then we determine their differential equation.

Mysteriously, this approach leads to results applicable in physics. Just enjoy the show.

Take (a, b) = (−1, 1) as the interval.

The scalar product of the space H is 〈u, v〉H =
∫ 1

t=−1
u(t)v(t)q(t) dt. Set, for n = 0, 1, 2, . . . ,

pn(t) :=
1

q(t)

dn

dtn

(
q(t)(1− t2)n

)
, r(t) := 1− t2.

Formulae of this kind are known as Rodrigues’ formula14.

Lemma 6.12. This function pn is H-perpendicular to each polynomial of degree < n.

Proof. We check by n–fold partial integration that

〈
tl, pn

〉
H

=

∫ 1

t=−1

tlpn(t)q(t) dt =

∫ 1

t=−1

tl
dn

dtn

(
q(t)(1− t2)n

)
dt = 0,

for l = 0, 1, 2, . . . , n− 1. Boundary terms never appear because of r(t) = 0 for t = ±1.

Next we try to find q such that each pn is indeed a polynomial of degree n. Start with n = 1. Then

p1(t) =
1

q(t)
(q(t)(1− t2))′ = −2t+

q′(t)

q(t)
(1− t2)

!
= γ0 + γ1t,

for some γ0, γ1 ∈ R, and this can be solved, giving us (after some time)

q(t) = (1− t)α(1 + t)β , α > −1, β > −1,

with α, β depending on γ0, γ1 somehow. We can check that then also the other functions p2, p3, . . . are
polynomials of the correct degree.

For α = β = 0, we get, after an additional normalisation step,

Pn(t) :=
(−1)n

2nn!

dn

dtn
(1− t2)n,

the Legendre15 polynomials. The weight function is q ≡ 1, and Pn = (−1)n

2nn! pn. The purpose of the
additional factor is Pn(1) = 1.

For α = β = −1/2, we get, again with an additional normalisation step,

Tn(t) =
(−1)n2n

(2n)!
(1− t2)1/2 dn

dtn

(
(1− t2)n−1/2

)
= cos(n arccos t), −1 ≤ t ≤ 1,

14 Benjamin Olinde Rodrigues, 1795–1851, french banker, mathematician, social reformer
15 Adrien-Marie Legendre, 1752–1833
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the Chebyshev16 polynomials. The weight function is q(t) = (1− t2)−1/2, and Tn = (−1)n2n

(2n)! pn.

General α, β would bring us the Jacobi17 polynomials Pα,βn , by the way.

Let us write the formula for pn as

pn =
1

q

dn

dtn

(
qrn
)
, r(t) = 1− t2, n = 0, 1, 2, . . . .

Now we will guess the differential equation for pn. We know already from Section 6.4 that a differential
operator

1

q
L =

1

q

d

dt

(
p

d

dt
·
)

could be useful, with an unknown function p = p(t). In any case, we then have

1

q
Lpn =

1

q

(
pp′n

)′
=

1

q
(p′p′n + pp′′n),

and now it seems reasonable to try p = qr. The advantage of this choice is that p′ = (qr)′ = qp1 is a
known function. Then we have

1

q
Lpn =

1

q

(
qp1p

′
n + qrp′′n

)
= rp′′n + p1p

′
n,

and this is a polynomial of degree n, because r has degree 1, p′′n has degree n− 2, and p1 has degree 1, p′n
has degree n− 1. Hence we can decompose (remember that (p0, p1, . . . ) is an orthogonal basis of H):

1

q
Lpn =

n∑
j=0

αjpj , αj =

〈
1
qLpn, pj

〉
H

〈pj , pj〉H
, j = 0, 1, . . . , n.

The coefficients αj are not yet known. However, with zeroes as markers for vanishing boundary terms,〈
1

q
Lpn, pj

〉
H

=

∫ b

t=a

(pp′n)′pj dt =

∫ b

t=a

(rqp′n)′pj dt
∣∣∣ observe r(a) = r(b) = 0

= 0−
∫ b

t=a

rqp′np
′
j dt = −

∫ b

t=a

p′n(rqp′j) dt
∣∣∣ observe r(a) = r(b) = 0

= 0 +

∫ b

t=a

pn(rqp′j)
′ dt =

∫ b

t=a

(pp′j)
′pn dt =

〈
1

q
Lpj , pn

〉
H

,

and this must be zero for j < n because 1
qLpj is a polynomial of degree j, which is smaller than n, and

Lemma 6.12 can be applied.

This gives us

1

q
Lpn = αnpn,

with some unknown number αn. To determine αn, we spell out the differential equation:

1

q(t)

d

dt

(
q(t)(1− t2)

d

dt

(
1

q(t)

dn

dtn
(
q(t)(1− t2)n

)))
= αn

1

q(t)

dn

dtn
(
q(t)(1− t2)n

)
,

and now the easiest (harrumph) way of finding αn is to compare the highest powers of t on both sides.

After that computation, we find:

16 Pafnuty Lvovich Chebyshev, 1821–1894
17 Carl Gustav Jacob Jacobi, 1804–1851
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Proposition 6.13. The Legendre polynomial Pn (n ≥ 0) solves the BVP{
(1− t2)P′′n(t)− 2tP′n(t) + n(n+ 1)Pn(t) = 0, −1 ≤ t ≤ 1.

The differential equation can also be written as r(t)P′′n(t)− 2P1(t)P′n(t) + n(n+ 1)Pn(t) = 0.

The Legendre Polynomials P0, P1, . . . form an orthogonal family in the Hilbert space L2((−1, 1); dt):∫ 1

t=−1

Pn(t)Pm(t) dt =
2

2n+ 1
δnm.

The Chebyshev polynomial Tn (n ≥ 0) solves the BVP{
(1− t2)T ′′n (t)− tT ′n(t) + n2Tn(t) = 0, −1 ≤ t ≤ 1.

The differential equation can also be written as r(t)T ′′n (t)− T1(t)T ′n(t) + n2Tn(t) = 0.

These polynomials T0, T1, . . . form an orthogonal family in the Hilbert space L2((−1, 1); (1− t2)−1/2 dt):

∫ 1

t=−1

Tn(t)Tm(t)
1√

1− t2
dt =


0 : n 6= m,

π : n = m = 0,

π/2 : n = m 6= 0.

We do not need boundary conditions for Pn or Tn because the coefficient a2(t) = 1− t2 = r(t) vanishes on
the boundary of the interval. Because of a2(t = a) = a2(t = b) = 0, these BVPs are not of Sturm–Liouville
type.

Lemma 6.14. On the space H = L2((−1, 1)), the Legendre differential operator

ΛP := (1− t2)
d2

dt2
− 2t

d

dt

has only the eigenvalues −n(n+ 1), (n ∈ N0), and no others.

On the space H = L2((−1, 1); (1− t2)−1/2 dt), the Chebyshev differential operator

ΛT := (1− t2)
d2

dt2
− t d

dt

has only the eigenvalues −n2, (n ∈ N0), and no others.

Proof. Assume ΛPu = λu for u 6= 0 and another number λ. Then this function u must be H–orthogonal
to any Legendre polynomial Pn. But these polynomials (P0,P1, . . . ) form a complete orthogonal system
in H, by Lemma 6.11. This is a contradiction.

Take (a, b) = (0,∞) as the interval.

The scalar product of the space H is 〈u, v〉H =
∫∞
t=0

u(t)v(t)q(t) dt, and the weight function q is assumed
to decay exponentially for t → ∞, and all its derivatives also decay exponentially for t → ∞. Set, for
n = 0, 1, 2, . . . ,

pn(t) :=
1

q(t)

dn

dtn

(
q(t)tn

)
, r(t) := t.

Lemma 6.15. This function pn is H-perpendicular to each polynomial of degree < n.

Proof. We check by n–fold partial integration that〈
tl, pn

〉
H

=

∫ ∞
t=0

tlpn(t)q(t) dt =

∫ ∞
t=0

tl
dn

dtn

(
q(t)tn

)
dt = 0,

for l = 0, 1, 2, . . . , n− 1. Boundary terms never appear due to r(0) = 0 and the fast decay of q at ∞.
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Next we try to find q such that each pn is indeed a polynomial of degree n. Take n = 1 first. Then

p1(t) =
1

q(t)
(q(t)t)′ = 1 +

tq′(t)

q(t)

!
= γ0 + γ1t,

for some γ0, γ1 ∈ R. The function q shall decay for t → ∞, hence q′(t) < 0 for large t, which makes
positive γ1 impossible. We can also take the freedom to scale the t–variable by a positive factor (this
scaling maps the interval (0,∞) onto itself). By suitable scaling, we can make sure that γ1 = −1. Then
we find after some computation that

q(t) = tαe−t α > −1,

with α depending on γ0 somehow. We can check that then also the other functions p2, p3, . . . are polyno-
mials of the correct degree. After an additional normalisation step, we get the Laguerre18 polynomials,

Ln,α(t) =
1

n!
t−αet

dn

dtn
(
e−ttn+α

)
,

with Ln,α = 1
n!pn. This normalisation makes the leading coefficient equal to (−1)n/n!.

Let us write the formula for pn as

pn =
1

q

dn

dtn

(
qrn
)
, r(t) = t, n = 0, 1, 2, . . . .

And by the same computation as for the interval (a, b) = (−1, 1), we find the differential operator

1

q
L =

1

q

d

dt

(
p

d

dt
·
)
, p(t) = q(t)r(t) = t1+αe−t,

and the differential equation

1

q
Lpn = rp′′n + p1p

′
n = αnpn,

with some unknown number αn, which can be determined by a lengthy calculation.

Proposition 6.16. The Laguerre polynomial Ln,α (n ≥ 0) solves the BVP{
tL′′n,α(t) + (α+ 1− t)L′n,α(t) + nLn,α(t) = 0, 0 < t <∞.

The Laguerre Polynomials L0,α, L1,α, . . . form a complete orthogonal family in the Hilbert space
L2((0,∞); q(t) dt):∫ ∞

t=0

Ln,α(t)Lm,α(t)tαe−t dt =
Γ(n+ α+ 1)

n!
δnm,

with Γ(z) :=
∫∞
s=0

sz−1e−s ds as the well-known Gamma function.

Take (a, b) = (−∞,∞) as the interval.

The scalar product of the space H is 〈u, v〉H =
∫∞
t=−∞ u(t)v(t)q(t) dt, and the weight function q is assumed

to decay exponentially for |t| → ∞, and all its derivatives also decay exponentially for |t| → ∞. Set, for
n = 0, 1, 2, . . . ,

pn(t) :=
1

q(t)

dn

dtn
q(t), r(t) := 1.

Lemma 6.17. This function pn is H-perpendicular to each polynomial of degree < n.

18Edmond Nicolas Laguerre, 1834–1886
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Proof. We check by n–fold partial integration that
〈
tl, pn

〉
H

= 0, for l = 0, 1, 2, . . . , n− 1.

Next we try to find q such that each pn is indeed a polynomial of degree n. Take n = 1 first. Then

p1(t) =
q′(t)

q(t)

!
= γ0 + γ1t,

for some γ0, γ1 ∈ R. The function q shall decay for t→ +∞, which makes positive γ1 impossible. We can
also take the freedom to scale the t–variable by a positive factor, and to shift the t–variable by a constant.
These transformations map the interval (−∞,∞) onto itself. Then we can make sure that γ1 = −2 and
γ0 = 0, which gives us quickly

q(t) = e−t
2

.

We can check that then also the other functions p2, p3, . . . are polynomials of the correct degree.

Then we get the Hermite19 polynomials,

Hn(t) = (−1)net
2 dn

dtn
e−t

2

,

with Hn = (−1)npn. The coefficient of the highest power is 2n. Pay attention: in several books, the terms
exp(±t2) are replaced by exp(±t2/2).

By the standard calculation, we then find:

Proposition 6.18. The Hermite polynomial Hn (n ≥ 0) solves the BVP{
H ′′n(t)− 2tH ′n(t) + 2nHn(t) = 0, −∞ < t <∞.

The Hermite Polynomials H0, H1, . . . form a complete orthogonal family in the Hilbert space
L2((−∞,∞); q(t) dt):∫ ∞

t=−∞
Hn(t)Hm(t)e−t

2

dt = 2nn!
√
πδnm.

6.6 Applications of Orthogonal Polynomials

We begin with some considerations about electrostatics. In the three-dimensional space, introduce the
Cartesian coordinates (x, y, z) and the polar coordinates,

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

Put a unit charge at position (0, 0, 1). This charge generates an electric field, whose potential U =
U(x, y, z) is

U(x, y, z) =
1

‖(x, y, z)− (0, 0, 1)‖
=

1√
1− 2r cos θ + r2

= U(r, θ, ϕ),

by the Cosine theorem from school. On the other hand, we have 4U = 0 if we are not in the point
(0, 0, 1). Now the Laplace operator written in polar coordinates then gives

∂2
rU(r, θ, ϕ) +

2

r
∂rU(r, θ, ϕ) +

1

r2 sin θ
∂θ

(
sin θ · ∂θU(r, θ, ϕ)

)
+

1

r2 sin2 θ
∂2
ϕU(r, θ, ϕ) = 0.

By cylindrical symmetry, U certainly does not depend on ϕ, hence U = U(r, θ). We transform a variable:
cos θ = t ∈ [−1, 1],

∂θU(r, θ) = ∂tU(r, t)
dt

dθ
= − sin θ∂tU(r, t),

sin θ∂θU(r, θ) = − sin2 θ∂tU(r, t) = −(1− t2)∂tU(r, t),

19 Charles Hermite, 1822–1901. The Hermite polynomials had been found by Chebyshev a few years earlier.
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and then the Laplace equation becomes

∂2
rU(r, t) +

2

r
∂rU(r, t) +

1

r2
∂t

(
(1− t2)∂tU(r, t)

)
= 0.

Integrating the function |U(x, y, z)|2 over the small ball {(x, y, z) : x2 + y2 + z2 ≤ 1/4} should certainly
give a bounded value:

∞ >

∫∫∫
x2+y2+z2≤1/4

U2(x, y, z) dxdy dz = 2π

∫ 1/2

r=0

∫ π

θ=0

|U(r, θ)|2r2 sin θ dr dθ,

but dt = − sin θ dθ, hence∫ 1/2

r=0

∫ 1

t=−1

|U(r, t)|2r2 dr dt <∞.

And integrating |∇U(x, y, z)|2 over this small ball should also give a bounded value, since ∇U is simply
the electric field, which brings us (after some thinking) the condition∫ 1/2

r=0

∫ 1

t=−1

|Ur(r, t)|2r2 dr dt <∞.

Since a complete orthogonal system in L2((−1, 1)) is given by the Legendre polynomials, we can decom-
pose U(r, ·) for each r:

U(r, t) =

∞∑
n=0

Pn(t)Rn(r),

with some unknown functions Rn. By orthogonality of the Pn, we have

∞ >

∫ 1/2

r=0

∫ 1

t=−1

|U(r, t)|2r2 dr dt =

∞∑
n=0

2

2n+ 1

∫ 1/2

r=0

|Rn(r)|2r2 dr,

∞ >

∫ 1/2

r=0

∫ 1

t=−1

|Ur(r, t)|2r2 dr dt =

∞∑
n=0

2

2n+ 1

∫ 1/2

r=0

|R′n(r)|2r2 dr.

We write the differential equation as

∂t

(
(1− t2)∂tU(r, t)

)
= −r2

(
∂2
rU(r, t) +

2

r
∂rU(r, t)

)
,

and plugging the orthogonal series into both sides then gives

−
∞∑
n=0

n(n+ 1)Pn(t)Rn(r) = −
∞∑
n=0

Pn(t)
(
r2R′′n(r) + 2rR′n(r)

)
,

and by the linear independence of the Legendre functions, we then deduce that

r2R′′n(r) + 2rR′n(r) = n(n+ 1)Rn(r),

which has the general solution

Rn(r) = c1,nr
n +

c2,n
rn+1

.

If c2,n 6= 0, then Rn has a pole at r = 0, which violates the above boundedness condition on the integral
of |R′n|2. This brings us the identity

1√
1− 2r cos θ + r2

=

∞∑
n=0

c1,nPn(cos θ)rn,

and the c1,n are not yet known. Set θ = 0 on both sides:

1

1− r
=

∞∑
n=0

c1,nPn(1)rn.

We know Pn(1) = 1 for all n, and then the formula for the geometric series gives us c1,n = 1 for all n.
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Theorem 6.19 (Generating Functions). 20 The Legendre polynomials Pn satisfy

1√
1− 2rt+ r2

=

∞∑
n=0

Pn(t)rn, −1 ≤ t ≤ 1, 0 ≤ r ≤ 1/2.

The Chebyshev polynomials Tn satisfy

1− r2

1− 2rt+ r2
+ 1 = 2

∞∑
n=0

Tn(t)rn, −1 < t < 1, |r| < 1.

The Laguerre polynomials Ln,α satisfy

(1− r)−α−1 exp

(
− tr

1− r

)
=

∞∑
n=0

Ln,α(t)rn, 0 < t <∞, |r| < 1.

The Hermite polynomials Hn satisfy

exp(2tr − r2) =

∞∑
n=0

1

n!
Hn(t)rn, −∞ < t, r <∞.

Many important properties of orthogonal polynomials can be proved using such generating functions. As
an example, the generating function U(r, t) = (1 − 2rt + r2)−1/2 of the Legendre polynomials solves the
differential equation

(1− 2rt+ r2)∂rU(r, t) + (r − t)U(r, t) = 0,

and plugging the power series
∑∞
n=0 Pn(t)rn into this equation, and equating corresponding powers of r

then gives us the important recursion formula

(n+ 1)Pn+1(t)− (2n+ 1)tPn(t) + nPn−1(t) = 0,

which permits us to find formulae for Pn with n large, avoiding the Rodrigues formula which quickly
becomes inconvenient for larger n.

The next application comes from quantum mechanics. The momentum operator p is quantised as
p = ~

i∇, and then the Hamiltonian H turns into

H =
p2

2m
+ V (x) = − ~2

2m
4+V (x).

The stationary (time independent) Schrödinger equation reads Hψ = Eψ, with the real number E as the
energy level, and ψ = ψ(x) as the wave function, whose square |ψ(x)|2 describes the probability density
to find the particle at the position x ∈ Rd. Clearly,∫

x∈Rd
|ψ(x)|2 dx = 1,

because the particle must be somewhere.

Now we simplify: x ∈ R1, V (x) = x2, ~2/2m = 1, and obtain the problem(
− d2

dx2
+ x2

)
ψ(x) = Eψ(x), −∞ < x <∞.

The boundary conditions on ψ are contained implicitly in the restriction ψ ∈ L2((−∞,∞)), which is only
possible of ψ(x) decays for |x| → ∞.

20erzeugende Funktionen
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The function ψ belongs to the non-weighted space L2((−∞,∞)) if and only if the function u = u(x) =
exp(x2/2)ψ(x) belongs to the weighted space L2((−∞,∞), exp(−x2) dx), because of∫ ∞

x=−∞
|ψ(x)|2 dx =

∫ ∞
x=−∞

∣∣∣ex2/2ψ(x)
∣∣∣2 e−x2

dx.

Translating the differential equation for ψ into a differential equation for u, we find

d2

dx2
ψ(x) =

(
u(x)e−x

2/2
)′′

= u′′(x)e−x
2/2 + 2u′(x) · (−x)e−x

2/2 + u(x) · e−x
2/2(x2 − 1)

!
= (x2 − E)ψ(x) = (x2 − E)e−x

2/2u(x),

and then the problem for u becomes{
u′′(x)− 2xu′(x) + (E − 1)u(x) = 0, −∞ < x <∞,
u ∈ L2((−∞,∞), exp(−x2) dx).

From the theory of Hermite polynomials we know that this problem has a non-zero solution u if and only
if E − 1 = 2n for some n ∈ N0, and then u is given by

u(x) = cHn(x),

with c 6= 0 as a constant and Hn as the Hermite polynomial.

As a summary: only certain energy levels En = 2n + 1 with n ∈ N0 are admissible for a quantum
mechanical particle in the harmonic oscillator potential. In particular, the lowest energy (corresponding
to n = 0) is not at the bottom of the potential V , in difference to the classical mechanics.

And finally, we wish to understand mathematically why there are at most two electrons in the s sub-shell,
at most 6 electrons in the p sub-shell, at most 10 in the d sub-shell, and at most 14 in the f sub-shell.

Before we start, let us recall which orthogonal basises in function spaces of L2 type we know: if we look
at non-weighted spaces L2((a, b)) over a finite interval, we know already

• a pure sine family (6.17),

• a pure cosine family (6.18),

• a family consisting of sine and cosine functions together (remember the theory of Fourier series from
the second semester),

• the family of Legendre polynomials,

• the family ((1− t2)−1/4T0, (1− t2)−1/4T1, . . . ), with Tj as the Chebyshev polynomial.

On the non-weighted space L2((−∞,∞)), we have

• the family (e−t
2/2H0(t), e−t

2/2H1(t), . . . ), with Hj as the Hermite polynomial.

And on the half-unbounded interval (0,∞), we have a large number of basises (one for each α > −1 via
the Laguerre polynomials).

Recall that all these functions are the eigenfunctions to a self-adjoint second order differential operator.

At first glance, this does not help us so much when attacking the electrons in the atomic shells because
intervals are one-dimensional objects, but the electron shells are not.

Define S := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and call it the unit sphere. The Laplace operator in polar
coordinates is

4U(r, ϑ, ϕ) =
1

r2
∂r

(
r2∂rU(r, ϑ, ϕ)

)
+

1

r2 sinϑ
∂ϑ

(
sinϑ∂ϑU(r, ϑ, ϕ)

)
+

1

r2 sin2 ϑ
∂2
ϕU(r, ϑ, ϕ)

=: 4r U(r, ϑ, ϕ) +
1

r2
4S U(r, ϑ, ϕ),

where 4r only contains derivatives with respect to r, and 4S only contains derivatives with respect to
the angles (ϑ, ϕ).



6.6. APPLICATIONS OF ORTHOGONAL POLYNOMIALS 107

Definition 6.20 (Laplace–Beltrami operator). The operator

4S :=
1

sinϑ
∂ϑ

(
sinϑ∂ϑ ·

)
+

1

sin2 ϑ
∂2
ϕ

is called the Laplace–Beltrami21 operator.

This is an operator which differentiates functions which live on the unit sphere S.

In the same way as in Section 6.4, we then perform the following steps:

• call H := L2(S) the ground space,

• define the domain D(4S) as the set of all those functions u ∈ H for which 4S u ∈ H,

• prove that D(4∗S) = D(4S) and 4S = 4∗S ,

• prove that eigenfunctions of 4S to different eigenvalues are orthogonal with respect to the scalar
product in H = L2(S) (this is quite easy),

• prove that the eigenfunctions of4S form a complete orthogonal system of L2(S) (this is really hard).

This orthogonal system will then be extremely helpful in understanding the behaviour of the electrons.
Therefore we need to understand how the eigenfunctions of 4S look like.

We start with 4S u(ϑ, ϕ) = λu(ϑ, ϕ) for a real number λ. Clearly, the function u is 2π–periodic with
respect to ϕ, which makes a Fourier expansion possible:

u(ϑ, ϕ) =
∑
m∈Z

eimϕΘm(ϑ).

Plugging this into λu = 4S u then gives us

λ
∑
m∈Z

eimϕΘm(ϑ) = λu(ϑ, ϕ) = 4S u(ϑ, ϕ) =
∑
m∈Z

eimϕ

(
1

sinϑ
∂ϑ

(
sinϑ∂ϑΘm(ϑ)

)
− m2

sin2 ϑ
Θm(ϑ)

)
,

λΘm(ϑ) =
1

sinϑ
∂ϑ

(
sinϑ∂ϑΘm(ϑ)

)
− m2

sin2 ϑ
Θm(ϑ)

∣∣∣∣∣ t = cosϑ, Θm(ϑ) =: Tm(t),

λTm(t) = ∂t

(
(1− t2)∂tTm(t)

)
− m2

1− t2
Tm(t),

(1− t2)T ′′m(t)− 2tT ′m(t) +

(
−λ− m2

1− t2

)
Tm(t) = 0, −1 < t < 1,

and the side condition is that Tm ∈ L2((−1, 1)).

Using methods from complex analysis22 one can show that the function Tm is without poles if and only if

λ = −l(l + 1), l ∈ N0, m ∈ {−l,−l + 1, . . . , l − 1, l},

and in such a case, the solution Tm is a multiple of the associated Legendre polynomial :

Tm(t) = cPml (t) := c

{
(−1)m(1− t2)m dm

dtmPl(t) : m ≥ 0,

(−1)m (l+m)!
(l−m)!P

−m
l (t) : m < 0.

Therefore, we have shown that

u(ϑ, ϕ) =

l∑
m=−l

eimϕcmPml (cosϑ),

where l ∈ N0 corresponds to λ via λ = −l(l + 1).

Hence we have proved:

21 Eugenio Beltrami, 1835–1900
22Funktionentheorie
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Lemma 6.21. The eigenfunctions to 4S are the spherical harmonics23

Ylm(ϑ, ϕ) = eimϕPml (cosϑ), l = 0, 1, 2, . . . , m = −l,−l + 1, . . . , l − 1, l.

and we have 4S Ylm = −l(l + 1)Ylm as well as

〈Ylm, Yl′m′〉L2(S) = δll′δmm′clm,

with a positive constant clm (which differs from book to book). These eigenfunctions form an orthogonal
basis of L2(S).

After these preparations, we can now attack the (heavily simplified) Schrödinger equation of an electron
in the Coulomb potential generated by the atomic nucleus:(

−4− 2

‖x‖

)
ψ(x) = Eψ(x),

where x ∈ R3, E is the (negative) energy, and ψ ∈ L2(R3) is the wave function.

Introduce polar coordinates:(
−4r −

1

r2
4S −

2

r

)
ψ(r, ϑ, ϕ) = Eψ(r, ϑ, ϕ).

For each fixed r > 0, we can decompose ψ using the spherical harmonics:

ψ(r, ϑ, ϕ) =

∞∑
l=0

l∑
m=−l

Ylm(ϑ, ϕ)Rlm(r),

with unknown functions Rlm. The condition∫
R3

|ψ(x)|2 dx = 1 <∞

then turns into (by orthogonality of the Ylm)∑
l,m

clm

∫ ∞
r=0

|Rlm(r)|2r2 dr <∞,

for some constants clm coming from the normalisation convention of the Ylm. From this we learn that
Rlm can not have a strong pole at r = 0.

Plugging the decomposition of ψ into the Schrödinger equation then gives∑
l,m

Ylm

(
−4r Rlm +

1

r2
l(l + 1)Rlm −

2

r
Rlm

)
=
∑
l,m

YlmERlm,

(commuting 4 and
∑

is permitted if U has sufficiently many continuous derivatives with respect to
x, y, z), and comparing corresponding Ylm then implies

− 1

r2
∂r

(
r2∂rRlm(r)

)
+

1

r2
l(l + 1)Rlm −

2

r
Rlm(r) = ERlm(r).

By the physical assumption E < 0, we can write E = −K2 for some positive K, and we obtain

R′′lm(r) +
2

r
R′lm(r) +

(
−K2 +

2

r
− l(l + 1)

r2

)
Rlm(r) = 0.

Using (advanced) methods from complex analysis, one can show that Rlm must behave like rl for r → 0.
Hence we can set Rlm(r) = rlQlm(r), for some function Qlm which is bounded near r = 0. Then we find

R′lm(r) = rlQ′lm(r) + lrl−1Qlm(r),

R′′lm(r) = rlQ′′lm(r) + 2lrl−1Q′lm(r) + l(l − 1)rl−2Qlm(r),

R′′lm(r) +
2

r
R′lm(r) = rlQ′′lm(r) + (2l + 2)rl−1Q′lm(r) + l(l + 1)rl−2Qlm(r),

23Kugelflächenfunktionen
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and the differential equation turns into

Q′′lm(r) +
2l + 2

r
Q′lm(r) +

(
−K2 +

2

r

)
Qlm(r) = 0.

For large r, the relevant terms in the left-hand side are Q′′lm −K2Qlm (this conclusion is mathematically
not very rigorous, but we do not have the (advanced) tools from complex analysis to do it better), and
therefore Qlm is expected to behave like c+e

+Kr + c−e
−Kr for large r. Then ψ ∈ L2(R3) is possible only

if c+ = 0. Then the electron in the field of the hydrogen atom can only have special amounts of energy,
but never an energy between these energy levels. Therefore we split off a factor e−Kr:

Qlm(r) =: e−KrZlm(r),

Q′lm(r) = e−KrZ ′lm(r)−Ke−KrZlm(r),

Q′′lm(r) = e−KrZ ′′lm(r)− 2Ke−KrZ ′lm(r) +K2e−KrZlm(r),

which brings us to

Z ′′lm(r) +

(
2l + 2

r
− 2K

)
Z ′lm(r) +

(
2l + 2

r
· (−K) +

2

r

)
Zlm(r) = 0.

We need polynomial solutions to this equation. One can show that if Zlm is a non-polynomial solution,
then for large r the terms Z ′′lm − 2KZ ′lm are the main terms, giving us a behaviour Zlm(r) ∼ exp(2Kr)
for large r, which makes the function Qlm explode exponentially for r →∞. This violates the condition
that ψ ∈ L2(R3).

We need just one last scaling step to obtain a Laguerre differential equation:

r =:
s

2K
, Zlm(r) =: Slm(s),

Z ′lm(r) = 2KS′lm(s),

Z ′′lm(r) = 4K2S′′lm(s),

S′′lm(s) +

(
2l + 2

s
− 1

)
S′lm(s) +

2(1− (l + 1)K)

2Ks
Slm(s) = 0,

sS′′lm(s) + (2l + 2− s)S′lm(s) +

(
1

K
− (l + 1)

)
Slm(s) = 0.

The theory of Laguerre polynomials tells us that a polynomial solution Lj,α with

j =
1

K
− (l + 1), α = 2l + 1

exists only if j is a natural number, which brings us to 1
K = j + l + 1 for j ∈ N0. Then the admissible

energy levels are

E = − 1

(j + l + 1)2
.

Now the quantum numbers are chosen as follows:

• first a principal quantum number24 n ∈ N+ is selected (this corresponds to j + l + 1),

• then the azimuthal quantum number25 j ∈ N0 is selected, subject to the restriction 0 ≤ j ≤ n − 1
(this determines l ∈ N0 via l = n− j − 1),

• then the magnetic quantum number26 m ∈ Z can be chosen, subject to −l ≤ m ≤ l.
24 Hauptquantenzahl
25 Nebenquantenzahl
26 Magnetquantenzahl
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The energy depends only on n. The (s, p, d, f) sub-shells correspond to l ∈ (0, 1, 2, 3). Answering the
question from the beginning is now only a counting exercise. Do not forget the spin. For fixed n, all the
states have the same energy − 1

n2 .

At the very end of this part, we comment on the mysterious condition E < 0. This condition describes
the outer radius of the atomic shell27. An electron with energy E > 0 is no longer bound to the atomic
nucleus, can move around freely, and can have any amount of energy. An electron with negative energy
E can only possess special amounts of energy, namely −1/n2 for some n ∈ N+.

This corresponds mathematically to the Hamiltonian operator H = −4− 2
‖x‖ as follows:

E < 0, and E = −1/n2: then the operator H − E : D(H) → L2(R3) is not injective (all these numbers
E form the discrete spectrum28 of the operator E),

E < 0, and E 6= −1/n2 for all n: then the operator H − E : D(H) → L2(R3) is bijective, continuous,
and its inverse map is also continuous (all these numbers E, and also the non-real numbers E, form
the resolvent set29 of the operator H),

E > 0: then the operator H − E : D(H) → L2(R3) is injective, but not surjective (all these numbers E
form the continuous spectrum30 of the operator H).

Recall that in a finite-dimensional vector space U , a linear map A : U → U is injective if and only if it is
surjective, by the dimension formula for linear maps. Therefore, for maps of a finite-dimensional space U
into itself, the adjectives “injective” and “surjective” are logically equivalent (although they mean different
things, of course).

As you can see, this is no longer true for maps in spaces of infinite dimension.

27Atomhülle
28diskretes Spektrum
29Resolventenmenge
30stetiges Spektrum
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Chapter 7

Holomorphic Functions

7.1 Back to the Roots

Soon we will see that complex differentiable functions behave in a completely different manner when
compared to real differentiable functions, and in order to understand the deeper reason, we ask what
complex numbers are.

In the first semester, complex numbers z had been defined as pairs of real numbers, z = (x, y), and an
addition, multiplication had been specified like this:

(x, y) +C (u, v) := (x+ u, y + v),

(x, y) ·C (u, v) := (x · u− y · v, x · v + y · u).

The addition looks like the addition of vectors in the vector space R2, and to find an interpretation of the
multiplication, we write

z =

(
x
y

)
, w =

(
u
v

)
, z ·C w =

(
x −y
y x

)(
u
v

)
=

(
u −v
v u

)(
x
y

)
,

which brings us to the second way of writing complex numbers: instead of z = (x, y) or z =
(
x
y

)
, we write

z =

(
x −y
y x

)
, (7.1)

and then adding and multiplying in C correspond to adding and multiplying matrices. Note that(
x −y
y x

)
+

(
u −v
v u

)
=

(
(x+ u) −(y + v)
(y + v) (x+ u)

)
,(

x −y
y x

)
·
(
u −v
v u

)
=

(
(xu− yv) −(yu+ xv)
(yu+ xv) (xu− yv)

)
,

and the right-hand sides are again matrices of the correct structure.

And the third way of writing complex numbers is, of course, z = x+ iy with i2 = −1 instead of z = (x, y).

We may identify C ' R2, but the complex multiplication introduces an additional structure into R2.

The set C can be seen as a two-dimensional vector space R2 over the field K = R, with canonical basis{
1C := (1R, 0R), i := (0R, 1R)

}
,

or as a one-dimensional vector space C1 over the field K = C, with the canonical basis{
1C

}
.

Here 1C means the number one, understood as a complex number.

Recall that a map T : U → U of a K–vector space U into itself is linear if

113
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• it is additive: T (u1 + u2) = T (u1) + T (u2), for all u1, u2 ∈ U ,

• it is K–homogeneous: T (λu) = λT (u) for all u ∈ U and all λ ∈ K.

Lemma 7.1.

• Each C–linear map from C into C is also R–linear.

• Each R–linear map from C into C with T (i) = iT (1C) is also C–linear.

Proof.

• This is clear since each C–homogeneous map is R–homogeneous, because R ⊂ C.

• Let T : C→ C be R–linear. Then T is additive, and it remains to show that T (λu) = λT (u) for all
λ ∈ C and all u ∈ C. To this end, we show T (z) = zT (1C) for all z ∈ C. Write z = x+ iy with real
x, y. Then

T (z) = T (x+ iy)
∣∣∣ T is additive

= T (x) + T (iy) = T (x · 1C) + T (y · i)
∣∣∣ T is R–linear

= x · T (1C) + y · T (i)
∣∣∣ assumption

= x · T (1C) + yi · T (1C) = (x+ iy)T (1C) = z · T (1C).

Now we can argue like this:

T (λ · u) = T ((λ · u) · 1C) = (λ · u) · T (1C) = λ · (u · T (1C)) = λ · T (u),

for all λ ∈ C and all u ∈ C.

From the first semester, we know that each K–linear map T : Kn → Kn can be represented by a matrix
from Kn×n. Therefore, each R–linear map T : C→ C can be written using a 2× 2 matrix,

T (z) = T (x+ iy) =

(
a11 a12

a21 a22

)(
x
y

)
, ajk ∈ R.

We compute some values:

T (1C) =

(
a11 a12

a21 a22

)(
1
0

)
=

(
a11

a21

)
= a11+ia21, T (i) =

(
a11 a12

a21 a22

)(
0
1

)
=

(
a12

a22

)
= a12+ia22.

Such a map is additionally C–linear if T (i) = iT (1C), which implies a12 + ia22 = i(a11 + ia21), or

a11 = a22, a12 = −a21,

which corresponds nicely to the special matrix structure from (7.1). We summarise:

Lemma 7.2. A map T : C→ C is C–linear if and only if T (z) = A
(
x
y

)
(where z = x+ iy =

(
x
y

)
with real

x, y) for a matrix A ∈ R2×2 with a11 = a22 and a12 = −a21.

Next we recall polar coordinates. Each z ∈ C can be represented as

z = r(cosϕ+ i sinϕ), r ≥ 0, ϕ ∈ R,

and the angle ϕ is called an argument of z, written as

ϕ = arg z.
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The argument of z is not uniquely determined; you can always add or subtract multiples of 2π.

The formula of de Moivre1 is(
r(cosϕ+ i sinϕ)

)n
= rn

(
cos(nϕ) + i sin(nϕ)

)
, n ∈ N+,

and this tells us how to compute the n–th roots of w ∈ C: a number z ∈ C is an n–th root of w if and
only if

|z| = n
√
|w|, arg z ∈ 1

n
argw +

2π

n
Z,

where argw is one special argument of w.

To each w 6= 0, there are exactly n distinct numbers z ∈ C with zn = w, called the n–th roots of w,
and each of these roots is obtained from another one of these roots by multiplication by a suitably chosen
n–th root of the number one.

Finally, we come to the exponential function. For z = x+ iy with real x, y, we have

exp(z) = exp(x) exp(iy) = ex(cos y + i sin y),

hence exp maps the horizontal strip S of width 2π,

S := {(x, y) ∈ C : − π < y ≤ π},

bijectively onto C \ {0}. The upper boundary {(x, y) : y = π} is mapped onto the northern riverbank of
R− := (−∞, 0) × {0}, and the lower boundary {(x, y) : y = −π} is mapped onto the southern riverbank
of R−.

Definition 7.3 (Principal branch of complex logarithm2). The inverse function of exp: S → C\{0}
is called Ln, the principal branch of the complex logarithm. If w = |w|(cosϕ + i sinϕ) with w 6= 0 and
−π < ϕ ≤ π, then

Lnw = ln |w|+ iϕ,

where ln : R+ → R is the traditional logarithm from school.

Note that Ln: C \ {0} → S has a jump of height 2πi when we cross R−.

Another possibility of defining a logarithm function on C \ {0} is to select an angle α, e.g., α = π/137, to
define

Sα := {(x, y) ∈ C : − π + α < y ≤ π + α},

and to each w 6= 0, there is exactly one number ϕ ∈ (−π+α, π+α] with argw = ϕ. Then we may define

lnw := ln |w|+ iϕ.

Observe that this function ln: C \ {0} → Sα has a jump of height 2πi when we cross the ray {w : argw =
π + α}.

Definition 7.4 (Principal branch of complex root function). If w = |w|(cosϕ+ i sinϕ) with −π <
ϕ ≤ π, then we define

√
w :=

√
|w| · (cos(ϕ/2) + i sin(ϕ/2)),

with
√
|w| as the traditional (nonnegative, of course) root of a nonnegative number, as in school.

Warning: In general, Ln(z1z2) 6= Ln z1 + Ln z2 and
√
z1z2 6=

√
z1
√
z2. Find examples yourself.

1 Abraham de Moivre, 1667–1754
2 Hauptzweig des komplexen Logarithmus
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7.2 Differentiation

We recall from the first year how to define a derivative of a function f : Km → Kn:

• the function f : Km → Kn is differentiable at a point x0 ∈ Km if a matrix A ∈ Kn×m exists with

f(x) = f(x0) +A(x− x0) + o(‖x− x0‖)

for x→ x0,

• if m = 1: the function f : K1 → Kn is differentiable at a point x0 ∈ K1 if the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists, and then this limit equals A ∈ Kn×1 from the first •.

Now we will follow both approaches (keeping in mind that C ' R2), and comparing the results will then
bring us new insights.

Definition 7.5. Let Ω ⊂ C be an open, non-empty set.

• A function f : Ω→ C is complex differentiable in z0 ∈ Ω if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
∈ C

exists.

• A function f : Ω→ C is holomorphic in Ω3 if f is complex differentiable at each z0 ∈ Ω.

• A function f : Ω→ C is holomorphic in z0 ∈ Ω if an open neighbourhood U of z0 exists (z0 ∈ U ⊂ Ω)
such that f (restricted to U) is holomorphic in U .

• A function f : C→ C is an entire function4 if it is holomorphic in C.

Lemma 7.6. Each complex differentiable function at a point z0 is continuous at z0.

The rules for differentiating sums, products, compositions of differentiable functions hold in C as they do
in R.

Because the proofs are the same in C as in R.

Lemma 7.7. If f is given as a power series,

f(z) =

∞∑
n=0

an(z − z∗)n, an ∈ C,

which converges in the open ball

BR(z∗) := {z ∈ C : |z − z∗| < R},

then f is holomorphic in the ball BR(z∗), the derivative is found by term-wise differentiation,

f ′(z) =

∞∑
n=0

ann(z − z∗)n−1, z ∈ BR(z∗),

and this power series converges in BR(z∗).

The proof was already given in the first year.

A bad example might be salubrious:

3holomorph
4ganze Funktion
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Lemma 7.8. The function f : C→ C, given by f(z) = zz = |z|2, is nowhere holomorphic.

Proof. If z0 = 0, then

f(z)− f(z0)

z − z0
=
zz

z
= z → 0 (if z → z0),

hence f is complex differentiable at z0 = 0.

If z0 6= 0, then

f(z)− f(z0)

z − z0
=
zz − z0z0

z − z0
=

(z − z0)z + z0(z − z0)

z − z0
= z + z0 ·

z − z0

z − z0
,

and this has no limit for z → z0, because we can write z = z0 + εeiϕ, and then

z − z0

z − z0
=
ε exp(−iϕ)

ε exp(iϕ)
= exp(−2iϕ),

and now each ray {z : arg(z − z0) = ϕ} has its own limit for z−z0
z−z0 .

Therefore, f is not complex differentiable at z0 6= 0.

Theorem 7.9 (Cauchy–Riemann differential equations). Let Ω ⊂ C be non-empty and open,
f : Ω → C be a function with f = u + iv =

(
u
v

)
, and z0 = x0 + iy0 ∈ Ω. Here u, v, x0, y0 are real.

Then the following are equivalent:

1. f is complex differentiable at z0,

2. f = f(x, y) is real differentiable at (x0, y0) ∈ R2, and the Jacobi matrix f ′(x0, y0) generates a
C–linear map,

3. f = f(x, y) is real differentiable at (x0, y0) ∈ R2, and the Cauchy–Riemann differential equations
hold at the point (x0, y0):

ux(x0, y0) = vy(x0, y0), uy(x0, y0) = −vx(x0, y0).

Proof. We exploit Lemma 7.2:

f is complex differentiable at z0

⇐⇒ limz→z0
f(z)−f(z0)

z−z0 exists

⇐⇒ there is a number a ∈ C with

f(z) = f(z0) + a(z − z0) + o(z − z0), z → z0,

⇐⇒ there is a C–linear map T : C→ C with

f(z) = f(z0) + T (z − z0) + o(z − z0), z → z0,

⇐⇒ there is a matrix A ∈ R2×2 with a11 = a22 and a12 = −a21 with(
u(x, y)
v(x, y)

)
=

(
u(x0, y0)
v(x0, y0)

)
+A

(
x− x0

y − y0

)
+ o

(∥∥∥∥(x− x0

y − y0

)∥∥∥∥) , (
x
y

)
→
(
x0

y0

)
,

⇐⇒ the function
(
u
v

)
: Ω→ R2 is differentiable at

(
x0

y0

)
, and the Jacobi matrix

(
u
v

)′
(x0, y0) =

(
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

)
satisfies ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).
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Another approach to the Cauchy–Riemann differential equations is the following:

f is complex differentiable at z0

⇐⇒ lim
z→z0

f(z)− f(z0)

z − z0
exists,

=⇒ lim
x→x0

f(x+ iy0)− f(x0 + iy0)

(x+ iy0)− (x0 + iy0)
and lim

y→y0

f(x0 + iy)− f(x0 + iy0)

(x0 + iy)− (x0 + iy0)

both exist and are equal

=⇒ lim
x→x0

(u(x, y0) + iv(x, y0))− (u(x0, y0) + iv(x0, y0))

x− x0

= lim
y→y0

(u(x0, y) + iv(x0, y))− (u(x0, y0) + iv(x0, y0))

i(y − y0)

⇐⇒ ux(x0, y0) + ivx(x0, y0) =
1

i
(uy(x0, y0) + ivy(x0, y0)),

and from this computation, we learn that

f ′(z0) = ∂xf(z0) =
1

i
∂yf(z0),

which has as consequence that

f ′(z0) =
1

2
(∂x − i∂y)f(z0).

We can express this as

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
.

Moreover, the Cauchy–Riemann equations can be compressed into

0 =

(
∂

∂x
+ i

∂

∂y

)
(u(x0, y0) + iv(x0, y0)).

Check this !

We take z and z as two new complex variables instead of the real variables x and y: by the chain rule,

∂

∂x
=
∂z

∂x

∂

∂z
+
∂z

∂x

∂

∂z
=

∂

∂z
+

∂

∂z
,

∂

∂y
=
∂z

∂y

∂

∂z
+
∂z

∂y

∂

∂z
= i

∂

∂z
− i

∂

∂z
,

and therefore

0 =

(
∂

∂x
+ i

∂

∂y

)
(u(x0, y0) + iv(x0, y0))

=

((
∂

∂z
+

∂

∂z

)
+ i

(
i
∂

∂z
− i

∂

∂z

))
(u(x0, y0) + iv(x0, y0))

= 2
∂

∂z
f(z).

Hence we have shown:

Lemma 7.10. A function f : Ω→ C is complex differentiable at z0 ∈ Ω if and only if

∂

∂z
f(z0) = 0.

Going back to the example f = f(z) = zz from Lemma 7.8, we have ∂zf = z, which vanishes only at the
origin, but nowhere else.

Exercise: Check that the real part and the imaginary part of the principal branch of the complex logarithm
solve the Cauchy–Riemann differential equations.
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7.3 Conclusions and Applications

Lemma 7.11. If f = u+ iv =
(
u
v

)
(where u and v are real) is holomorphic in Ω, with u and v being twice

continuously differentiable, then 4u = 0 and 4 v = 0 in Ω.

Proof. Wonderful exercise.

Lemma 7.12. Let Ω ⊂ C be non-empty, open, and connected (also called a domain5 in C). Let f : Ω→ C
be holomorphic in C.

• if f ′(z) = 0 everywhere in Ω, then f ≡ const. in Ω,

• if f takes real values everywhere in Ω, then f ≡ const. in Ω,

• if |f(z)| = 1 for all z ∈ Ω, then f ≡ const. in Ω.

Proof. Write f = u+ iv as usual, with u and v being real. Similarly we split z = x+ iy with real x, y.

• We have

0 = f ′(z) =
∂

∂z
f(z) =

∂

∂x
f(z) = ux(z) + ivx(z), ∀ z ∈ Ω,

and then, by the Cauchy–Riemann differential equations,

uy(z) = −vx(z) ≡ 0, vy(z) = ux(z) ≡ 0,

hence ∇u ≡ 0, ∇v ≡ 0 in Ω. Then u ≡ const. and v ≡ const. in Ω, because Ω is connected.

• Now we have v ≡ 0 in Ω, and consequently ∇u ≡ 0 in Ω.

• We know u2(z) + v2(z) = 1 for all z ∈ Ω, hence

uux + vvx ≡ 0, uuy + vvy ≡ 0,

and, by the Cauchy–Riemann differential equations, uvx = −uuy = vvy = vux,

0 ≡ u · (uux + vvx) = u2ux + uvvx = u2ux + v2ux = (u2 + v2)ux = 1 · ux.

Similarly, we show vx ≡ 0, which brings us to f ′ ≡ 0. Now apply the first •.

Definition 7.13. A map T : C→ C is called angle-preserving6 if it is R–linear, injective, and if

〈T (w), T (z)〉
|T (w)| · |T (z)|

=
〈w, z〉
|w| · |z|

for all w, z ∈ C \ {0}, with 〈p, q〉 = p1q1 + p2q2 being the usual scalar product in R2.

Lemma 7.14. An injective R–linear map T : C→ C is angle-preserving if and only if there is a number
a ∈ C \ {0} with T (z) = az for all z ∈ C, or T (z) = az for all z ∈ C.

Proof. We consider z and w from C as vectors from R2. Recall that 〈z, w〉 = |z| · |w| · cos(^(z, w)).

In R2 ' C, we take the triangle with corners O = 0C = (0, 0)>, P = 1C = (1, 0)>, and Q = i = (0, 1)>.
The linear map T maps this triangle OPQ to the triangle O′P ′Q′, with O′ = O, by linearity. The linear
map T is realised by a matrix A ∈ R2×2, and the entries in the columns of A are equal to the coordinates
of the images of the basis vectors, hence

P ′ =

(
a11

a21

)
, Q′ =

(
a12

a22

)
.

5Gebiet
6winkeltreu
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The vectors
−−→
OP and

−−→
OQ are perpendicular, and T is angle-preserving. Therefore also the vectors

−−→
OP ′

and
−−→
OQ′ must be perpendicular, hence(
a11

a21

)
⊥
(
a12

a22

)
=⇒

(
a12

a22

)
= α

(
−a21

a11

)
(∃ α ∈ R).

Now the triangle OPQ has an angle π/4 at P , and then also the triangle OP ′Q′ must have an angle π/4

at P ′, because T preserves the (modulus of the) angles. This means |
−−→
OP ′| = |

−−→
OQ′|, hence∣∣∣∣(a11

a21

)∣∣∣∣ =

∣∣∣∣(a12

a22

)∣∣∣∣ =⇒ |α| = 1.

If α = 1, then we have

A =

(
a11 a12

a21 a22

)
=

(
a11 −a21

a21 a11

)
and the product T (z) = A

(
x
y

)
becomes (a11 + ia21)(x+ iy), which equals az for a = a11 + ia21.

And if α = −1, then we have

A =

(
a11 a12

a21 a22

)
=

(
a11 a21

a21 −a11

)
,

and then the product T (z) = A
(
x
y

)
becomes (a11 + ia21)(x− iy), which equals az for a = a11 + ia21.

Lemma 7.15. If γ1 = γ1(t) and γ2 = γ2(t) with a1 ≤ t ≤ b1 and a2 ≤ t ≤ b2 are two differentiable curves
in C which intersect at z0 ∈ C with intersection angle α, and if f = f(z) is a holomorphic map with
f ′(z0) 6= 0, then the image curves f(γ1) and f(γ2) intersect at f(z0), again with intersection angle α.

Proof. Let t1 and t2 be such that z0 = γ1(t1) and z0 = γ2(t2). Then the tangential vectors on the curves
γ1 and γ2 are γ′1(t1) and γ′2(t2). The images of these tangential vectors under the map f are f ′(z0)γ′1(t1)
and f ′(z0)γ′2(t2). Now observe that the multiplication with the complex number f ′(z0) constitutes an
angle-preserving map, because f ′(z0) 6= 0.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7.1: A grid in the z–plane
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Figure 7.2: The image of the grid from Figure 7.1 under the map z 7→ z2. Observe that the red and blue
lines intersect orthogonally in both figures.
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Figure 7.3: One more grid in the z–plane
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Figure 7.4: The image of the grid from Figure 7.3 under the map z 7→ exp(z)



7.3. CONCLUSIONS AND APPLICATIONS 123

We come to an application in fluid dynamics. In a two-dimensional world, let some stream of water
flow in the plane, around an obstacle. We assume the flow to be independent of time, and the velocity
vector at a point (x, y) ∈ R2 shall be denoted by (w1(x, y), w2(x, y)). The obstacle shall be the unit ball,

B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Our physical assumptions are the following:

• the flow is free of rotations (curl-free), hence

rot(w1, w2) ≡ 0 in R2 \B,

which means w1,y − w2,x ≡ 0.

This does not imply that (w1, w2) possesses a potential, because R2 \B is a doubly connected set,
but not a simply connected set.

• there exists a scalar potential V for (w1, w2):

w1(x, y) = Vx(x, y), w2(x, y) = Vy(x, y), ∀ (x, y) ∈ R2 \B.

• the fluid is incompressible and homogeneous (the density is the same everywhere), and there are
neither sources nor sinks:

div(w1, w2) ≡ 0,

which means w1,x + w2,y = 0.

For a discussion of the validity of these assumptions, see Chapter 40 “The flow of dry water” in Feynman’s
lecture notes7. Some conclusions are:

• 4V = div gradV = div(w1, w2) ≡ 0 in R2 \B,

• The velocity field is perpendicular to the level sets8 {(x, y) : V (x, y) = const.}. (These level sets are
called potential lines9.)

• on the boundary ∂B, the vector ∇V must be tangential, because otherwise the fluid would enter
the obstacle, or come out of the obstacle.

The last conclusion is typical for dry water, because wet water will have ∇V completely equal to zero at
∂B, for reasons of friction between water and obstacle.

Our next assumption is:

• in the upper half-plane {(x, y) : y > 0}, the picture of the flow is the reflected picture from the lower
half-plane.

In particular, the flow is horizontal on the real axis. Then we can consider B ∪ {(x, y) : y ≤ 0} as the new
obstacle, and only care about the points with y > 0. The new interesting domain

Ω := {(x, y) : y > 0 and x2 + y2 > 1}

is then simply connected.

In this set Ω, we are looking for a real-valued function W = W (x, y) with

Vx = Wy, Vy = −Wx,

7 Richard P. Feynman, Robert B. Leighton, Matthew Sands. The Feynman Lectures on Physics, The Definitive Edition
Volume 2 (2nd Edition). Addison Wesley, 2005.

8Niveaulinien
9Potentiallinien
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and then we put Z(x, y) := V (x, y) + iW (x, y), which will be a holomorphic function in Ω, because the
Cauchy–Riemann differential equations are satisfied. Expressed in another way,

∇W =

(
Wx

Wy

)
⊥
(
Vx
Vy

)
= ∇V,

and therefore the curves {(x, y) : W (x, y) = const.} intersect the curves {(x, y) : V (x, y) = const.} orthog-
onally. The curves along which W is constant are called stream lines10 because the particles travel along
these lines (this is true because the flow is independent of time).

The boundary ∂Ω of Ω consists of three parts: the interval (−∞,−1], the upper half circle ∂+B :=
{(x, y) : x2 + y2 = 1, y > 0}, and the interval [1,∞). The flow must not cross any of these parts, hence it
must flow along ∂Ω, and therefore W must be constant along ∂Ω.

Additionally, far away from the obstacle, the flow should not feel that an obstacle even exists. The flow
should be horizontal with speed one there:

(w1(x, y), w2(x, y)) ≈ (1, 0) if x2 + y2 � 1.

Then it is reasonable to expect that V (x, y) ≈ x for x2 + y2 � 1, and also

∇W =

(
Wx

Wy

)
=

(
−Vy
Vx

)
=

(
−w2

w1

)
≈
(

0
1

)
far away from the obstacle, which makes W (x, y) ≈ y plausible. This gives us Z(z) ≈ z for z = x + iy
with |z| � 1.

The goal is now to find a function Z on Ω with the following conditions:

• Z is holomorphic on Ω,

• Z(z) ≈ z for |z| � 1,

• =Z(z) is constant on ∂Ω. Combined with the second condition, =Z(z) should be zero on ∂Ω.

The strategy is now: the shape of the set Ω is quite awkward. So maybe we can find Z(z) = (G◦H)(z), with
G and H both holomorphic, and H maps Ω onto another domain which is more beautiful, in comparison
to Ω. Then we only have to find G, in a second step.

After some playing around with various functions, we come to H(z) = z + 1
z . Observe that

• H : [1,∞)→ [2,∞),

• H : ∂+B → (−2, 2),

• H : (−∞,−1]→ (−∞,−2],

and therefore H maps Ω onto the upper half-plane Ci,+ := {(x, y) : y > 0}. The function G shall have the
following properties:

• G is holomorphic on Ci,+,

• G(ζ) ≈ ζ for |ζ| � 1,

• =G(ζ) is zero on the real axis R = ∂Ci,+.

The most natural choice is G(ζ) = ζ. Hence we have found Z(z) = z + 1
z , and therefore

Z(x, y) = V (x, y) + iW (x, y) = (x+ iy) +
1

x+ iy
= x+ iy +

x− iy

x2 + y2

= x

(
1 +

1

x2 + y2

)
+ iy

(
1− 1

x2 + y2

)
10Stromlinien
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which gives us

W (x, y) = y

(
1− 1

x2 + y2

)
,

and the lines {(x, y) : W (x, y) = const.} are good candidates for stream lines.

The big open question is: is this the only solution ? Perhaps there are also other solutions, and there is
one more criterion (which we have not found yet) that tells us which of these solutions is the physically
correct one ?

The answer (which we can not justify) is that the above constructed function W does indeed describe the
stream lines of dry water, see also the figure, which seems physically believable (at least if we do not look
to closely at the boundary between obstacle and water).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 7.5: The lines {(x, y) : W (x, y) = const.}

[speaking about the scientific fields of chemical kinetics and fluid dynamics:]11 Neither
subject had yet reached the dignified status of a science in the nineteenth century, when as Sir
Cyril Hinshelwood has observed, chemical reactions were classified mainly into those that go
and those that do not go, and when fluid dynamicists were divided into hydraulic engineers
who observed things that could not be explained and mathematicians who explained things that
could not be observed.

11Physics of gas flow at very high speeds, Nature, 4529, 1956, 343–345
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Chapter 8

Integration

8.1 Definition and Simple Properties

We start with a curve Γ ⊂ C and its parametrisation γ, which is supposed to fulfil the following conditions:

• γ ∈ C1([tstart, tend]→ C), for a certain time interval [tstart, tend] ⊂ R,

• γ′(t) is never zero, for tstart ≤ t ≤ tend,

• the image Γ intersects itself only a finite number of times.

The second condition makes sure that the image Γ has no “corner” points. Call the endpoints of the
image Γstart = γ(tstart) and Γend = γ(tend).

To approximate complex curve integrals, we choose a large natural number N , split the time interval into
N parts:

tstart = t0 < t1 < . . . < tN = tend,

give a name to the associated points on the image:

zj := γ(tj), 0 ≤ j ≤ N,

and then we imagine a complex curve integral as something which can be approximated like this:∫
γ

f(z) dz ≈
N−1∑
j=0

f(γ(τj))(zj+1 − zj),

where τj are arbitrary times from the corresponding sub-interval: tj ≤ τj ≤ tj+1.

With this interpretation in mind, the following definition becomes natural:

Definition 8.1 (Curve integral). Let f : Γ→ C be continuous, and suppose the above conditions on γ
and Γ. Then we set∫

γ

f(z) dz :=

∫ tend

t=tstart

f(γ(t))γ′(t) dt.

We split f and γ into real part and imaginary part:

f = u+ iv, u, v ∈ R,
γ(t) = α(t) + iβ(t), α(t), β(t) ∈ R, γ′(t) = α′(t) + iβ′(t),∫

γ

f(z) dz =

∫ tend

t=tstart

(u(γ(t)) + iv(γ(t)))(α′(t) + iβ′(t)) dt

=

∫ tend

t=tstart

(uα′ − vβ′) dt+ i

∫ tend

t=tstart

(vα′ + uβ′) dt

=

∫ Γend

Γstart

(udx− v dy) + i

∫ Γend

Γstart

(v dx+ udy),

127
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which are curve integrals of second kind, as we have studied them in the first year. Recalling the results
from the past, we directly get:

Proposition 8.2. If f is continuous on Γ, then we have:

• the integral
∫
γ
f(z) dz does not depend on the parametrisation of Γ, as long as the orientation of Γ

is not inverted (otherwise a factor −1 appears),

• the following estimate holds:∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ‖f‖L∞(Γ) · length(Γ), (8.1)

• the functional f 7→
∫
γ
f(z) dz is a homomorphism from C(Γ→ C) to C.

By the first •, we can now write
∫

Γ
f(z) dz instead of

∫
γ
f(z) dz.

Considering a sequence of curves, for which the end point of one curve is the starting point of the next
curve, we can define curve integrals along curves with a finite number of “corners”.

Example 8.3. Take f = f(z) = zn with n ∈ N0, and Γ has the parametrisation γ(t) = Reit for
0 ≤ t ≤ 2π. Then Γ is a closed curve with counter-clockwise orientation, and we have∫

Γ

f(z) dz =

∫ 2π

t=0

(Reit)n ·Rieit dt = iRn+1

∫ 2π

t=0

eit(n+1) dt = iRn+1 · 1

i(n+ 1)
eit(n+1)

∣∣∣t=2π

t=0
= 0.

Example 8.4. Take f = f(z) = zn with n ∈ {−2,−3,−4, . . . } and Γ as before. Then we have∫
Γ

f(z) dz = · · · = 0,

by the same computation.

Example 8.5. Take f = f(z) = 1/z, and again Γ as a circle around the origin of radius R, run counter-
clockwise. Then∫

Γ

f(z) dz =

∫ 2π

t=0

1

Reit
·Rieit dt =

∫ 2π

t=0

i dt = 2πi.

Note that in all three examples, the final result does not depend on the radius R of the circle.

Proposition 8.6. If Ω is a domain in C (which means: non-empty, open, connected), and f : Ω→ C is
continuous, with a holomorphic function F : Ω→ C such that F ′(z) = f(z) for all z ∈ Ω, then∫

Γ

f(z) dz = F (Γend)− F (Γstart).

Proof. By direct computation and the chain rule:∫
Γ

f(z) dz =

∫ tend

t=tstart

f(γ(t))γ′(t) dt =

∫ tend

t=tstart

d

dt
F (γ(t)) dt = F (γ(tend))− F (γ(tstart)).

Going back to Example 8.3, we have f(z) = zn, and we easily check that F = F (z) = 1
n+1z

n+1 is a

primitive function1 of f (which means F ′ = f), and then it is clear that the integral over Γ gives the
value zero, because Γ is a loop.

In case of Example 8.4, we can argue in the same manner.

Exercise: Check that the complex logarithm Ln, defined on Ω := C \ R−, is a primitive function to
f = f(z) = 1

z :

(Ln(z))
′ ?

=
1

z
, ∀z ∈ C \ R−.

1Stammfunktion
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Recall that the complex logarithm has a jump of height 2πi when we cross R−, which explains the result
from Example 8.5.

In the situation of Proposition 8.6, the value of the curve integral
∫

Γ
f(z) dz depends only on the location

of the start point Γstart and on the location of the end point Γend, but not on the path connecting these
two points. This can be expressed in another way:

Lemma 8.7. Let Ω be a domain in C (a multiply-connected Ω is allowed), and f : Ω→ C be a continuous
function. Then the following two statements are equivalent:

• for each curve Γ in Ω, the value of the integral
∫

Γ
f(z) dz depends only on the start point Γstart and

the end point Γend,

• for each loop Γ in Ω, the curve integral
∮

Γ
f(z) dz is zero.

Idea of proof. Take two points A and B in Ω, and take two curves Γ1 and Γ2 which join these two points,
running from A to B. If you invert the orientation of one of these curves and join them together, you
obtain a loop.

Proposition 8.8. Let Ω be a domain in C (a multiply-connected Ω is allowed), and f : Ω → C be
continuous. Then the following are equivalent:

1. there is a function F , holomorphic on Ω, with F ′(z) = f(z) for all z ∈ Ω,

2. for each loop Γ in Ω, we have
∮

Γ
f(z) dz = 0.

Proof.

1 =⇒ 2: have a look at Proposition 8.6 and Lemma 8.7.

2 =⇒ 1: we construct a function F as follows. Pick a point z∗ ∈ Ω, and for each z ∈ Ω, let Γz be a curve
inside Ω from z∗ to z. Then define

F (z) :=

∫
Γz

f(ζ) dζ.

By Lemma 8.7, the value of F (z) does not depend on the choice of the curve connecting z∗ and z.
We choose a point z0 ∈ Ω, and we wish to show F ′(z0) = f(z0), which means

lim
z→z0

F (z)− F (z0)

z − z0
= f(z0) ⇐⇒ lim

z→z0

∣∣∣∣F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ = 0.

We are allowed to take a special curve Γz, namely Γz := Γz0 ∪ S(z0 → z), where S(z0 → z) stands
for the straight line from z0 to z. Then it follows that

F (z)− F (z0) =

∫
S(z0→z)

f(ζ) dζ,∣∣∣∣F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ =

∣∣∣∣∣ 1

z − z0

∫
S(z0→z)

f(ζ) dζ − f(z0)

∣∣∣∣∣
=

∣∣∣∣ 1

z − z0

∫ 1

t=0

f(z0 + t(z − z0)) · (z − z0) dt− f(z0)

∣∣∣∣
=

∣∣∣∣∫ 1

t=0

f(z0 + t(z − z0)) dt− f(z0)

∣∣∣∣ ≤ ∫ 1

t=0

∣∣∣f(z0 + t(z − z0))− f(z0)
∣∣∣dt

≤ sup
ζ∈S(z0→z)

|f(ζ)− f(z0)|,

and this goes to zero for z → z0, because f is continuous. This proves F ′(z0) = f(z0), for an
arbitrary z0 ∈ Ω.

A direct consequence then is that the function f = f(z) = 1/z can not have a primitive function on
Ω = C \ {0}. But it does have a primitive function on Ω = C \ R−, namely the complex logarithm.

On the other hand, the function f = f(z) = −1/z2 does possess a primitive function on the doubly-
connected set Ω = C \ {0}, namely F = F (z) = 1/z.
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8.2 The Cauchy Integral Theorem

In the previous section, f was merely continuous on Γ or on Ω. Now we make the assumptions on f
stronger: it shall be holomorphic on Ω, and this will bring us a Great Beautification of the theory.

We recall a result from the first year:

Proposition 8.9. Let Ω ⊂ Rn be a domain that is simply-connected. Assume that g : Ω → Rn is
continuous, with continuous derivative g′, and that g satisfies the integrability conditions:

∂gj
∂xk

(x) =
∂gk
∂xj

(x), ∀ j, k, ∀ x ∈ Ω.

Let Γ be a curve inside Ω.

Then the value of the curve integral (of second kind)
∫

Γ
~g d~x depends only on the location of the start point

Γstart and of the end point Γend, but not on the path connecting these points.

Each curve integral
∮

Γ
~g d~x over a loop Γ vanishes.

The condition that g′ be continuous was really needed in the proof from the first year.

In our situation, we have C ' R2, and the complex curve integral splits into two real curve integrals:∫
Γ

f(z) dz =

∫
Γ

(udx+ (−v) dy) + i

∫
Γ

(v dx+ udy).

Here we have split z = x + iy with real x and y, and also f = u + iv with real u and v. Now we apply
that result from the first year to g = (u,−v) and to g = (v, u), and then we quickly get:

Proposition 8.10. Let Ω ⊂ R2 ' C be a domain that is simply-connected. Assume that f : Ω→ C ' R2

with f = u + iv (where u and v are real) is continuous, with continuous derivatives ∇u, ∇v, and that
satisfies the integrability conditions

uy ≡ (−v)x, vy ≡ ux.

Then each curve integral
∮

Γ
f(z) dz over a loop Γ inside Ω vanishes.

The formulation is not quite satisfactory: we mention u and v too often, and the result will be nicer if we
express everything in terms of f :

∂x = ∂z + ∂z,

∂x(u+ iv) = ∂xf = ∂zf + ∂zf =⇒ ux = <(∂zf + ∂zf), vx = =(∂zf + ∂zf),

∂y = i∂z − i∂z,

∂y(u+ iv) = ∂yf = i∂zf − i∂zf =⇒ uy = <(i∂zf − i∂zf), vy = =(i∂zf − i∂zf),

and therefore we conclude that:

∇u, ∇v are continuous ⇐⇒ ∂zf, ∂zf are continuous.

We recall that the holomorphy of a function f can be expressed as ∂zf ≡ 0 and obtain our final result:

Theorem 8.11 (Cauchy Integral Theorem). Let Ω ⊂ C be a domain that is simply-connected. Assume
that f : Ω→ C is holomorphic, with continuous derivative f ′.

Then each curve integral
∮

Γ
f(z) dz over a loop Γ inside Ω vanishes.

Remark 8.12. We discuss the assumptions.

• The assumption “Ω simply connected” is indispensable, as the example Ω = C \ {0}, f(z) = 1/z
shows.

• The conclusion of the Cauchy Integral Theorem also holds without the condition “f ′ continuous”
(which was only needed for applying Proposition 8.9 from the second semester), as can be shown by
a completely different proof, see [9], [16], or the classical booklet [17].
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Example 8.13. Take numbers 0 < r1 < r2 < r3 < r4 and z∗ ∈ C, and choose Ω as an annulus2,

Ω = {z ∈ C : r1 < |z − z∗| < r4}.

If f is a holomorphic function on Ω, then∮
|z−z∗|=r2

f(z) dz =

∮
|z−z∗|=r3

f(z) dz,

provided that both circles have the same orientation. The reason is that the two circles can be connected
by a radial line, and the integration variable is walking along this radial line inward and outward, and
walking along both circles.

This is an example of a general principle: we can deform carefully the path of a curve integral without
changing the value of this integral, as long as we stay in the domain where the integrand is holomorphic.

Again, have a look at the Examples 8.3–8.5, in which the result was independent of the radius R.

We will need a generalisation of the Cauchy Integral Theorem:

Proposition 8.14. Let Ω ⊂ C be a simply-connected domain, p a point in Ω, and f : Ω \ {p} → C
holomorphic, and f bounded near p.

Then each curve integral
∮

Γ
f(z) dz over a loop Γ inside Ω vanishes.

The key difficulty here is that Ω \ {p} is no longer simply-connected.

Idea of proof. The following is mathematically not very precise, but geometrically hopefully clear.

Case 1: Γ does not “revolve around” p: Then we can replace Ω by a smaller domain Ωnew that con-
tains Γ, but not p, and then we apply the Cauchy Integral Theorem to Ωnew instead of Ω.

Case 2: Γ does “revolve around” p, perhaps several times: By the idea from Example 8.13, we
can deform Γ, until we obtain another curve Γnew which also revolves around p (the same number
of times as Γ does), but which is much shorter. We remember that f is bounded near p, and have
a look back to the integral estimate (8.1). Observe that the curve Γnew can be made as short as we
wish.

Of course, there may be several exceptional points in Ω like p, not only one.

We need some concepts. Imagine G as C minus a collection of some closed curves which may intersect
(but any open non-empty subset G of C would also be good).

Definition 8.15. Let G ⊂ C be non-empty and open, not necessarily connected. Then two points z1,
z2 ∈ G are called path-equivalent3 if there is a curve in G that connects z1 and z2. If this holds, we write
z1 ∼G z2.

We quickly check:

z ∼G z ∀ z ∈ G (reflexivity),

z ∼G w =⇒ w ∼G z ∀ z, w ∈ G (symmetry),

z ∼G w, w ∼G ζ =⇒ z ∼G ζ ∀ z, w, ζ ∈ G (transitivity),

which are the three conditions for an equivalence relation.

We take the opportunity to start an excursion into algebra.

Other examples of equivalence relations are:

• straight lines in the plane can be considered equivalent when they are parallel,

2Kreisring
3weg–äquivalent



132 CHAPTER 8. INTEGRATION

• triangles in the plane can be considered equivalent when they are congruent,

• integers a, b ∈ Z are “congruent modulo 2” (written as a ≡ b mod 2) if 2|(b− a),

• if U and V are vector spaces and f : U → V a homomorphism, then we can define that u1 ≡f u2 if
u1 − u2 ∈ ker f ,

• two students can be considered equivalent if they started their studies in the same year,

• screws are defined to be equivalent if they are of the same size,

• two integrable functions f, g : [a, b]→ R are equivalent if
∫ b
x=a
|f(x)− g(x)|dx = 0 (imagine that f

and g coincide almost everywhere, except a finite number of points in [a, b]).

Definition 8.16. Let M be an arbitrary set with an equivalence relation ∼. For an x ∈M, the set

[x] := {y ∈M : y ∼ x} ⊂M

is called the equivalence class of the element x.

As an example, take M = Z with the equivalence relation being: a ∼ b if and only if 2 divides (b− a), as
above. Then [3] is the set of odd integers, and [2] is the set of even integers. A nice property is that the
relation ∼ respects the arithmetical operations: if a1 ∼ b1 and a2 ∼ b2, and if 3 is one of the symbols
+, −, ·, then (a13a2) ∼ (b13b2). Of course, [1] = [3] = [5] = . . . are the same set, and in order to
represent the interests of this set at some other place, you can send a representative4 (which is a member
of [1] = [3] = . . . ) to that other place. In this particular cases, such a representative could be −43 or 991
or any odd number (see below).

Lemma 8.17. Let M be a (countable5) set with an equivalence relation ∼. Then M decomposes into
disjoint subsets,

M = M1 ∪M2 ∪ . . . ,

with Mj ∩Mk = ∅ for j 6= k, and two members of M belong to the same Mj if and only if these two
members are equivalent. Each Mj is an equivalence class of the relation ∼.

And if M is uncountable6 (like every vector space over R), then M decomposes as M = ∪α∈AMα with a
possibly uncountable index set A, and each Mα is an equivalence class of the relation ∼.

The gain is: quite often, the equivalence classes correspond to interesting mathematical objects.

• an equivalence class of parallel straight lines defines a “direction” in the plane,

• the equivalence classes of the relation ≡f form a vector space which is isomorphic to img f .

Assume we only know integers from Z, how can we define (in a logically precise manner) rational numbers
from Q ? First we define ordered pairs (n, d) with n ∈ Z and d ∈ Z \ {0}. Think of n as numerator7 and
d as denominator8. Define addition and multiplication via

(n1, d1) + (n2, d2) := (n1d2 + n2d1, d1d2), (n1, d1) · (n2, d2) := (n1n2, d1d2).

Define an equivalence relation as (n1, d1) ≡ (n2, d2) if and only if n1d2 = n2d1. Check that this is
indeed an equivalence relation. Check that the relation ≡ respects the arithmetical operations (in the
sense explained above). Then we specify: each rational number is defined as an equivalence class of such
pairs. The addition of rational numbers is defined via [(n1, d1)] + [(n2, d2)] := [(n1, d1) + (n2, d2)]. This
means: to add two equivalence classes, you take a representative of each class, add these representatives,
and then you take the equivalence class corresponding to this sum. It does not matter who are the two
representatives because ≡ respects the addition. Similarly for the multiplication. Finally we check that
these rational numbers form a field.

4Vertreter, Stellvertreter, Abgeordneter, Delegierter
5abzählbar
6überabzählbar
7Zähler
8Nenner
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Assume we only know rational numbers from Q, how can we define (in a logically precise manner) real
numbers from R ? First we define Cauchy sequences (r1, r2, r3, . . . ) of rational numbers. Define addition
and multiplication component-wise:

(r1, r2, r3, . . . ) + (s1, s2, s3, . . . ) := (r1 + s1, r2 + s2, r3 + s3, . . . ),

(r1, r2, r3, . . . ) · (s1, s2, s3, . . . ) := (r1 · s1, r2 · s2, r3 · s3, . . . ),

and check that the right-hand sides are Cauchy sequences again. Define two such Cauchy sequences of
rational numbers to be equivalent if their difference sequence converges to the rational number zero. Check
that this is indeed an equivalence relation. Check that this equivalence relation respects the arithmetical
operations (in the sense explained above). Then we specify: each real number is defined as an equivalence
class of such sequences. The addition and multiplication of real numbers are defined via representatives.
Finally we check that these real numbers form a field.

Let us end here the excursion into algebra and return to complex analysis.

Let G ⊂ C be non-empty and open, not necessarily connected. By the equivalence relation ∼G, G splits
into disjoint subsets (whose number might be infinite),

G = C1 ∪ C2 ∪ . . . ∪ CK ,

and two points of G belong to the same subset if and only they are path equivalent.

Definition 8.18. These sets Cj are called connected components of G9.

For instance, the bready subset of a cheeseburger comprises exactly two connected components (upper
and lower part), at least initially.

Figure 8.1: This set G has 7 connected components, one of them unbounded.

Definition 8.19. Let Γ be a loop in C. For z ∈ C \ Γ, set

Ind
Γ

(z) :=
1

2πi

∮
Γ

1

ζ − z
dζ,

and call it the winding number10 of Γ with respect to z.

Lemma 8.20. For Γ a loop in C and z ∈ C \ Γ, the winding number IndΓ(z) is an integer, and it is
constant on each connected component of G := C \ Γ. On the unbounded component, IndΓ(z) is zero.

Proof. Take z ∈ G fixed. Parametrise Γ with γ : [a, b]→ C. Then we have

Ind
Γ

(z) =
1

2πi

∫ b

t=a

γ′(t)

γ(t)− z
dt. (8.2)

For s ∈ [a, b], we set

ϕ(s) := exp

(∫ s

t=a

γ′(t)

γ(t)− z
dt

)
,

9 Zusammenhangskomponenten von G
10Umlaufzahl, Windungszahl, Index
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and then we get

ϕ′(s)

ϕ(s)
=

γ′(s)

γ(s)− z

for all s ∈ [a, b], except (possibly) a finite number of points where γ′ does not exist because Γ has a corner
there. Then we get

d

ds

ϕ(s)

γ(s)− z
=
ϕ′(s)(γ(s)− z)− γ′(s)ϕ(s)

(γ(s)− z)2
= 0,

almost everywhere on [a, b]. Now ϕ(s)
γ(s)−z is clearly a continuous function of s, and therefore a constant,

hence

ϕ(b)

γ(b)− z
=

ϕ(a)

γ(a)− z
=

1

γ(a)− z
.

From γ(a) = γ(b), we then find ϕ(b) = 1, or

1 = ϕ(b) = exp

(∫ b

t=a

γ′(t)

γ(t)− z
dt

)
= exp

(
2πi Ind

Γ
(z)
)
,

which is only possible for IndΓ(z) ∈ Z.

In the second semester, we have learned that integrals may be differentiated with respect to a real param-
eter under the integral symbol. Let this parameter be x or y:

∂x Ind
Γ

(z) =
1

2πi
∂x

∫ b

t=a

γ′(t)

γ(t)− z
dt =

1

2πi

∫ b

t=a

∂x
γ′(t)

γ(t)− z
dt,

∂y Ind
Γ

(z) =
1

2πi

∫ b

t=a

∂y
γ′(t)

γ(t)− z
dt,

and then also ∂z IndΓ(z) = 1
2∂x IndΓ(z) + i

2∂y IndΓ(z) = 0, because

∂z
γ′(t)

γ(t)− z
= 0

since the function z 7→ γ′(t)
γ(t)−z is holomorphic. Then also z 7→ IndΓ(z) is holomorphic on Γ, hence

continuous. Therefore IndΓ(z) must be constant on each connected component of G, since the values of
IndΓ(z) are integers.

If we send z to ∞ in (8.2), we get |γ(t) − z| → 0 uniformly for t ∈ [a, b], and this is the reason why
IndΓ(z) = 0 for z from the unbounded connected component of G.

Now we have all tools for the next important result.

Theorem 8.21 (Cauchy Integral Formula). Let Ω be a simply connected domain, Γ ⊂ Ω a loop, and
z ∈ Ω \ Γ. Then, for f holomorphic on Ω,

f(z) Ind
Γ

(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ.

In particular: if Γ = ∂B(a, r) is a circle of radius r and centre a (oriented counter-clockwise), and
z ∈ B(a, r), then

f(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ.

Proof. Keep z ∈ Ω \ Γ fixed, and define

g(ζ) =

{
f(ζ)−f(z)

ζ−z : ζ 6= z,

f ′(z) : ζ = z.
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Then this function g is holomorphic on Ω \ {z}, and bounded for ζ near z (even continuous at z). By
Proposition 8.14,

0 =

∮
Γ

g(ζ) dζ =

∮
Γ

f(ζ)

ζ − z
dζ − f(z)

∮
Γ

1

ζ − z
dζ =

∮
Γ

f(ζ)

ζ − z
dζ − 2πi Ind

Γ
(z)f(z),

which completes the proof.

Corollary 8.22. If f is holomorphic on Ω (multiply-connected is allowed), then also f ′ is holomorphic
on Ω.

Proof. Choose a ball B(a, r) ⊂ Ω and a point z ∈ B(a, r). Then, with Γ = ∂B(a, r), we have

f(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ,

because B(a, r) is simply connected, and differentiating under the integral symbol (as we have introduced
it in the second semester) gives

f ′(z) =
1

2πi

∮
Γ

∂z

(
f(ζ)

ζ − z

)
dζ =

1

2πi

∮
Γ

f(ζ)

(ζ − z)2
dζ.

Now f ′ is holomorphic if and only if ∂zf
′(z) ≡ 0. To check this, we differentiate once again under the

integral symbol:

∂zf
′(z) =

1

2πi
∂z

∮
Γ

f(ζ)

(ζ − z)2
dζ =

1

2πi

∮
Γ

∂z
f(ζ)

(ζ − z)2
dζ =

1

2πi

∮
Γ

0 dζ = 0,

because z 7→ f(ζ)
(ζ−z)2 is holomorphic.

Corollary 8.23. If f is holomorphic on Ω, then f is infinitely differentiable.

The next result can be understood as a converse to the Cauchy Integral Theorem.

Theorem 8.24 (Morera’s Theorem11). Let Ω be a domain, possibly multiply-connected. If f is con-
tinuous on Ω with

∮
Γ
f(z) dz = 0 for each loop Γ in Ω, then f is holomorphic on Ω.

Proof. By Proposition 8.8, there is a holomorphic function F with F ′(z) = f(z) for all z ∈ Ω. Now apply
Corollary 8.22 to the function F instead of f .

By repeated differentiation under the integral, we deduce that

(∂nz f)(z) · Ind
Γ

(z) =
n!

2πi

∮
Γ

f(ζ)

(ζ − z)n+1
dζ

if Γ is a loop in a simply connected domain Ω. We may choose Γ = ∂B(a, r) (positively oriented) and
z ∈ B(a, r). Then IndΓ(z) = 1 and

(∂nz f)(z) =
n!

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − z)n+1
dζ, |z − a| < r. (8.3)

It is even possible to expand f into a converging power series. To this end, we consider

1

ζ − z
=

1

(ζ − a)− (z − α)
=

(
(ζ − a)

(
1− z − a

ζ − a

))−1

=
1

ζ − a

∞∑
n=0

(
z − a
ζ − a

)n
by the summation rule of the geometric series, which is applicable because of∣∣∣∣z − aζ − a

∣∣∣∣ =
|z − a|
r

<
r

r
= 1.

11 Giacinto Morera, 1856–1907
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The convergence of this series is uniform if |z − a| is strictly less than r. Then we can proceed as follows:

f(z) =
1

2πi

∮
|ζ−a|=r

f(ζ)

ζ − z
dζ =

1

2πi

∮
|ζ−a|=r

f(ζ)

ζ − a

∞∑
n=0

(
z − a
ζ − a

)n
dζ

=
1

2πi

∞∑
n=0

∮
|ζ−a|=r

f(ζ)

ζ − a

(
z − a
ζ − a

)n
dζ

=
1

2πi

∞∑
n=0

(∮
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ

)
· (z − a)n.

Commuting
∮

and
∑
n was possible by the uniform convergence of

∑
n. We put

cn :=
1

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ

and find the power series expansion

f(z) =

∞∑
n=0

cn(z − a)n if |z − a| < r.

Observe that (8.1) gives

|cn| ≤
1

2π
max
ζ∈Γ

|f(ζ)|
rn+1

· length(Γ) =
maxζ∈Γ |f(ζ)|

rn
,

giving us then

|cn(z − a)n| ≤
∣∣∣∣z − ar

∣∣∣∣n max
ζ∈Γ
|f(ζ)|,

which tells us that the power series
∑∞
n=0 cn(z − a)n indeed converges for all z with |z − a| < r.

Comparing with (8.3) then brings us

cn =
1

n!
(∂nz f)(a).

We summarise:

Lemma 8.25. Let Ω ⊂ C be a domain (multiply-connected allowed), and choose a point a ∈ Ω. If f is
holomorphic on Ω, then f can be expanded into a power series at the point a,

f(z) =

∞∑
n=0

1

n!
(∂nz f(a)) · (z − a)n,

and this power series converges in the biggest ball B(a, r) that is contained in the closure Ω of the open
set Ω.

Geometrically: the distance from the point a to the nearest singularity of f determines the radius of
convergence. Here “singularity” is defined as a point of C where f is not holomorphic.

Exercise: Determine the radii of convergence for the functions

1

1− z
,

1

1 + z2
, sin(z), tan(z), Ln(1 + z),

all of them expanded at the point a = 0.

The following is impossible for a function f :

• f = f(z) is complex differentiable for |z| < 7,

• f(z) = 0 for all z with |z| ≤ 1,

• f(z) 6= 0 for all z with 1 < |z| < 7.
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And the reason is this: first we note that f is holomorphic on the ball B(0, 7), and therefore f is infinitely
differentiable at each point in this ball. Pick a point z∗ with |z∗| = 1. Then a sequence (z1, z2, . . . ) exists
with |zk| < 1 for all k and limk→∞ zk = z∗. By continuity of all the derivatives,

(∂nz f)(z∗) = lim
k→∞

(∂nz f)(zk) = lim
k→∞

0 = 0,

and then the power series expansion of f at the point z∗ reads

f(z) =

∞∑
n=0

1

n!
(∂nz f)(z∗) · (z − z∗)n =

∞∑
n=0

1

n!
· 0 · (z − z∗)n = 0,

and this expansion is valid for all z with |z− z∗| < 6, because B(z∗, 6) ⊂ B(0, 7), and f is holomorphic in
B(0, 7). But the last assumption was that f(z) 6= 0 for 1 < |z| < 7, which is a contradiction.

The situation is totally different for real differentiable functions. There are f : R2 → R such that

• f = f(x) is real differentiable for |x| < 7,

• f(x) = 0 for all x ∈ R2 with |x| ≤ 1,

• f(x) 6= 0 for all x with 1 < |x| < 7,

for instance

f(x) =

{
0 : |x| ≤ 1,

(x2
1 + x2

2 − 1)100 : |x| > 1.

Definition 8.26 (Analytic function). A function on a domain of C that can be expanded into a con-
verging power series (at each point of its domain of definition) with positive radius of convergence is called
analytic function12.

In the first year, we had learned that each analytic function is infinitely differentiable, and the power series
can be differentiated term-wise. And in this semester, we have found that each holomorphic function is
analytic. Therefore “analytic” and “holomorphic” are equivalent concepts in C.

Theorem 8.27 (Liouville’s Theorem). Each entire bounded function is constant.

Proof. Call this function f . Since f is entire, the power series of f at a = 0 converges on all of C, hence

f(z) =

∞∑
n=0

cnz
n, ∀ z ∈ C,

and

cn =
1

2πi

∮
|ζ|=r

f(ζ)

ζn+1
dζ,

where the radius r of Γ = ∂B(0, r) is arbitrary. We know already that

|cn| ≤
maxζ∈Γ |f(ζ)|

rn
, ∀ r > 0, ∀ n ∈ N0.

Because f is bounded on C, we have supζ∈C |f(ζ)| ≤ M for some M , hence |cn| ≤ Mr−n for all r, and
therefore 0 = c1 = c2 = . . . .

Theorem 8.28 (Fundamental Theorem of Algebra). Each polynomial of degree n ≥ 1 possesses n
zeroes in C (counted according to their multiplicity).

12analytische Funktion
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Proof. Take P (z) = anz
n + an−1z

n−1 + . . .+ a1z+ a0 with an 6= 0. We show that P has at least one zero
in C. For large |z|, the term anz

n is the biggest contribution to P (z):

|an−1z
n−1 + . . .+ a1z + a0| = |z|n ·

∣∣∣an−1

z
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣
= |anzn| ·

∣∣∣∣an−1

anz
+ · · ·+ a1

anzn−1
+

a0

a0zn

∣∣∣∣
≤ |anzn| ·

1

3
if |z| ≥ R0

for some suitably chosen number R0. Then P can not have a zero outside B(0, R0) because otherwise we
had

0 = |P (z)| = |anzn + an−1z
n−1 + . . .+ a1z + a0| ≥ |anzn| − |an−1z

n−1 + . . .+ a1z + a0|

≥ |anzn| − |anzn| ·
1

3
=

2

3
|anzn| > 0.

Now assume that P has no zero in C. The set {z ∈ C : |z| ≤ R0} is compact, and P has no zero there.
But the function z 7→ |P (z)| is continuous and real-valued, and such functions attain their infimum on
compact sets (a first year result):

∃ z∗ ∈ B(0, R0) : |P (z∗)| = inf
|z|≤R0

|P (z)|.

Then |P (z∗)| must be positive, and there is a small number ε > 0 with |P (z)| ≥ ε for all z with |z| ≤ R0.
Therefore we can define

Q(z) :=
1

P (z)
, z ∈ C,

and this is holomorphic on C because we never divide by zero. But Q is also bounded:

|Q(z)| ≤

{
1
ε : |z| ≤ R0,

3
2|anzn| : |z| > R0,

and then Q must be constant, by Liouville’s Theorem. Then P = 1/Q is also a constant function. But P
was a polynomial of degree ≥ 1. Contradiction.

Therefore P has a zero z1. Then we can divide polynomials, i.e., find another polynomial P1 with

P (z) = (z − z1)P1(z), ∀ z ∈ C.

The degree of P1 is n− 1. If n− 1 ≥ 1, repeat the reasoning from above.



Chapter 9

Zeroes, Singularities, Residues

9.1 Zeroes of Holomorphic Functions

Proposition 9.1. Let f be a holomorphic function in the open ball B(a, r), with f(a) = 0. Then exactly
one of the following two cases occurs:

Case 1: f has a zero of finite order K ∈ N+ at the point a, which means

0 = f(a) = ∂zf(a) = . . . = (∂K−1
z f)(a), (∂Kz f)(a) 6= 0,

and moreover, there is a small positive ε such that f has no zero in B(a, ε) except the centre a,

Case 2: f ≡ 0 in B(a, r).

Proof. The function f has a representation as a converging power series,

f(z) =

∞∑
n=0

cn(z − a)n, |z − a| < r,

and f(a) = 0 implies c0 = 0. Now exactly two cases are possible.

Case 1: at least one coefficient cn is non-zero: Then one of these non-zero coefficients has the
smallest index, call it cK with K ∈ N+. Then

f(z) =

∞∑
n=K

cn(z − a)n = (z − a)K
∞∑
m=0

cK+m(z − a)m =: (z − a)Kg(z),

with g(z) :=
∑∞
m=0 . . . as a holomorphic function on the ball B(a, r), and g(a) = cK 6= 0. Because

g is continuous, there is a small radius ε such that g(z) 6= 0 for all z ∈ B(a, ε).

Case 2: all cn are zero: then f is the zero-function.

We wish to extend this result to more general subsets of C, namely domains, instead of open balls B(a, r).
The most elegant proof takes the route of topology, so we list a few topological concepts, most of them
should be already known to you.

Definition 9.2. A set M ⊂ Rn is open if for each a ∈ M , a ball B(a, r) exists with B(a, r) ⊂ M (and
r > 0, of course).

A point x∗ ∈ Rn is a cluster point of M1 if in each small ball B(x∗, ε) an element xε of M exists with
xε 6= x∗. (For the definition, it does not matter whether x∗ ∈M or not.)

Let Ω ⊂ Rn be open. A subset M ⊂ Ω is called closed in Ω2 if each point x∗ ∈ Ω that is a cluster point
of M belongs to M .

The empty set M = ∅ is open, and it is closed in Ω.

1Häufungspunkt von M
2abgeschlossen in Ω

139



140 CHAPTER 9. ZEROES, SINGULARITIES, RESIDUES

Example 9.3. The interval M = (0, 1] is closed in Ω = (0,∞) ⊂ R1.

The interval M = (0, 2) is closed in Ω = (0, 2) ⊂ R1.

Lemma 9.4. Let Ω ⊂ Rn be open, and M be any subset of Ω. Write Mc.p. for the set of cluster points
of M that belong to Ω.

Then Mc.p. is closed in Ω.

Proof. We have to show: if x∗ ∈ Ω is a cluster point of Mc.p., then x∗ ∈Mc.p..

This is equivalent to: if x∗ ∈ Ω is a cluster point of Mc.p., then it is a cluster point of M .

In other words: if x∗ ∈ Ω is a cluster point of Mc.p., then for each ε > 0 a point xε ∈ M exists with
x∗ 6= xε and |x∗ − xε| < ε.

We know: for each ε > 0, there is an element yε ∈Mc.p. with x∗ 6= yε and |x∗ − yε| < ε/12, because x∗ is
a cluster point of Mc.p.. This yε is a cluster point of M because yε is a member of Mc.p..

We also know: there is an xε ∈M with |yε − xε| < 1
10 |x

∗ − yε|, because yε is a cluster point of M .

Then x∗ = xε is impossible, because of |x∗ − xε| > 9
10 |x

∗ − yε| > 0 (draw a picture !).

Finally, we have

|x∗ − xε| ≤ |x∗ − yε|+ |yε − xε| <
(

1 +
1

10

)
|x∗ − yε| <

11

10
· ε

12
< ε,

as desired. Therefore x∗ is a cluster point of M , hence x∗ ∈Mc.p..

Lemma 9.5. Let Ω ⊂ Rn be open, non-empty and connected. Assume M ⊂ Ω be open and closed in Ω.
Then either M = ∅ or M = Ω.

Proof. Beautiful exercise. You will need that Ω is connected (otherwise there are counter-examples).

In the following, Ω ⊂ C is a domain (open, non-empty, connected), and f : Ω → C is a holomorphic
function. The set of zeroes of f is N (f),

N (f) := {z ∈ Ω: f(z) = 0},

and the cluster points of N (f) form N
(f)
c.p.,

N (f)
c.p. :=

{
z ∈ Ω: z is a cluster point of N (f)

}
.

Lemma 9.6. Either N
(f)
c.p. = ∅ or N

(f)
c.p. = Ω.

Proof. By Lemma 9.4, N
(f)
c.p. is closed in Ω.

We are done if we can show that N
(f)
c.p. is open. Take a point a ∈ N (f)

c.p.. Then a ∈ Ω, and Ω is open, hence
a ball B(a, r) exists with r > 0 and B(a, r) ⊂ Ω.

Since a is a cluster point of N (f), a sequence (z1, z2, . . . ) ⊂ Ω of zeroes of f exists with limj→∞ zj = a.
Then this sequence must enter the ball B(a, r) for large index j, and approach the centre a. Then Case 2
in Proposition 9.1 occurs, and f ≡ 0 in B(a, r). Then each z ∈ C with |z − a| < r is a zero of f , and

therefore each such z is a cluster point of N (f), whence B(a, r) ⊂ N (f)
c.p..

We have shown: if a ∈ N (f)
c.p. then an r > 0 exists with B(a, r) ⊂ N (f)

c.p.. This is the very definition of N
(f)
c.p.

being open.

We begin to approach the highlight of this section:

Proposition 9.7. Let f be holomorphic on the domain Ω, and suppose that a sequence of zeroes of f
converges to a point a in the domain Ω.

Then f ≡ 0 in Ω.
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Proof. Because the point a belongs to Ω, we have a ∈ N (f)
c.p., which makes N

(f)
c.p. = ∅ impossible, hence

N
(f)
c.p. = Ω. Now repeat the middle of the proof of Lemma 9.6.

Warning: The conclusion is wrong if the limit point a of the zeroes of f sits on the boundary ∂Ω. For
instance, take Ω = {z ∈ C : <z > 0} as the open right half-plane, and f(z) = sin(1/z). Then f possesses
a sequence of zeroes that approaches the limit point a = 0, which does not belong to Ω because Ω is open.
But f(z) is certainly not equal to zero everywhere in Ω.

Theorem 9.8 (Identity Theorem). If two functions g and h are holomorphic on the domain Ω, and
they coincide on a set which has a cluster point in Ω, then g ≡ h in Ω.

Proof. Apply Proposition 9.7 to the function f := g − h.

We come back to an example from the last chapter: there is no function g = g(z) which is holomorphic
for |z| < 7, takes the value zero for |z| ≤ 1, and takes only non-zero values for 1 < |z| < 7. Now we have a
second proof: take h = h(z) as the zero-function on the ball B(0, 7). Then both g and h are holomorphic
in Ω = B(0, 7), and they coincide in the ball B(0, 1), which certainly has a cluster point in Ω. Then the
identity theorem says that g ≡ h on B(0, 7), and therefore g must be the zero-function also outside of
B(0, 1). Contradiction.

Corollary 9.9. There is exactly one holomorphic function f on a neighbourhood Ω of R that coincides
on the real axis with the sine function:

f(z) = sin z if z ∈ R.

In other words: there is only one way for extending the sine function from R into C without losing
holomorphy.

Lemma 9.10. For z, w ∈ C, it holds

sin(z + w) = sin(z) cos(w) + cos(z) sin(w). (9.1)

Proof. Keep w = w0 ∈ R fixed. Then the function on the left-hand side, z 7→ sin(z +w0), is holomorphic
in C, and the function on the right-hand side, z 7→ sin(z) cos(w0) + cos(z) sin(w0), is also holomorphic on
C. Both functions coincide for z ∈ R, and by the identity theorem, they then coincide for all z ∈ C.

This proves (9.1) for z ∈ C and w ∈ R. Now keep z = z0 ∈ C fixed, let w run, and apply the identity
theorem again.

Warning: This technique can not be used to show

Ln(z · w) = Ln(z) + Ln(w) (9.2)

for all z, w ∈ C \R− and Ln as the principal branch of the complex logarithm, because (9.2) is wrong for
such general z, w. However, (9.2) holds for all z, w with positive real part.

As an additional example, we take the Gamma function

Γ(z) =

∫ ∞
t=0

e−ttz−1 dt, z ∈ R+, (9.3)

with integration along the half-axis R+. For positive t and real z, we have

tz−1 = e(z−1) ln t,

which (for each fixed t ∈ R+) is an entire function of z ∈ C. Now we find all z ∈ C for which the integral
in (9.3) exists. Put z = x+ iy, then∣∣tz−1

∣∣ =
∣∣∣e(x−1+iy) ln t

∣∣∣ = e(x−1) ln t = tx−1,

and then we can show that (9.3) exists for all z = x+ iy with x > 0 and y ∈ R. And if (x, y) varies in a

compact subset of the open right half-plane, then the convergence limR→∞
∫ R
t=0

. . . dt is uniform.
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Next we determine a power series expansion of Γ. We can not expand at z0 = 0 because Γ has a pole
there. Take z0 = x0 + iy0 instead, with x0 > 0. Then

tz−1 = e(z0−1) ln t · e(z−z0) ln t = tz0−1
∞∑
n=0

1

n!
(ln t)n(z − z0)n,

and therefore

Γ(z) =

∫ ∞
t=0

e−ttz0−1

( ∞∑
n=0

1

n!
(ln t)n(z − z0)n

)
dt

=

∞∑
n=0

1

n!

(∫ ∞
t=0

e−ttz0−1(ln t)n dt

)
(z − z0)n,

and this series converges for all z ∈ C with |z−z0| < <z0. We know this because the Γ function as defined
in (9.3) is holomorphic in the open right half-plane, and the power series converges in any ball that lies
in the domain of holomorphy.

Next we have the induction formula zΓ(z) = Γ(z + 1) for z ∈ R+, which quickly follows from partial
integration on (9.3). Then we use

Γ(z) :=
Γ(z + 1)

z

for an analytic continuation3 of the Gamma function to the domain {z ∈ C : <z > −1} \ {0}, with a pole
at zero. By repeated application of this formula, the Gamma function can be defined as a holomorphic
function on C \ {0,−1,−2, . . . }.
The Gamma function never takes the value zero (we do not prove this), and then z 7→ 1/Γ(z) is an entire
function (without proof). Then one can show that the Bessel function Jν = Jν(z), defined via

Jν(z) =
(z

2

)ν ∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(z
2

)2m
,

compare (2.4), is, for each fixed ν ∈ C, a holomorphic function of z on the domain C \ R− (because
z 7→ zν is delicate for ν 6∈ Z). This is easy to show since each power series is a holomorphic function of
its argument in its ball of convergence. And the Bessel function Jν(z) is, for each fixed z ∈ C \ {0}, an
entire function of the variable ν. This is non-trivial because an infinite sum of entire functions need not
be entire.

Our next concept is the maximum modulus principle4. If you have a real differentiable function f : Ω→ R
with Ω ⊂ Rn and ask at which point x∗ ∈ Ω the function x 7→ |f(x)| attains its maximal value, the answer
is: x∗ ∈ Ω can be anywhere. For instance, in case of Ω = B(0, 3) ⊂ R2 and f(x) = 7 − (x2

1 + x2
2), |f |

attains its maximum at x = (0, 0).

The situation is different for complex differentiable functions.

Proposition 9.11 (Maximum modulus principle). On a bounded domain Ω ⊂ C, a holomorphic
function f which is continuous on Ω attains its maximum at the boundary:

max
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)|.

Note that we can write max instead of sup since Ω and ∂Ω are compact.

Proof. Assume the opposite: there is an interior point z∗ ∈ Ω with

max
z∈Ω
|f(z)| = |f(z∗)| > max

z∈∂Ω
|f(z)|.

3analytische Fortsetzung
4modulus = Betrag
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Then f can not be a constant function. Because any point of the open set Ω is an interior point of Ω,
hence there is a small ball B(z∗, r) contained in Ω, and we have

|f(z)| ≤ |f(z∗)| ∀ z ∈ B(z∗, r).

By the Cauchy Integral Formula,

f(z∗) =
1

2πi

∮
|ζ−z∗|=%

f(ζ)

ζ − z∗
dζ, ∀ % ∈ (0, r).

On the circle Γ = ∂B(z∗, %), we have, exploiting (8.1),

max
z∈Γ
|f(z)| ≤ |f(z∗)| ≤ 1

2π
max
|ζ−z∗|=%

|f(ζ)|
|ζ − z∗|

· 2π% = max
ζ∈Γ
|f(ζ)|,

which is only possible if |f(ζ)| = |f(z∗)| for each ζ ∈ ∂B(z∗, %). But the radius % was chosen arbitrarily
between 0 and r, and consequently

|f(z)| = |f(z∗)| ∀ z ∈ B(z∗, r).

By the same method as in Lemma 7.12, we then can prove that f ≡ const. in the ball B(z∗, r). The
identity theorem then implies f ≡ const. in Ω, which we had excluded in the beginning.

9.2 Singularities

Definition 9.12 (Isolated singularity). Let Ω ⊂ C be open. A point a ∈ Ω is called isolated singularity5

of f it f is undefined at the point a, but holomorphic on a punctured6 ball B(a, ε) \ {a}.
If f can be extended to a function that is holomorphic on B(a, ε), the singularity is called removable7.

For example, the function f = f(z) = (sin z)/z has a removable singularity at a = 0 (by defining the value
of f as 1 there).

Proposition 9.13. If Ω ⊂ C is open, and f is holomorphic on Ω \ {a}, and bounded near the point a,
then the singularity is removable.

Proof. We define a new function

g(z) :=

{
(z − a)2f(z) : z 6= a,

0 : z = a,

and, clearly, g is complex differentiable for z 6= a. And for z = a, we have

g′(a) = lim
z→a

g(z)− g(a)

z − a
= lim
z→a

(z − a)f(z) = 0,

because f is bounded near a. Then g is complex differentiable everywhere, hence holomorphic on Ω, and
therefore a Taylor expansion of g is available:

g(z) =

∞∑
n=0

cn(z − a)n, ∀ z ∈ B(a, ε) (∃ ε > 0),

with c0 = 0 because of g(a) = 0, and c1 = 0 because of g′(a) = 0. Then we have, for z ∈ B(a, ε) \ {a},

f(z) =
g(z)

(z − a)2
=

∞∑
m=0

cm+2(z − a)m,

and we can extend f to Ω by defining f(a) := c2.

5isolierte Singularität
6gelocht. puncture = Reifenpanne
7hebbar
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Definition 9.14 (Pole of order m). A function f with isolated singularity at the point a ∈ Ω has a
pole of order m ∈ N+ if complex numbers c−1, . . . , c−m with c−m 6= 0 exist such that

f −
m∑
n=1

c−n(z − a)−n

has a removable singularity at the point a.

Lemma 9.15 (Partial fraction decomposition). Let f(z) = p(z)/q(z) be a rational function (quotient
of two polynomials), with deg p < deg q; and q has zeroes z1, . . . , zK of multiplicities m1, . . . , mK .

Then numbers cj,l ∈ C exist such that

f(z) =

K∑
j=1

−1∑
l=−mj

cj,l(z − zj)l, ∀ z ∈ C \ {z1, . . . , zK}.

Proof. By the definition of poles of order m, there are numbers cj,l such that f −
∑
l cj,l(z − zj)l has a

removable singularity at zj . Then also f −
∑K
j=1

∑
l cj,l(z − zj)l has only removable singularities in C,

hence it is an entire function, and it goes to zero for |z| → ∞. Now apply the Liouville theorem.

Definition 9.16 (Essential singularity). A function f has an essential singularity8 at a point a ∈ Ω
if this point is an isolated singularity of f , but neither removable nor a pole.

Theorem 9.17 (Casorati–Weierstraß Theorem9). If f has an essential singularity at a ∈ Ω, then,
for each small ε, the set f(B(a, ε) \ {a}) is dense10 in C (this means that every complex number is a
cluster point of f(B(a, ε) \ {a}), for each ε > 0).

Proof. Suppose the opposite: for some ε0 > 0, the set f(B(a, ε0) \ {a}) is not dense in C. Then some
w ∈ C is not a cluster point of f(B(a, ε0) \ {a}), and consequently a positive δ exists with

|f(z)− w| > δ ∀ z ∈ B(a, ε0) \ {a}.

For such z, define g(z) := 1/(f(z)−w), which is holomorphic on B(a, ε) \ {a} and bounded, |g(z)| < δ−1.
By Proposition 9.13, this singularity of g is removable, and g can be holomorphically extended to the ball
B(a, ε0).

Case A: g(a) 6= 0: then f is bounded near a, and the singularity of f is removable. Contradiction.

Case B: g(a) = 0: Then we can exploit Proposition 9.1, and either g has a finite order zero (then f has
a finite order pole — contradiction) or g ≡ 0 in B(a, ε0), which contradicts g(z) = 1/(f(z)− w).

We always got a contradiction.

A typical example is f(z) = exp(1/z) for z 6= 0. In each small ball B(0, ε) \ {0}, f assumes every value
from C \ {0}, and this is already the general case:

Theorem 9.18 (Stronger Version of the Casorati–Weierstraß Theorem). If f has an essential
singularity at a ∈ Ω, then a number w0 ∈ C exists such that, in each ball B(a, ε) \ {a} (whatever small
number ε is), f attains each number from C \ {w0}.

Remark 9.19. The functions Ln and
√
· have no isolated singularities at 0, because they are not holo-

morphic on the punctured ball B(0, ε)\{0}, since they have a jump type discontinuity when crossing a ray
that starts at 0.

Theorem 9.20 (Cauchy Integral Formula for Annular Domains). Let a ∈ C, 0 ≤ r1 < r2 < r3 <
r4 ≤ ∞, and f be holomorphic on the annular domain

Ω := {z ∈ C : r1 < |a− z| < r4}.
8wesentliche Singularität
9 Felice Casorati, 1835 – 1890

10dicht
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If r2 < |a− z| < r3, then

f(z) =
1

2πi

∮
|ζ−a|=r3

f(ζ)

ζ − z
dζ − 1

2πi

∮
|ζ−a|=r2

f(ζ)

ζ − z
dζ,

both circles oriented counter-clockwise.

Sketch of Proof. Connect the circles ∂B(a, r2) and ∂B(a, r3) by two radial lines. Then the annular domain
between ∂B(a, r2) and ∂B(a, r3) decomposes into two parts, each of them looking like a horse-shoe11, and
domains of such a shape are simply connected. Now apply the Cauchy Integral Formula to each of the
two loops that encircle the horse-shoe domains.

Figure 9.1: The Cauchy Integral Formula in annular domains

Now we are in a position to describe better how functions behave near essential singularities:

Theorem 9.21 (Laurent series12). Let 0 ≤ r < R ≤ ∞ and f be holomorphic on

Ω := {z ∈ C : r < |z − a| < R}.

Then the expansion

f(z) =

∞∑
n=−∞

cn(z − a)n, r < |z − a| < R,

holds ( Laurent series), and the coefficients are

cn =
1

2πi

∮
|ζ−a|=%

f(ζ)

(ζ − a)n+1
dζ, n ∈ Z,

with an arbitrary % between r and R.

The two serieses
∑−1
n=−∞ cn(z − a)n and

∑∞
n=0 cn(z − a)n converge uniformly on compact subsets of Ω.

Proof. Fix z. Choose r2 and r3 with

r < r2 < |z| < r3 < R.

11Hufeisen
12Pierre Alphonse Laurent, 1813 – 1854
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Then we can use Theorem 9.20 and find

f(z) = F (z) +H(z),

F (z) =
1

2πi

∮
|ζ−a|=r3

f(ζ)

ζ − z
dζ,

H(z) = − 1

2πi

∮
|ζ−a|=r2

f(ζ)

ζ − z
dζ,

and F , H do not depend on r2, r3. The part F is holomorphic on B(0, R); we have the power series
expansion

F (z) =

∞∑
n=0

cn(z − a)n, cn =
1

2πi

∮
|ζ−a|=r3

f(ζ)

(ζ − a)n+1
dζ,

and cn is independent of r3. Concerning the part H, we note that

1

ζ − z
=

1

(ζ − a)− (z − a)
=
−1

z − a
· 1

1− ζ−a
z−a

= − 1

z − a

∞∑
n=0

(
ζ − a
z − a

)n
,

with convergence of the series because of |ζ − a| < |z − a|. Then we find

H(z) = − 1

2πi

∮
|ζ−a|=r2

f(ζ)

ζ − z
dζ =

1

2πi

∮
|ζ−a|=r2

f(ζ)

z − a

∞∑
n=0

(
ζ − a
z − a

)n
dζ

=

∞∑
n=0

(
1

2πi

∮
|ζ−a|=r2

f(ζ)

(ζ − a)−n
dζ

)
· (z − a)−1−n

∣∣∣ m := −1− n

=

−1∑
m=−∞

(
1

2πi

∮
|ζ−a|=r2

f(ζ)

(ζ − a)m+1
dζ

)
· (z − a)m

=

−1∑
m=−∞

cm(z − a)m,

where the coefficient

cm =
1

2πi

∮
|ζ−a|=r2

f(ζ)

(ζ − a)m+1
dζ

is independent of r2 ∈ (r,R).

In case of an isolated singularity, we may take r = 0, and then the expansion

f(z) =

∞∑
m=−∞

cm(z − a)m, 0 < |z − a| < R,

follows. Now three cases are possible:

Case 1: all cm with m < 0 are zero: then f has a removable singularity at the point a.

Case 2: a finite number of cm with m < 0 are non-zero: then f has a pole at the point a.

Case 3: an infinite number of cm (m < 0) are non-zero: then f has an essential singularity at the
point a.

Definition 9.22 (Singularities at infinity). Suppose that f is holomorphic on Ω = {z ∈ C : r <
|z − a| <∞}. Then we say that f has a pole of order m at ∞ if g(z) = f(1/z) has a pole of order m at
0, and f has an essential singularity at ∞ if g has an essential singularity at 0.

For instance, f(z) = z2 − 1/z has a second order pole at ∞, and the sine function has an essential
singularity at ∞.

Definition 9.23 (Meromorphic functions). Let Ω ⊂ C be open. A function f is called meromorphic
on Ω13 if a set P (f) (closed in Ω) exists such that f is holomorphic on Ω \ P (f), and P (f) has no cluster
points in Ω, and each element of P (f) is a pole of f or a removable singularity. The set P (f) is known as
the set of poles of f .

13meromorph auf Ω
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9.3 The Residue Theorem

Lemma 9.24. Let f be meromorphic on Ω, a a point in Ω, and assume that the Laurent series of f at a
reads

f(z) =

∞∑
n=−∞

cn(z − a)n, ∀ z with 0 < |z − a| < R.

If 0 < r < R, then, with counter-clockwise orientation of the circle ∂B(a, r),∮
|z−a|=r

f(z) dz = 2πic−1.

Proof. By Theorem 9.21, the convergence of the Laurent series of f is uniform on compact subsets of the
annular domain. A circle of radius r about a is compact, hence we can commute

∑
n and

∮
:∮

|z−a|=r
f(z) dz =

∮
|z−a|=r

∞∑
n=−∞

cn(z − a)n dz =

∞∑
n=−∞

cn

∮
|z−a|=r

(z − a)n dz = 2πic−1,

following the computations from the Examples 8.3–8.5.

Definition 9.25 (Residue14). The coefficient c−1 of a Laurent series expansion of f at a point z0 is
called residue of f at z0

15,

res
z0

(f) := c−1.

The term with c−1 is the only one to survive the integration along the circle, all others disappear, compare
the Examples 8.3–8.5.

Figure 9.2: The residue theorem for a circle Γ

Theorem 9.26 (Residue Theorem for a circle). Let f be meromorphic on Ω and Γ ⊂ Ω be a circle
with counter-clockwise orientation, such that no singularity of f is on Γ. Let z1, . . . , zN denote the
singularities of f in the bounded component of C \ Γ.

14 residue = Nachlaß, Rest, Rückstand, Überbleibsel, Überrest
15Residuum of f at z0
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Then ∮
Γ

f(z) dz = 2πi

N∑
k=1

res
zk
f.

Proof. Let Γ1, . . . , ΓN be circles with centres z1, . . . , zN and radii so small that none of the circles Γ, Γ1,
. . . , ΓN intersect. For each k, connect Γ and Γk by a straight line that does not intersect another circle
or another such straight line. Then you can show, by the Cauchy integral theorem that∮

Γ

f(z) dz =

N∑
k=1

∮
Γk

f(z) dz.

Now apply Lemma 9.24.

Of course, the curve Γ need not be a circle, but in the general case, it is harder to describe how to connect
Γ and the Γk by non-intersecting lines.

A more general version of the residue theorem (whose proof we skip) is:

Theorem 9.27 (General version of the Residue Theorem). Let Ω ⊂ C be a simply–connected
domain, Γ ⊂ Ω a loop, and f : Ω → C meromorphic with the a finite set of poles P (f), and no pole of f
is on Γ.

Then ∮
Γ

f(z) dz = 2πi
∑

p∈P (f)

Ind
Γ

(p) · res
p

(f).

As a first example, we consider the integral

I =

∫ ∞
x=−∞

dx

2x2 + 4x+ 20
, f(x) :=

1

2x2 + 4x+ 20
.

The poles of f are

z1,2 = −1± 3i, f(z) =
1

2(z − z1)(z − z2)
.

For R� 1, split I as follows:

I = I1(R) + I2(R) + I3(R) :=

∫ −R
x=−∞

f(x) dx+

∫ R

x=−R
f(x) dx+

∫ ∞
x=R

f(x) dx.

If R is large, then (compare the proof of Theorem 8.28)

|4x+ 20| ≤ 1

3
|2x2| for |x| > R,

hence

|I3(R)| ≤
∫ ∞
x=R

dx
2
3 · 2x2

= O(R−1),

and also |I1(R)| = O(R−1). This gives I = limR→∞ I2(R). Call Γ2 the straight line from −R to R, and
Γ4 the half-circle parametrised by γ(t) = Reit with 0 ≤ t ≤ π. Then Γ2 ∪ Γ4 is a loop encircling z1 but
not z2. The residue theorem then implies∮

Γ2∪Γ4

f(z) dz = 2πi res
z1

(f).

On the other hand,

|f(z)| ≤ 1
2
3 |2z2|

=
3

4R2
for z ∈ Γ4,
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which gives is∣∣∣∣∫
Γ4

f(z) dz

∣∣∣∣ ≤ max
z∈Γ4

|f(z)| · πR = O(R−1),

and now we can argue like this:

I = lim
R→∞

I2(R) = lim
R→∞

(∮
Γ2∪Γ4

f(z) dz −
∫

Γ4

f(z) dz

)
= lim
R→∞

(
2πi res

z1
(f)−O(R−1)

)
= 2πi res

z1
(f).

To compute the residue of f at z1, we remember that

1

a+ ε
=

1

a
+ O(ε)

for all ε, a ∈ C with |ε| � |a|, and then the expansion for z ≈ z1 becomes

f(z) =
1

2(z − z1)(z − z2)
=

1

z − z1
· 1

2(z − z2)
=

1

z − z1
· 1

2(z1 − z2) + 2(z − z1)

=
1

z − z1
·
(

1

2(z1 − z2)
+ O(z − z1)

)
=

1

z − z1
· 1

2(z1 − z2)
+ O(1),

and then the residue is

res
z1

(f) = c−1 =
1

2(z1 − z2)
,

which results in

I = 2πi
1

2 · 6i
=
π

6
.

Figure 9.3: A first example to the residue theorem

This methods is applicable to rational functions of x where the degree of the polynomial in the numerator
is at most equal to the degree of the polynomial in the denominator minus two (and the real axis must
not contain a pole). Of course, we could have evaluated the integral using traditional methods like partial
fraction decomposition, too.
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A second example which is not accessible to traditional methods is

I =

∫
R

eix

x− i
dx, f(x) :=

eix

x− i
,

with the integration along the real axis to be understood as I := limR→∞
∫ x=R

x=−R . . . dx. We extend the
line Γ1 = [−R,R] to a square in the complex plane by the following curves:

Γ2 : z = R+ iy, 0 ≤ y ≤ 2R,

Γ3 : z = −x+ 2iR, −R ≤ x ≤ R,
Γ4 : z = −R− iy, −2R ≤ y ≤ 0.

Then Γ := Γ1 ∪ . . . ∪ Γ4 forms a loop with counter-clockwise orientation, and we have∮
Γ

f(z) dz = 2πi res
i

(f),

because i is the only pole of the function f in C. Now we estimate the integrals over the three new lines.
On Γ2, we have∣∣∣∣ eiz

z − i

∣∣∣∣ ≤ e−y

R
,

and therefore∣∣∣∣∫
Γ2

f(z) dz

∣∣∣∣ ≤ ∫ 2R

y=0

1

R
e−y dy ≤ 1

R
,

and the same bound holds for the integral over Γ4. And concerning Γ3, we have∣∣∣∣ eiz

z − i

∣∣∣∣ ≤ e−2R

R
=⇒

∣∣∣∣∫
Γ3

f(z) dz

∣∣∣∣ ≤ e−2R

R
· 2R = 2e−R.

The result then is

I = lim
R→∞

∫
Γ1

f(z) dz = 2πi res
i

(f),

and the residue of f at the point i can be evaluated via

eiz

z − i
=

ei·i

z − i
· ei(z−i) =

e−1

z − i
· (1 + O(i(z − i))) =

e−1

z − i
+ O(1), z → i,

or resi(f) = e−1, which gives us eventually I = 2πe−1i.

Our third example is more delicate:

I =

∫ ∞
x=−∞

sinx

x
dx := lim

R→∞

∫ R

−R

sinx

x
dx = π.

Observe that the integrand sin x
x has no pole in C, and moreover, the complex sine function

sin z =
1

2i
(eiz − e−iz)

explodes exponentially for =z → +∞, because of the term e−iz. We overcome this difficulty exploiting
the odd symmetry of the sine function:∫ −ε

x=−R

sinx

x
dx+

∫ R

x=ε

sinx

x
dx = 2

∫ R

x=ε

sinx

x
=

1

i

∫ R

x=ε

eix − e−ix

x
dx

=
1

i

∫ R

x=ε

eix

x
dx+

1

i

∫ R

x=ε

e−ix

−x
dx

∣∣∣ x̃ := −x

=
1

i

∫ R

x=ε

eix

x
dx+

1

i

∫ −ε
x̃=−R

eix̃

x̃
dx̃

=
1

i

∫
[−R,R]\[−ε,ε]

eiz

z
dz.
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Figure 9.4: The second example to the residue theorem

Now we take a chain of six curves:

Γ1 = [−R,−ε],
Γ2 = {εei(π−t) : 0 ≤ t ≤ π},
Γ3 = [ε,R],

Γ4 = {R+ iy : 0 ≤ y ≤ 2R},
Γ5 = {−x+ 2iR : −R ≤ x ≤ R},
Γ6 = {−R− iy : − 2R ≤ y ≤ 0},

compare the figure. For brevity of notation, define Ik =
∫

Γk
f(z) dz with f(z) = exp(iz)

iz . Then we have on
the one hand

I = lim
(ε,R)→(0,∞)

(I1 + I3),

and on the other hand, from the Cauchy Integral Theorem,

I1 + · · ·+ I6 = 0.

As in the second example, we show that

|I4|+ |I5|+ |I6| = O(R−1),

which brings us to

I = − lim
ε→0

I2(ε).

By direct calculation, we have

I2 =

∫
Γ2

eiz

iz
dz =

∫ π

t=0

exp(iεei(π−t))

iεei(π−t) · ε(−i)ei(π−t) dt = −
∫ π

t=0

exp(iεei(π−t)) dt,

which converges to −π for ε→ 0, and then our final result is∫ ∞
x=−∞

sinx

x
dx = π.
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Figure 9.5: The third example to the residue theorem

Finally, we give some hints how to compute residues. Note that a function h with a zero of order m at z0

possesses the Taylor expansion

h(z) =

∞∑
k=m

1

k!
(∂kzh)(z0) · (z − z0)k =

(∂mz h)(z0)

m!
(z − z0)m · (1 + O(z − z0)).

• if f = g/h and h has a single zero at z0 then

f(z) =
g(z0) + g′(z0)(z − z0) + . . .

h′(z0) · (z − z0)(1 + O(z − z0))
=

g(z0)

h′(z0) · (z − z0)
+ O(1), z → z0,

and then the residue is resz0(f) = g(z0)
h′(z0) = limz→z0(z − z0)f(z),

• if f = g/(z − z0)m them

f(z) =
g(z0) + g′(z0)(z − z0) + . . .

(z − z0)m
= . . .+

1
(m−1)!g

(m−1)(z0)

z − z0
+ . . . , z → z0,

• if f = g/h and h has an m–th order zero at z0, then h(z) = (z − z0)mw(z) with w(z0) 6= 0, and we
find

f(z) =
g(z) · (w(z))−1

(z − z0)m
=⇒ res

z0
(f) =

1

(m− 1)!

( g
w

)(m−1)

(z0),

• if u = u(z) is holomorphic near z0 and v = v(z) has a single pole at z0, then

res
z0

(uv) = u(z0) · res
z0

(v),

• if u = u(z) is holomorphic near z0 and v = v(z) has a pole (of whatever order) at z0, then

res
z0

(u+ αv) = α res
z0

(v).
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Applications of Complex Analysis

10.1 Behaviour of Functions

In this section, Γ is always a loop that does not intersect itself, with counter-clockwise orientation. Let G
denote the (unique) bounded component of C \ Γ.

Suppose f : Ω→ C is meromorphic, Γ contained in Ω, and you know from somewhere that f has no poles
in the domain G, and f has no zero on the curve Γ.

How can you determine the number of zeroes of f in G ?

Lemma 10.1. In the situation described above, the number of zeroes of f in G (counted according to
multiplicity) is

N =
1

2πi

∮
Γ

f ′(z)

f(z)
dz.

Proof. Let z0 be an m–th order zero of f . Then, by Proposition 9.1, f(z) = (z − z0)mg(z) with a
holomorphic g that does not vanish near z0, and

f ′(z)

f(z)
=
m(z − z0)m−1g(z) + (z − z0)g′(z)

(z − z0)mg(z)
=

m

z − z0
+
g′(z)

g(z)
=⇒ res

z0

(
f ′

f

)
= m.

Now apply the residue theorem 9.27.

For a general meromorphic function, the integral 1
2πi

∮
Γ
f ′(z)
f(z) dz equals N − P , the difference between the

number of zeroes and the number of poles in G, both counted according to their multiplicities.

Corollary 10.2 (Fundamental Theorem of Algebra). Each polynomial of degree n possesses exactly
n complex roots.

Proof. Take f = f(z) = anz+ · · ·+a1z+a0 with an 6= 0. Choose Γ = ∂B(0, R) with R� 1. Then (as we
know already), f can not have zeroes outside the ball B(0, R). On the circle Γ, we have (with appropriate
numbers bj and cj which we do not need to compute)

f ′(z)

f(z)
=
nanz

n−1 + · · ·+ a1

anzn + · · ·+ a0
=
nanz

n−1(1 + b1z
−1 + b2z

−2 + · · ·+ bn−1z
−(n−1))

anzn(1 + c1z−1 + c2z−2 + · · ·+ cnz−n)
.

Put q := −(c1z
−1 + · · ·+ cnz

−n). Then the summation formula for the geometric series gives

f ′(z)

f(z)
=
n

z

(
1 + b1z

−1 + · · ·+ bn−1z
−(n−1)

) (
1 + q + q2 + . . .

)
=
n

z
+

∞∑
j=2

γjz
−j ,

with new coefficients γj . This is a Laurent series in the annular domain Ω = {z ∈ C : R < |z| <∞}, with
uniform convergence of the series. Then∮

Γ

f ′(z)

f(z)
dz =

∮
Γ

n
z

+

∞∑
j=2

γjz
−j

 dz =

∮
Γ

n

z
dz +

∞∑
j=2

γj

∮
Γ

z−j dz = 2πin,
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which was our goal.

Now assume that we know from somewhere that f has exactly one zero in G, but no pole. How to find
it ?

Lemma 10.3. In this situation, the zero of f can be computed as

z0 =
1

2πi

∮
Γ

zf ′(z)

f(z)
dz.

Proof. We have f(z) = (z − z0)g(z), and for z near z0, g does not vanish. The function z 7→ z is
holomorphic near z0, and therefore

res
z0

(
z · f

′(z)

f(z)

)
= z0 res

z0

(
f ′

f

)
= z0 · 1,

as in the proof of lemma 10.1.

As an application, consider a vibrating system. Then the eigenfrequencies are typically the eigenvalues of
a certain matrix, and the entries of the matrix depend on parameters of the system (and on the errors in
your measurements).

How do the eigenvalues depend on the perturbations of the coefficients ?

Lemma 10.4. Let ajk = ajk(ε) depend holomorphically on the parameter ε, for 1 ≤ j, k ≤ N . Let λ1(0)
be an eigenvalue of A(0) = (ajk(0))j,k=1,...,N of algebraic multiplicity one.

Then λ1 depends analytically on ε.

Proof. Each eigenvalue of a matrix depends continuously on ε, because eigenvalues are zeroes of the
characteristic polynomial, to which we can apply Lemma 10.1, with the consequence that no eigenvalue
jumps if ε varies.

Now let Γ be a small circle about λ1(0), such that all the other eigenvalues λ2(0), . . . , λN (0) are outside
Γ. Then

λ1(0) =
1

2πi

∮
Γ

zf ′(z)

f(z)
dz, f(z, ε) = det(A(ε)− zI),

because f is clearly a holomorphic function of z ∈ C. Now λ1 depends holomorphically on ε ∈ C, due to

∂

∂ε
λ1(ε) =

1

2πi

∂

∂ε

∮
Γ

zf ′(z, ε)

f(z, ε)
dz =

1

2πi

∮
Γ

∂

∂ε

zf ′(z, ε)

f(z, ε)
dz = 0.

And each holomorphic function is analytic, therefore λ1 can be expanded into a power series of ε.

Warning: The assumption of λ1 to have algebraic multiplicity one is crucial. Take

A(ε) =

(
0 1
ε 0

)
.

Then A(0) has the double eigenvalue zero, but

λ1(ε) = −
√
ε, λ2(ε) = +

√
ε,

and this has no Taylor expansion at the point ε0 = 0.

With a view towards applications, we note that a little investment (change the parameter from zero to
ε) gives a larger gain (the difference of the eigenvalues changed from zero to

√
ε). A similar phenomenon

occurs in the case of the Poincaré–Andronov–Hopf bifurcation: changing one parameter by ε gives rise to
a stable periodic orbit of diameter ∼

√
ε. This can be observed in case of a variant of the van der Pol

oscillator, which has several applications in electronics. Details can be found in [12].
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Now imagine the following situation: you wish to know how many zeroes a function f has in a domain
encircled by Γ, but f is complicated and evaluating the integral appearing in Lemma 10.1 is infeasible.
But f is “approximated” by another function g, which is less complicated. Under which conditions have
f and g the same number of zeroes in the domain inside Γ ?

Proposition 10.5 (Theorem of Rouché1). Let Ω be a domain in C, and Γ ⊂ Ω, and f , g : Ω → C
holomorphic. Suppose

|g(z)− f(z)| < |f(z)| ∀ z ∈ Γ.

Then the numbers of zeroes inside Γ of f and g coincide, N(f) = N(g).

Proof. Let ω be a tubular neighbourhood2 of Γ. If the “width” of ω is sufficiently small, then the inequality
|g(z)− f(z)| < |f(z)| holds also in ω. Then we have, for all z ∈ ω:

g(z)

f(z)
= 1 +

g(z)− f(z)

f(z)
with

∣∣∣∣g(z)− f(z)

f(z)

∣∣∣∣ < 1 =⇒ < g(z)

f(z)
> 0,

hence the fraction g(z)
f(z) only takes values in the right half-plane C+ of C. Now define

u(z) :=
d

dz
Ln

(
g(z)

f(z)

)
, z ∈ ω.

Since g(z)
f(z) never leaves C+, we can compute like this:

u(z) =
1
g(z)
f(z)

·
(
g(z)

f(z)

)′
=
f(z)

g(z)
· g
′(z)f(z)− f ′(z)g(z)

f2(z)
=
g′(z)

g(z)
− f ′(z)

f(z)
, z ∈ ω.

The function u possesses a primitive function on ω, namely Ln(g/f). By Proposition 8.8, we have∮
Γ

u(z) dz = 0.

(We can not utilise the Cauchy Integral Theorem because ω is doubly–connected.) However, u(z) =
g′(z)
g(z) −

f ′(z)
f(z) in ω. Now apply Lemma 10.1.

Figure 10.1: A tubular neighbourhood ω of the curve Γ

1 Eugène Rouché, 1832 – 1910
2 schlauchförmige Umgebung
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10.2 The Laplace Transform

Definition 10.6 (Exponential growth order and Laplace transform). For a function f : [0,∞)→ C
that is piecewise continuous and has exponential growth order M ,

∃ Cf : |f(t)| ≤ CfeMt, ∀ t ∈ [0,∞),

we define the Laplace transform F = L{f} as

F (z) :=

∫ ∞
t=0

e−tzf(t) dt, z ∈ C<>M := {z ∈ C : <z > M}.

The following examples can be found by direct computation:

f = f(t) F = F (z)

tn, n ∈ N0 n!/zn+1, <z > 0
tα, α > −1 Γ(α+ 1)/zα+1, <z > 0
eαt, α ∈ C 1/(z − α), <z > <α
sin(ωt), ω ∈ R ω/(z2 + ω2), <z > 0
cos(ωt), ω ∈ R z/(z2 + ω2), <z > 0

Lemma 10.7. The Laplace transform F of the function f with exponential growth order M is holomorphic
on C<>M .

Proof. Exercise.

Proposition 10.8 (Inverse Laplace transform). Let f : [0,∞) → C be continuous except a finite
number of jumps, and with exponential growth order M . Then f can be obtained from F = L{f} by the
formula

1

2πi
lim
R→∞

∫ γ+iR

γ−iR

eztF (z) dz =


f(t) : f is continuous at t
1
2 (f(t+ 0) + f(t− 0)) : f jumps at t
1
2f(0) : t = 0,

where γ > M can be chosen freely, and the integration is performed along the vertical straight line from
γ − iR to γ + iR.

Proof. For γ > M , define

fγ(t) =

{
0 : t < 0,

e−γtf(t) : t ≥ 0

which belongs to L1(R1), because of γ > M . The Fourier transform f̂γ of fγ is

f̂γ(τ) =

∫ ∞
t=−∞

e−itτfγ(t) dt =

∫ ∞
t=0

e−itτe−γtf(t) dt =

∫ ∞
t=0

e−(γ+iτ)tf(t) dt

= L{f}(γ + iτ), τ ∈ R.

In the appendix, Lemma A.16 presents the inversion formula for the Fourier transform, which reads (for
a point t where f is continuous)

fγ(t) =
1

2π
lim
R→∞

∫ R

τ=−R
eitτ f̂γ(τ) dτ =

1

2π
lim
R→∞

∫ R

τ=−R
eitτF (γ + iτ) dτ

∣∣∣ z := γ + iτ

=
1

2πi
lim
R→∞

∫ γ+iR

γ−iR

e(z−γ)tF (z) dz,

and for t > 0, we have

f(t) = eγtfγ(t) =
1

2πi
lim
R→∞

∫ γ+iR

γ−iR

eztF (z) dz.
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Warning: Some care is necessary here. Call M the set of all functions F = F (z) that are holomorphic in

a half-plane C<>M , and for which the integrals
∫ γ+i∞
γ−i∞ etzF (z) dz give finite values, for all γ > M and all

t ≥ 0. This set M contains all those functions to which the inversion formula can be reasonably applied.

Then the Laplace transform is not a surjective map onto M. This means: there are functions F = F (z)
to which you can apply the inversion formula, and this inversion formula gives you a function f = f(t)
with exponential growth, but F 6= L{f} because F is the Laplace transform of nobody.

A positive result is the next one.

Lemma 10.9. Let F be a holomorphic function for all z ∈ C with <z > M , and assume that

• for any δ > 0, F (z) converges uniformly to zero for z →∞, where <z ≥M + δ,

• for any δ > 0, the line integral
∫M+δ+i∞
M+δ−i∞ |F (z)|dz is bounded.

Then F is the Laplace transform of a function f which can be found by the inversion formula.

Proof. This is Satz 3 in Chapter 7 of [7]. See also the other two volumes of that magnum opus.

To perform the inversion, the following procedure can be helpful in the case that F is a meromorphic
function on C with |F (z)| ≤ C|z|−ε for some positive ε, for all large |z|. Define I1 :=

∫
Γ1
etzF (z) dz with

Γ1 being the straight line from γ − iR to γ + iR. Then draw a rectangle as in Figure 10.2, with Γ2 ∪ Γ3

being being the upper edge, Γ2 in the right half-plane, Γ3 in the left half-plane. Similarly Γ5 ∪ Γ6 is the
lower edge, and Γ4 is the left edge. Define Ik =

∫
Γk
etzF (z) dz.

The integrals I3, . . . , I5 can be discussed as in Figure 9.4, and we find |I3|+|I4|+|I5| ≤ CR−ε. Concerning
I2, we remember (8.1), hence

|I2| ≤ CetγR−ε · γ,

which approaches zero for R→∞, and therefore I1 is approximated by 2πi times the sum of the residues
of z 7→ etzF (z) in the rectangle.

Figure 10.2: Computing the inverse Laplace transform
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Proposition 10.10 (Laplace transform of a derivative). Let the function f : [0,∞)→ C be contin-
uous, piecewise differentiable, and of exponential growth order M . Then

L{f ′}(z) = z · L{f}(z)− f(0), ∀ z ∈ C<>M .

Proof. Partial integration in the formula of L{f ′} .

This can be remembered as follows:

If f(0) = 0, then differentiation in the t–world
corresponds to multiplication by z in the z–world.

We generalise a bit:

Lemma 10.11. Let the function f : [0,∞) → C be continuous with one jump at t∗ > 0, piecewise
differentiable, and of exponential growth of order M . Then

L{f ′}(z) = z · L{f}(z)− f(0)− (f(t∗ + 0)− f(t∗ − 0)) · e−t∗z ∀ z ∈ C<>M .

Proof. Careful partial integration in the formula of L{f ′} .

It is no surprise that we have also L{f ′′}(z) = z2 · L{f}(z) − z · f(0) − f ′(0), and similar formulae for
higher order derivatives.

Example: To find the solution to y′′(t) + y(t) = sin(3t) with y(0) = 2 and y′(0) = 7, we define Y = Y (z)
as the Laplace transform of y, write f(t) = sin(3t), and it follows that

(z2Y (z)− z · 2− 7) + Y (z) = F (z) =
3

z2 + 9
,

(z2 + 1)Y (z) =
3

z2 + 9
+ 2z + 7,

Y (z) =
3

(z2 + 1)(z2 + 9)
+

2z + 7

z2 + 1
=

α

z − i
+

β

z + i
+

γ

z − 3i
+

δ

z + 3i
,

with some easily computable constants α, . . . , δ, and then we can directly express y:

y(t) = αeit + βe−it + γe3it + δe−3it.

We could have solved this initial value problem also by classical methods, of course. The real power of the
Laplace transform becomes visible when we study linear time invariant systems. Think of an electronic
amplifier, or an electronic devices which adds an echo to an acoustical signal. For such a device, you have
an input signal which gets transformed into an output signal. The assumptions are:

• the output depends linearly on the input,

• the system does not depend itself on the time variable,

• the system obeys causality: the output can not depend on values of the input from the future. The
present output can depend on the present input and the input of the past, of course3.

Then the output signal must depend on the input signal via a convolution4:

Definition 10.12. Let u, v : [0,∞)→ C be piecewise continuous. Then the convolution (u∗v) : [0,∞)→ C
is defined as

(u ∗ v)(t) :=

∫ t

s=0

u(t− s)v(s) ds, 0 ≤ t <∞.

3An extreme example is a bottle of ketchup. The input signal are the motions of the bottle, and the output signal is the
viscosity of the ketchup. This system is certainly time invariant, but it seems to be nonlinear.

4Faltung
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Think of u as input, v as impulse response function5 (or conversely, because the convolution is commuta-
tive), and u ∗ v as the output signal.

To give examples of the convolution, we first define E = E(t) as that function that has the value one
everywhere.

•
∫ t

0
u(s) ds = (E ∗ u)(t),

• if v(t) = exp(at), then the solution y = y(t) to the problem

y′(t) = ay(t) + f(t), y(0) = y0,

is given as y(t) = v(t) · y0 + (v ∗ f)(t), compare (3.3),

• if v = v(t) solves

v′′(t) + av(t) = 0, v(0) = 0, v′(0) = 1,

then the solution y = y(t) to the problem

y′′(t) + ay(t) = f(t), y(0) = y0, y′(0) = y1

is given by

y(t) = v′(t) · y0 + v(t) · y1 + (v ∗ f)(t). (10.1)

Lemma 10.13. If u and v are piecewise continuous and of exponential growth orders Mu and Mv, then
u ∗ v is continuous and of exponential growth order max(Mu,Mv) + ε, for an arbitrary ε > 0.

Proof. The continuity of u ∗ v follows from the boundedness of u and v. We know |u(t)| ≤ Cue
Mut and

|v(t)| ≤ CveMvt, and therefore

|(u ∗ v)(t)| ≤ CuCv
∫ t

s=0

exp(max(Mu,Mv) · (t− s)) · exp(max(Mu,Mv) · s) ds

= CuCv exp(max(Mu,Mv) · t)
∫ t

s=0

1 ds.

Now exploit t ≤ Cεeεt for all positive ε.

Proposition 10.14 (Laplace transform of a convolution). If u and v are piecewise continuous and
of exponential growth, then

L{u ∗ v} = L{u} · L{v}.

Proof. Exercise for Fubini’s theorem. Be careful with the limits of the integrals.

This can be remembered as follows:

A convolution in the t–world corresponds to a multiplication in the z–world.

This enables us to handle differential equations like

y′′(t) + 4y(t) =

∫ t

s=0

exp(−2(t− s))y(s) ds, y(0) = 0, y′(0) = 1.
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We come to an application. Consider an infinite chain of atoms, and each atom is connected to its two
neighbours by harmonic oscillators. The deviation of the n–th atom from its resting position is un = un(t),
and Newton’s Law ma = F then brings us to

u′′n(t) = un−1(t)− 2un(t) + un+1(t), n ∈ Z, t ≥ 0, (10.2)

where the interaction constants and the masses have been normalized to one, and we have the initial
conditions

un(0) = u(0)
n , u′n(0) = u(1)

n , n ∈ Z. (10.3)

Our goal is an explicit solution formula.

We will show:

Lemma 10.15. Assume that only a finite number of the initial values u
(0)
n and u

(1)
n is not zero. Then a

solution to (10.2), (10.3) is given by

un(t) =
∑
m∈Z

u(0)
m · J2(n−m)(2t) + u(1)

m ·

 ∞∑
l=|n−m|

J2l+1(2t)

 , n ∈ Z,

where Jν , ν ∈ C are the Bessel functions:

Jν(t) =

∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
t

2

)2m+ν

, t ∈ C.

Some remarks are in order:

• it is a nice exercise (comparing the coefficients of all power series involved) that

J2(n−m)(2t) =
d

dt

∞∑
l=|n−m|

J2l+1(2t),

and this corresponds to (10.1),

• we can read n and m as spatial variables, and then
∑
m u

(0)
m J2(n−m)(2t) can be understood as a

convolution in the space Z where the spatial variables live,

• The bessel function Jk(s) is exponentially small for s < |k|/2, it has the biggest contribution for
s ∼ |k|, and it decays slowly for s > |k| (with decay rate as s−1/2, but it possesses additionally some
oscillations). Compare (2.5) and (2.6) and the graphs of several Bessel functions in that chapter.
If we assume (for instance) that the initial values are non-zero only for |n| ≤ 3, then the solution
(at time t) is concentrated at the location |n| ≈ t (just find all those n where 2|n−m| ≈ 2t). This
means that two waves are travelling through the oscillator chain (one wave to the left and one wave
to the right), and the wave speed is approximately equal to one. Higher velocities are only possible
at the price of an exponential damping, but smaller velocities can occur. The wave speed depends
on the spatial frequency, which is known as dispersion in physics.

There are several ways to prove Lemma 10.15:

• The mathematically most correct proof is: just check that the functions un given in the above
formula are indeed solutions to (10.2) and (10.3), using formulas as e.g.

cos(z sin θ) = J0(z) + 2

∞∑
l=1

J2l(z) cos(2lθ),

J−n(z) = (−1)nJn(z),

Jν−1(z)− Jν+1(z) = 2J ′ν(z),

which can perhaps be shown via comparison of all the coefficients in the power series (or via com-
parison of the Laplace transforms).

5Impulsantwort



10.2. THE LAPLACE TRANSFORM 161

• Another approach is maybe more helpful for a deeper understanding of the solution formula: we
show, that each solution must have this form. A rigorous proof of this fact is beyond our reach
(because we miss the tools from functional analysis and the time), so we settle for something less
and accept a reduced logical precision. This is no logical problem since we can afterwards follow the
methods of the first •.

Remark 10.16. We note that the oscillator chain system possesses a mechanical energy. We define

E(t) :=
1

2

∑
n∈Z

(
(u′n(t))2 + (un(t)− un−1(t))2

)
,

and here we assume that un(t) and u′n(t) decay for |n| → ∞ at such a high rate that the series converges.
Then we have (assuming that the un form a solution)

E′(t) =
d

dt

1

2

∑
n∈Z

(
(u′n(t))2 + (un(t)− un−1(t))2

) ♠
=

1

2

∑
n∈Z

d

dt

(
(u′n(t))2 + (un(t)− un−1(t))2

)
= 0,

and here we have supposed that the series decays so fast that it allows the step ♠. (In the case which is
relevant for us, the terms un(t) and u′n(t) decay (for fixed t) exponentially in |n|, and then ♠ is definitely
no problem).

Then we get E(t) = E(0), and from this we deduce that vanishing initial data (which means u
(0)
n = u

(1)
n = 0

(∀ n)) also implies un(t) = 0 for all t and all n, and therefore the solutions to the problem (10.2), (10.3)
are unique, assuming that only such solutions are considered for which ♠ is valid.

The motivation of the solution formula in Lemma 10.15 needs some preparations:

Exercise: Consider a function F = F (t, z) : (C \ {0})× C defined by

F (t, z) := exp

(
z

2

(
t− 1

t

))
= e

zt
2 · e

−z
2t

This function is holomorphic in each of its two variables. Let cn(z) denote its Laurent coefficients with
respect to the variable t:

F (t, z) =:

∞∑
n=−∞

cn(z)tn, z ∈ C, t ∈ C \ {0}.

Use the integral formula of the Laurent coefficients to prove that

cn(z) =
1

π

∫ π

θ=0

cos(nθ − z sin θ) dθ =
1

2π

∫ π

θ=−π
e−i(nθ−z sin θ) dθ.

Use a power series expansion for ezt/2 and e−z/(2t) to show that

cn(z) =

∞∑
k=0

(−1)k

k!(n+ k)!

(z
2

)2k+n

.

In particular, you get cn ≡ Jn for all n ∈ Z. We say that F is the generating function6 of the Bessel
functions Jn.

Lemma 10.17. The Laplace transform of the function

Ka,ν : t 7→ aνJν(at), a > 0, ν > −1,

with Jν being the Bessel function, is

L{Ka,ν} : z 7→
(√
z2 + a2 − z

)ν
√
z2 + a2

, <z > 0,

with
√
· and (·)ν as the principal branches.

6Erzeugende Funktion
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Beautiful proof in case of ν = n ∈ Z. By the previous exercise, we have

Jn(at) =
1

2π

∫ π

τ=−π
e−i(nτ−at sin τ) dτ,

and this then brings us to

L{Ka,n}(z) =
1

2π

∫ ∞
t=0

e−tz
(
an
∫ π

τ=−π
e−i(nτ−at sin τ) dτ

)
dt

=
an

2π

∫ π

τ=−π
e−inτ

(∫ ∞
t=0

e−tzeiat sin τ dt

)
dτ =

an

2π

∫ π

τ=−π
e−inτ 1

z − ia sin τ
dτ

=
1

2π

∫ τ

τ=−τ

(
ae−iτ

)n 1

z − a
2 (eiτ − e−iτ )

dτ

=
1

2π

∫ τ

τ=−π

(
ae−iτ

)n 2
(
ae−iτ

)
2z · ae−iτ − a2 + (ae−iτ )

2 dτ.

Here we substitute w = ae−iτ and dw = −iw dτ . We end up with a circle ∂B of radius a about the origin,
with clockwise orientation. Consequently

L{Ka,n}(z) =
1

2π

∮
∂B

wn
2w

2z · w − a2 + w2

1

−iw
dw =

−1

2πi

∮
∂B

2wn

w2 + 2zw − a2
dw.

The zeros of the denominator are w1,2 = −z ±
√
z2 + a2, and now we suppose temporarily that z ∈ R

with z � a > 0. Then ∂B encircles only w1 = −z +
√
z2 + a2, and we obtain

L{Ka,n}(z) = res
w=w1

{
2wn

(w − w1)(w − w2)

}
=

2wn1
(w1 − w2)

=

(
−z +

√
z2 + a2

)n
√
z2 + a2

.

This is our claim in case of z ∈ R with z � a. Now apply the identity theorem for analytic functions.

Corollary 10.18. Put Pn(t) := J2n−1(2t) + J2n+1(2t) for n ∈ N+. Then we have

Pn ∗ Pm = Pn+m, n,m ∈ N+.

Try to prove it without Laplace transformation !

Proof. It suffices to show that

L{Pn+m} = L{Pn} · L{Pn}, n,m ∈ N+,

but this is a routine calculation:

L{Pn}(z) =
(
√
z2 + 4− z)2n−1

2n−1
√
z2 + 4

(
1 +

(
√
z2 + 4− z)2

4

)
,

1 +
(
√
z2 + 4− z)2

4
= 1 +

(z2 + 4)− 2z
√
z2 + 4 + z2

4
=

1

2

(
(z2 + 4)− z

√
z2 + 4

)
=

1

2

√
z2 + 4

(√
z2 + 4− z

)
,

L{Pn}(z) =

(√
z2 + 4− z

2

)2n

=

(√
1 +

z2

4
− z

2

)2n

.

Lemma 10.19. One solution to (10.2) with the special initial conditions
un(0) = 0, n ∈ Z,

u′n(0) =

{
1 : n = 0,

0 : n 6= 0.

(10.4)

is given by

un(t) =

∞∑
l=|n|

J2l+1(2t), n ∈ Z, (10.5)
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Logically correct proof. Just check the formula. This is a nice exercise in doing computations without
getting lost in them.

The next considerations are of heuristic nature and shall explain where the solution formula comes from.

Pseudo–proof. It seems physically reasonable that two waves emanate from the atom number zero: one
wave travels to the right, the other wave travels to the left.

By uniqueness of the solution: if the infinite vector (. . . , u−3, u−2, u−1, u0, u1, u2, u3, . . . )(t)
solves (10.2) and the special initial conditions (10.4), then also the reflected vector
(. . . , u3, u2, u1, u0, u−1, u−2, u−3, . . . )(t) solves (10.2) and (10.4). The reflection simply means to
turn around the crystal by 180◦. Because of the uniqueness, both solutions must coincide, which means
in particular that u1(t) = u−1(t), for all t. This is physically reasonable: the atom number zero moves to
the right for small times because of u′0(t = 0) = 1, hence it pushes the atom number one to the right, and
it pulls the atom number −1 to the right. This means that the atoms with the numbers −1 and +1 both
move to the right for small times. Hence u−1 ≡ u+1 is physically plausible.

Consider the atom number n with n ≥ 1. This atom and its neighbour at position (n+ 1) are influenced
only from a wave coming from the left. Because n is positive, the information here is travelling from
left to right, but not from right to left. Therefore, we expect a linear time invariant system, and we
conjecture a relation

un+1(t) = (Q ∗ un)(t), t ≥ 0,

with a function Q = Q(t) not yet known. And the atoms are indistinguishable, hence we expect

un(t) = (Q ∗ un−1)(t), t ≥ 0,

with the same function Q. Then we have

u′n(t) =
d

dt

∫ t

s=0

Q(t− s)un−1(s) ds = Q(0)un−1(t) + (Q′ ∗ un−1)(t),

and now we make the assumption Q(0) = 0. Taking one time derivative more yields

u′′n(t) = Q′(0)un−1(t) + (Q′′ ∗ un−1)(t).

On the other hand, we know

u′′n(t) = un−1(t)− 2un(t) + un+1(t)

= un−1(t)− 2(Q ∗ un−1)(t) + (Q ∗Q ∗ un−1)(t).

We equate both representations of u′′n:

Q′(0)un−1(t) + (Q′′ ∗ un−1)(t) = un−1(t)− 2(Q ∗ un−1)(t) + (Q ∗Q ∗ un−1)(t).

Now it is physically reasonable that Q(t) grows for t→∞ at most at exponential speed. Then the Laplace
transform is applicable, and we arrive at

Q′(0)ûn−1(z) + (Q′′) (̂z) · ûn−1(z) = ûn−1(z)− 2Q̂(z) · ûn−1(z) +
(
Q̂(z)

)2
ûn−1(z).

We may divide by ûn−1:

(Q′′) (̂z) +Q′(0) = 1− 2Q̂(z) +
(
Q̂(z)

)2
.

Now we have the general rule (Q′′)̂ (z) = z2Q̂(z)− zQ(0)−Q′(0), hence

z2Q̂(z) = 1− 2Q̂(z) +
(
Q̂(z)

)2
,

and this equation has the two solutions

Q̂(z) =
2 + z2

2
±

√(
2 + z2

2

)2

− 1.
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We think about the behaviour of Q̂(z) for R 3 z → +∞:

lim
z→+∞

Q̂(z) = lim
z→+∞

∫ ∞
t=0

e−tzQ(t) dt
♥
=

∫ ∞
t=0

lim
z→+∞

e−tz ·Q(t) dt =

∫ ∞
t=0

0 ·Q(t) dt = 0.

(The step ♥ deserves a justification !) This consideration excludes the + in the ± symbol, hence we get

Q̂(z) =
2 + z2

2
−

√(
2 + z2

2

)2

− 1 =
2 + z2

2
− 1

2

√
4 + 4z2 + z4 − 4

=
2 + z2

2
− z
√

1 +
z2

4
=
z2

4
− 2 · z

2
·
√

1 +
z2

4
+

(
1 +

z2

4

)

=

(
z

2
−
√

1 +
z2

4

)2

=

(
z

2
+

√
1 +

z2

4

)−2

,

and from this we conclude that

Q(t) = P1(t) = J1(2t) + J3(2t) =
2

t
J2(2t),

where the relation

Jν−1(s) + Jν+1(s) =
2ν

s
Jν(s),

has been used (a nice exercise).

Now we determine u0(t), the position of the 0–th atom at time t. We have already shown that u1 = u−1,
hence

u′′0(t) = u1 + u−1 − 2u0 = 2(Q ∗ u0)(t)− 2u0(t), u0(0) = 0, u′0(0) = 1,

and then the Laplace transform implies

(u′′0) (̂z) = z2û0(z)− zu0(0)− u′0(0) = z2û0(z)− 1 = 2Q̂(z) · û0(z)− 2û0(z),

and the last equality can be condensed into(
z2 − 2Q̂(z) + 2

)
û0(z) = 1,

and this simplifies as follows:(
z2 − (2 + z2 − z

√
z2 + 4) + 2

)
û0(z) = 1,

z
√
z2 + 4 · û0(z) = 1,

zû0(z)− 0 =
1√

z2 + 4
,

∣∣∣ u0(0) = 0,

L{u′0}(z) =
1√

z2 + 4
,

u′0(t) = J0(2t),

and then u0 is determined as

u0(t) =

∫ t

s=0

J0(2s) ds =

∞∑
l=0

J2l+1(2t) = P1(t) + P3(t) + P5(t) + . . . ,

because of Jν−1(σ)− Jν+1(σ) = 2J ′ν(σ) and limν→∞ Jν(σ) = 0 for each fixed σ.

Now we can compute u1, u2, . . . , via

u1 = Q ∗ u0 = P1 ∗ (P1 + P3 + P5 + . . . ) = P2 + P4 + P6 + · · · =
∞∑
l=1

J2l+1(2t),

u2 = Q ∗ u1 = P1 ∗ (P2 + P4 + P6 + . . . ) = P3 + P5 + P7 + · · · =
∞∑
l=2

J2l+1(2t),

and so on. This finishes the pseudo–proof of (10.5).
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Pseudo–proof of Lemma 10.15. First we consider more general initial conditions:

un(0) = 0, u′n(0) = u(1)
n , n ∈ Z.

By superposition, we find

un(t) =
∑
m∈Z

u(1)
m ·

 ∞∑
l=|n−m|

J2l+1(2t)

 ,

and this holds under the assumption
∑
m∈Z |u

(1)
m |2 <∞, which corresponds to E(0) <∞.

Second we consider the general initial data (10.3). Appealing again to (10.1), we expect the solution as

un(t) =
∑
m∈Z

u(0)
m ·

 d

dt

∞∑
l=|n−m|

J2l+1(2t)

+ u(1)
m ·

 ∞∑
l=|n−m|

J2l+1(2t)


=
∑
m∈Z

u(0)
m · J2(n−m)(2t) + u(1)

m ·

 ∞∑
l=|n−m|

J2l+1(2t)

 ,

due to J−n(z) = (−1)nJn(z). This is the solution formula we wanted to find, and the natural condition
on the initial values is encoded into the finiteness of the energy, E(0) <∞.

We also need a justification why the time derivatives (in the second step of the pseudo–proof of
Lemma 10.15) can be commuted with the sums

∑
m and

∑
l. For fixed z ∈ C and ν → ∞, Jν(z)

decays exponentially in the sense of

Jν(z) ∼ 1√
2πν

( ez
2ν

)ν
,

which means that the quotient of left-hand side and right-hand side goes to one. This takes care of
∑
l.

And concerning
∑
m, we argue like this: Call HE the vector space of all the initial data for which the

energy is finite: E(0) <∞. Equip this space with the norm induced by the energy. This is the physically
relevant space.

Call Hfin the vector space of all the initial data (u
(0)
m , u

(1)
m ) for which only a finite number of entries is

non-zero. Equip this space also with the energy norm. This is the mathematically easy space because
then

∑
m contains only a finite number of terms.

Now it is just a computation to show that the above solution candidate formula indeed produces a solution
if the initial data come from Hfin. Moreover, the map that transports the initial data to the solution at
time t is continuous in the energy norm (because the energy is even conserved), and Hfin is a dense vector
subspace of HE. Therefore the solution formula holds also for initial data from HE.

Remark 10.20. Related results (and a completely different proof of the solution formula) can be found
in [8], available in the KOPS of the University of Konstanz.
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10.3 Outlook: Maxwell’s Equations in the Vacuum

Our notation follows [10], Chapter IV.

The Maxwell Equations read

divD = 4π%,

rotE = −1

c
Bt,

divB = 0,

rotH =
4π

c
j +

1

c
Dt,

where the vector fields are connected via

D = E + 4πP, B = H + 4πM,

with P as the polarisation field, M the magnetisation field. In an isotropic medium that is normally
polarisable and magnetisable, we have

D = εE, B = µH,

and in the vacuum, we even have ε = µ = 1 which we suppose from now on.

By rot rot = grad div−4, we find

Ett = Dtt

= ∂t(c rotH − 4πj)

= c rotHt − 4πjt

= −c2 rot rotE − 4πjt

= −c2 grad divE + c24E − 4πjt

= c24E − (4πc2 grad %+ 4πjt),

or

(∂2
t − c24)E = −(4πc2 grad %+ 4πjt).

We consider the right-hand side as known and wish to find the electric field E = E(t, x).

More generally, we study

(∂2
t − c24)u(t, x) = f(t, x), (t, x) ∈ R× R3,

with known f and unknown u. For a philosophical reason named causality, we consider only those solutions
reasonable, whose value u(t, x) does not depend on values f(s, y) with s > t. Instead, the value u(t, x)
can depend only on f(s, y) with y ∈ R3 and s ∈ (−∞, t]. Now the interval (−∞, t] is too long to perform
the following computations (and also the solutions are certainly not uniquely determined), and therefore
we temporarily settle for something less:

To solve is (by an understandable solution formula)
(∂2
t − c24)u(t, x) = f(t, x),

u(0, x) = u0(x),

ut(0, x) = u1(x),

with given f , u0, u1, and the function u is searched. We demand that u(t, x) depends only on u0, u1, and
f = f(s, y) with (s, y) ∈ [0, t]× R3.

To solve it, we want to apply the Fourier transform, and this is easier if we assume that u0, u1 and f
decay fast for |x| → ∞:

u0, u1 ∈ S(R3), f ∈ C([0,∞), S(R3)).
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Then we set

û(t, ξ) := Fx→ξ{u(t, ·)}(ξ) :=

∫
x∈R3

e−ixξu(t, x) dx,

and we have F{4u(t, ·)}(ξ) = −|ξ|2û(t, ξ) with |ξ|2 = ξ2
1 + ξ2

2 + ξ2
3 as usual. This gives us

∂2
t û(t, ξ) + c2|ξ|2û(t, ξ) = f̂(t, ξ),

û(0, ξ) = û0(ξ),

û1(0, ξ) = û1(ξ),

and this is an ODE in the variable t with the parameter ξ. To write down the solution formula, we define

Û(t, ξ) :=

{
sin(c|ξ|t)
c|ξ| : ξ 6= 0,

t : ξ = 0,

and then û(t, ξ) is given by

û(t, ξ) = Ût(t, ξ)û0(ξ) + Û(t, ξ)û1(ξ) +

∫ t

s=0

Û(s, ξ)f̂(t− s, ξ) ds.

The fundamental solution Û = Û(t, ξ) solves
(
∂2
t + c2|ξ|2

)
Û(t, ξ) = 0,

Û(0, ξ) = 0,

Ût(0, ξ) = 1,

and Û is the Fourier transform of U = U(t, x):

U(t, x) = F−1
ξ→x{Û(t, ξ)}(x) :=

∫
R3
ξ

eixξÛ(t, ξ) d̄ξ, d̄ξ :=
dξ

(2π)3
.

The function which we are really interested in is u = u(t, x):

u(t, x) = F−1
ξ→x

(
Ût(t, ξ)û0(ξ) + Û(t, ξ)û1(ξ) +

∫ t

s=0

Û(t− s, ξ)f̂(s, ξ) ds

)
=

∫
R3
y

Ut(t, x− y)u0(y) dy +

∫
R3
y

U(t, x− y)u1(y) dy

+

∫ t

s=0

∫
R3
y

U(t− s, x− y)f(s, y) dy ds,

and this last equality holds if U were a function (soon we will learn that this is not the case).

Therefore it seems advantageous to get a deeper understanding of the integral kernel U = U(t, x). We will
find an explicit formula of U by: first a Laplace transform for the time variable, then an inverse Fourier
transform for the space variable, and finally an inverse Laplace transform for the time variable (see [10],
Chapter 20, for a different approach).

U(t, x) = L−1
τ→tF

−1
ξ→x{Lt→τ Û(t, ξ)},

and now we evaluate the transformations one after the other. The first one can be read from our table:

Lt→τ

{
Û(t, ξ)

}
(τ) =

∫ ∞
t=0

e−τtÛ(t, ξ) dt

=

∫ ∞
t=0

e−τt
sin(c|ξ|t)
c|ξ|

dt =
1

c|ξ|
· c|ξ|
τ2 + (c|ξ|)2

=
1

τ2 + c2|ξ|2
, <τ > 0.

For ξ ∈ R3 and <τ > 0, we never divide by zero here.

Next we replace ξ by x, via the inverse Fourier transform.



168 CHAPTER 10. APPLICATIONS OF COMPLEX ANALYSIS

Lemma 10.21. The Fourier transform and the inverse Fourier transform map functions with rotational
symmetry to functions with rotational symmetry.

Proof. Rotational symmetry for a function ψ̂ = ψ̂(ξ) means ψ̂(Aξ) = ψ̂(ξ) for all ξ ∈ Rn and for each
rotation matrix A ∈ SO(n).

Then A> = A−1 and detA = 1, hence

ψ(Ax) =

∫
Rnξ
ei(Ax)ξψ̂(ξ) d̄ξ

=

∫
Rnξ

exp(i 〈Ax, ξ〉)ψ̂(ξ) d̄ξ

=

∫
Rnξ

exp(i 〈x,A∗ξ〉)ψ̂(ξ) d̄ξ
∣∣∣ ξ =: Aη,

=

∫
Rnη

exp(i 〈x, η〉)ψ̂(Aη) d̄η

=

∫
Rnη
eixη ˆψ(η) d̄η

= ψ(x).

The computation for the forward Fourier transform runs similarly.

In our case, the function ξ 7→ 1
τ2+c2|ξ|2 is rotationally symmetric. This function does not belong to L1(R3

ξ),

but to L2(R3
ξ), and therefore it suffices to choose x = (0, 0, x3)> with x3 = |x| > 0, and compute

F−1
ξ→x

{
1

τ2 + c2|ξ|2

}
(x) = lim

R→∞

∫
|ξ|<R

eix3ξ3
1

τ2 + c2|ξ|2
dξ

(2π)3

=
1

(2π)3
lim
R→∞

∫ R

r=0

∫ π

θ=0

∫ 2π

ϕ=0

exp(ix3r cos θ)
2

τ2 + c2r2
· r2 sin θ dϕdθ dr

∣∣∣ cos θ = s,

=
1

(2π)2
lim
R→∞

∫ R

r=0

∫ 1

s=−1

exp(ir|x|s) 1

τ2 + c2r2
· r2 dsdr

=
1

(2π)2
lim
R→∞

∫ R

r=0

r2

τ2 + c2r2

(∫ 1

s=−1

exp(ir|x|s) ds

)
dr

=
1

(2π)2
lim
R→∞

∫ R

r=0

r2

τ2 + c2r2

(
2

∫ 1

s=0

cos(sr|x|) ds

)
dr

=
1

(2π)2
lim
R→∞

∫ R

r=0

r2

τ2 + c2r2
· 2

r|x|
sin(r|x|) dr

=
2

(2π)2|x|
lim
R→∞

∫ R

r=0

r

τ2 + c2r2
sin(r|x|) dr

=
2

(2π)2|x|
lim
R→∞

∫ R

r=0

r

τ2 + c2r2
· 1

2i

(
eir|x| − e−ir|x|

)
dr

=
1

(2π)2|x|i
lim
R→∞

∫ R

r=0

(
reir|x|

τ2 + c2r2
+

(−r)e−ir|x|

τ2 + c2(−r)2

)
dr

=
1

(2π)2|x|i
lim
R→∞

∫ R

r=−R

reir|x|

τ2 + c2r2
dr.

And now the residue theorem comes in handy. We suppose that τ ∈ R+ is real, and then the denominator
has zeroes at

r1 = +i
τ

c
, r2 = −i

τ

c
,

and we have

τ2 + c2r2 = c2(r − r1)(r − r2).
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By expanding the integration into the upper half-plane, we then find

F−1
ξ→x

{
1

τ2 + c2|ξ|2

}
(x) =

1

(2π)2|x|i
· 2πi · res

r1

(
reir|x|

c2(r − r1)(r − r2)

)
=

1

2π|x|
· r1e

ir1|x|

c2(r1 − r2)

=
1

2π|x|
· r1e

ir1|x|

c2 · 2r1

=
1

4πc2
·

exp
(
− |x|τc

)
|x|

.

We have proved this formula for real τ ∈ R+, but by the identity theorem, it holds also for general τ from
the right half-plane of C.

Observe that this function has a pole at x = 0, hence it does not belong to L∞(R3
x). This is no surprise:

because if 1/(τ2 + c2|ξ|2) were a member of L1(R3
ξ), then its Fourier transform would belong to L∞(R3

x).

The inverse Laplace transform applied to this function is supposed to give U = U(t, x). However, if we do
the computation, it turns out that we get a function of t that takes everywhere the value zero, except one
value of t where it explodes. To find the exact coefficient in front of the Delta distribution, we introduce
an artifical factor 1/(1 + ετ), and later we send ε→ +0:

L−1

 1

4πc2
·

exp
(
− |x|τc

)
|x|(1 + ετ)

 (t) =
1

2πi
· 1

4πc2|x|
lim
R→∞

∫ γ+iR

τ=γ−iR

etτ
exp

(
− |x|τc

)
1 + ετ

dτ

=
1

4πc2|x|ε
· 1

2πi
lim
R→∞

∫ γ+iR

τ=γ−iR

exp

((
t− |x|

c

)
τ

)
1

τ − (−ε−1)
dτ

=
1

4πc2|x|ε
· L−1

{
1

τ − (−ε−1)

}(
t− |x|

c

)
.

Now recall that τ 7→ 1/(τ −α) is the Laplace transform of that function that is defined as eαt for positive
t, and defined as 0 for negative t. Then it follows that

Uε(t, x) :=
1

4πc2|x|ε
· L−1

{
1

τ − (−ε−1)

}(
t− |x|

c

)
=


1

4πc2|x|ε · exp
(
−ε−1

(
t− |x|c

))
: t > |x|

c ,

1
8πc2|x|ε · exp

(
−ε−1

(
t− |x|c

))
: t = |x|

c ,

0 : t < |x|
c .

The set

{(t, x) ∈ R1+3 : t ≥ 0, ct = |x|}

is called (forward) light cone7, and we expect that the above function Uε is concentrated near the light
cone for ε ≈ 0. To describe this phenomenon more in detail, we choose a smooth test function ϕ = ϕ(t, x),
and ask for

lim
ε→0

∫ ∞
t=0

∫
R3
x

Uε(t, x)ϕ(t, x) dxdt.

We may assume that ϕ(t, x) = 0 for t > |x|
c + 1, because such points give no relevant contribution to the

7Vorwärtslichtkegel
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integral for small ε. Then, by partial integration,∫ ∞
t=0

∫
R3
x

Uε(t, x)ϕ(t, x) dxdt =

∫
R3
x

(∫ |x|
c +2

t=
|x|
c

1

4πc2|x|ε
exp

(
−ε−1

(
t− |x|

c

))
ϕ(t, x) dt

)
dx

=
−1

4πc2

∫
R3
x

1

|x|

(∫ |x|
c +2

t=
|x|
c

[
∂

∂t
exp

(
−ε−1

(
t− |x|

c

))]
ϕ(t, x) dt

)
dx

=
−1

4πc2

∫
R3
x

1

|x|

(
exp

(
−ε−1

(
t− |x|

c

))
ϕ(t, x)

) ∣∣∣∣t=
|x|
c +2

t=
|x|
c

dx

+
1

4πc2

∫
R3
x

1

|x|

(∫ |x|
c +2

t=
|x|
c

exp

(
−ε−1

(
t− |x|

c

))
∂

∂t
ϕ(t, x) dt

)
dx

=
1

4πc2

∫
R3
x

1

|x|
ϕ

(
|x|
c
, x

)
dx− 0

+
1

4πc2

∫
R3
x

1

|x|

(∫ |x|
c +2

t=
|x|
c

exp

(
−ε−1

(
t− |x|

c

))
∂

∂t
ϕ(t, x) dt

)
dx,

and the last integral disappears for ε→ 0. Summing up, we learn that one causal solution to (∂2
t−c24)u =

f is given by

u(t, x) =

∫ t

s=−∞

∫
R3
y

U(t− s, x− y)f(s, y) dy ds =
1

4πc2

∫
R3
y

1

|x− y|
f

(
t− |x− y|

c
, y

)
dy,

and here we see nicely that u(t, x) depends only on those values f(s, y) with t − s = |x − y|/c, which
corresponds to the propagation of electromagnetic waves of speed c. And these waves have no “backside”,
which means that U(t, x) is zero inside the light cone. This is a special effect of the three-dimensional
space, because in two dimensions the situation is different. You can observe this when you let a pebble fall
into a silent pond: it will generate not only one wave, but a large number of waves, which form concentric
circles on the surface of the pond.

This is a good moment to conclude this course. There is so much more to find out, and we are confident
that you are now proficient to continue on your own.

Enjoy doing physics !



Appendix A

The Fourier Transform

The purpose of this appendix is to explain what the Fourier transform is when applied to functions which
do not decay at infinity.

A.1 Some Function Spaces and Distribution Spaces

Pseudo-Definition A.1. A function is called Lebesgue1–measurable2 if it has “not too many dis-
continuities”.

Giving a rigorous definition of measurability would require several weeks, and for this reason we just
present some examples:

• a function on R with a countable number of jumps is measurable,

• the function f = f(x) = 1/x1492 is measurable on R1,

• the function on R which takes the value one for rational numbers, and the value zero for irrational
numbers, is measurable.

Pseudo-Definition A.2. Let Ω be a domain in Rn. A function f belongs to the Lebesgue space L1(Ω) if
it is measurable, and if the Lebesgue integral

∫
Ω
|f(x)|dx is finite.

Again we can not give a precise definition of the Lebesgue integral, but only note that each function which
is properly integrable3 (in the sense of the first year) is also Lebesgue integrable.

Warning A.3. Take Ω = (1,∞) ⊂ R1. Then the function f = f(x) = (sinx)/x does not belong to
L1(Ω) because

∫∞
x=1
| sinx|/x dx =∞, but it is improperly integrable (in the sense of the first year) since

limR→∞
∫ R
x=1

(sinx)/xdx exists.

More generally, we can say:

Pseudo-Definition A.4. For 1 ≤ p < ∞, a function f belongs to the Lebesgue space Lp(Ω) if f is
measurable, and the integral

∫
Ω
|f(x)|p dx is finite.

The space Lp(Ω) is a vector space, and we equip it with the norm

‖f‖Lp(Ω) :=

(∫
x∈Ω

|f(x)|p dx

)1/p

.

1 Henri Lebesgue, 1875–1941
2Lebesgue–meßbar
3eigentlich integrierbar
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Then Lp(Ω) is a Banach space (at this point the Lebesgue integration concept is really needed — our
integration concept from the first year would not be strong enough to turn Lp(Ω) into a complete space),
and L2(Ω) even has a scalar product:

〈f, g〉L2(Ω) :=

∫
x∈Ω

f(x)g(x) dx.

For Ω = R1, consider the functions

u(x) =
1

1 + |x|
, v(x) =

{
1√
|x|

: |x| ≤ 1,

0 : |x| > 1.

Then u ∈ L2(Ω) but u 6∈ L1(Ω). On the other hand, v ∈ L1(Ω) but v 6∈ L2(Ω). From this example we learn
that, for unbounded Ω, neither of the spaces L1(Ω) and L2(Ω) is contained in the other space.

Definition A.5 (Schwartz space). The Schwartz4 space S(Rn) consists of all those functions f ∈
C∞(Rn) with

pk,α(f) := sup
x∈Rn

(
1 + |x|k

)
|∂αx f(x)| <∞,

for all k ∈ N0 and all α ∈ Nn.

These Schwartz functions are infinitely smooth, they decay at infinity faster than all powers of |x|−1, and
all their derivatives decay at infinity faster than all powers of |x|−1, too.

Definition A.6 (Convergence in S(Rn)). We say that a sequence (ϕ1, ϕ2, . . . ) ⊂ S(Rn) converges to
ϕ ∈ S in the topology of S(Rn) if limj→∞ pk,α(ϕj − ϕ) = 0 for all k, α. We write

ϕj
S−→ ϕ (j →∞)

for this convergence.

This means that the sequence (ϕ1, ϕ2, . . . ) converges to ϕ uniformly, and all the sequences of derivatives
enjoy uniform convergence, too. The convergence in the topology of S is extremely strong and powerful.

Definition A.7 (Schwartz distributions). A map T : S(Rn) → C is called a Schwartz distribution if
it is linear and continuous. Here continuity means that

if ϕj
S−→ ϕ then lim

j→∞
T (ϕj) = T (ϕ).

The set (it is even a vector space) of all Schwartz distributions is denoted by S′(Rn).

Example A.8. The Delta distribution located at a point x0 ∈ Rn is a Schwartz distribution:

δx0
(ϕ) := ϕ(x0), ϕ ∈ S(Rn).

Example A.9. Each function f which is piecewise continuous and grows at infinity at most polynomially
generates a Schwartz distribution Tf :

Tf (ϕ) :=

∫
Rn
f(x)ϕ(x) dx, ϕ ∈ S(Rn).

The Delta distribution located at the point x0 can be approximated by a distribution Tf whose generating
function f has a sharp peak at x0, and

∫
Rn f(x) dx = 1.

It is common practice (but confusing) to not distinguish between f (which is a function that grows not
too fast at infinity) and the associated distribution Tf .

4 Laurent Schwartz, 1915–2002, french mathematician, inventor of the distributions (independent of Sobolev)
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A.2 The Fourier Transform on L1(Rn), S(Rn) and L2(Rn)

Definition A.10 (Fourier5 transform on L1(Rn)). For f ∈ L1(Rn), we define its Fourier transform

Ff = f̂ by

(Ff)(ξ) :=

∫
Rn
e−ixξf(x) dx, ξ ∈ Rn, xξ := x1ξ1 + · · ·+ xnξn.

We introduce the notations

D :=
1

i
∇, d̄ξ :=

dξ

(2π)n
.

Proposition A.11. The Fourier transform has the following properties:

f ∈ L1(Rn) =⇒ |f̂(ξ)| ≤ ‖f‖L1(Rn) ∀ ξ ∈ Rn,

f ∈ S(Rn) =⇒ f̂ ∈ S(Rnξ ),

fj
S−→ f =⇒ f̂j

S(Rnξ )
−→ f̂ ,

f ∈ S(Rn) =⇒ (F (Dα
xf)) (ξ) = ξα(Ff)(ξ), ∀ α ∈ Nn,

f, g ∈ S(Rn) =⇒
∫
Rnx
f(x)g(x) dx =

∫
Rnξ
f̂(ξ)ĝ(ξ) d̄ξ,

f, g ∈ S(Rn) =⇒ (f · g) (̂ξ) = (f̂ ∗ ĝ)(ξ),

with ∗ as the convolution operator:

(f̂ ∗ ĝ)(ξ) :=

∫
Rnη
f̂(η) · ĝ(ξ − η) d̄η. (A.1)

The proof is a wonderful exercise for the calculus with integrals !

The penultimate property yields the Parseval6 identity :

‖f‖L2(Rnx ) =
∥∥∥f̂∥∥∥

L2(Rnξ )
:=

(∫
Rnξ
|f̂(ξ)|2 d̄ξ

)1/2

, ∀ f ∈ S(Rn).

Example A.12. Take f = f(x) = exp(−x2/2) on R1. Then

∂ξ f̂(ξ) = ∂ξ

∫
Rx
e−ixξf(x) dx =

∫
Rx

(−ix)e−ixξf(x) dx = i

∫
Rx
e−ixξ∂xf(x) dx

= −
∫
Rx
e−ixξ(Dxf)(x) dx = −(Dxf) (̂ξ) = −ξf̂(ξ),

and this ODE has the solutions

f̂(ξ) = c exp(−ξ2/2),

with an unknown constant c which can be found by

c = f̂(0) =

∫
Rx
f(x) dx =

∫
Rx
e−x

2/2 dx = (2π)1/2.

Example A.13. Take f = f(x) = exp(−|x|2/2) on Rn. Then

f̂(ξ) =

∫
Rnx
e−i(x1ξ1+···+xnξn)f(x) dx =

n∏
k=1

(∫
R1
t

e−itξk exp(−t2/2) dt

)

=

n∏
k=1

(2π)1/2 exp(−ξ2
k/2) = (2π)n/2 exp(−|ξ|2/2).

5 Jean Baptiste Joseph Fourier, 1768–1830, french mathematician and physicist, famous for his law on the heat
conduction

6 Marc–Antoine Parseval des Chênes, 1755–1836
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By repeated substitution we find that fε(x) = exp(−|εx|2/2) has the Fourier transform f̂ε(ξ) =

ε−n(2π)n/2 exp(−|ξ/ε|2/2). This function f̂ε has a peak at ξ = 0, and we know that
∫
Rnξ
f̂ε(ξ) dξ = (2π)n.

Proposition A.14 (Inverse Fourier transform on S(Rn)). The Fourier transform is an isomorphism
from S(Rnx) onto S(Rnξ ), and the inverse Fourier transform is given by

f(x) =

∫
Rnξ
e+ixξ f̂(ξ) d̄ξ, x ∈ Rn, f̂ ∈ S(Rn). (A.2)

Proof. Let f ∈ S(Rnx) be given. Then∫
Rnξ
e+ixξ f̂(ξ) d̄ξ =

∫
Rnξ

lim
ε→0

eixξe−|εξ|
2/2f̂(ξ) d̄ξ = lim

ε→0

∫
Rnξ
eixξe−|εξ|

2/2f̂(ξ) d̄ξ (
∞
^)

= lim
ε→0

∫
Rnξ

(∫
Rny
eixξe−|εξ|

2/2e−iyξf(y) dy

)
d̄ξ = lim

ε→0

∫
Rny

(∫
Rnξ
eixξe−|εξ|

2/2e−iyξ d̄ξ

)
f(y) dy

= lim
ε→0

∫
Rny
ε−n exp(−|(x− y)/ε|2/2)(2π)−n/2f(y) dy

= lim
ε→0

∫
Rny
Gε(x− y)f(y) dy = lim

ε→0
(Gε ∗ f)(x),

with Gε as a Gauss bell shaped function having a peak at zero, and
∫
Rnz
Gε(z) dz = 1. Then the limit of

ε→ 0 indeed gives f(x).

Example A.15. Take f = f(x) ∈ L1(R1) with f(x) = 1 for 0 ≤ x ≤ 1, and f(x) = 0 for all other x.
Then

f̂(ξ) =

∫ ∞
x=−∞

e−ixξf(x) dx =

∫ 1

x=0

e−ixξ dx =
1− e−iξ

iξ
(ξ 6= 0), f̂(0) = 1,

and this is a continuous function on R1, but f̂ does not belong to L1(R1
ξ) because it does not decay fast

enough for ξ →∞. Unfortunately, the inversion formula (A.2) has no meaning as an integral in L1(R1).
However, the next lemma will give a positive result.

Lemma A.16 (Inverse Fourier transform for some non-smooth functions). Let f ∈ L1(R1) be
continuous, except a finite number of jumps. Then

1

2π
lim
R→∞

∫ R

ξ=−R
eixξ f̂(ξ) dξ =

{
f(x) : f is continuous at x,
1
2 (f(x+ 0) + f(x− 0)) : f jumps at x.

Proof. This is quoted from [4], Satz 8.2.

The space L2(Rn) is of great physical importance because it has a scalar product, in contrast to L1(Rn).
The Fourier transform is not yet defined on L2(Rn) because there are functions in L2(Rn) which are not
in L1(Rn). The definition of F on L2(Rn) will be made possible by S(Rn) being dense7 in L2(Rn): for
each f ∈ L2(Rn), there is a sequence (f1, f2, . . . ) ⊂ S(Rn) with limj→∞ ‖fj − f‖L2(Rn) = 0.

Definition A.17 (Fourier transform on L2(Rn)). For f ∈ L2(Rn), let (f1, f2, . . . ) ⊂ S(Rn) be a
sequence approximating f . Then we define

f̂(ξ) := lim
j→∞

f̂j(ξ).

This limit is independent of the choice of the sequence (f1, f2, . . . ). The convergence of the sequence

(f̂1, f̂2, . . . ) in the norm of L2(Rnξ ) follows from the Parseval formula.

We draw an intermediate summary: the difference between the Fourier transform F and the inverse
transform F−1 are the exchange of exp(+ixξ) against exp(−ixξ), and an additional factor (2π)−n. Then

7dicht
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it is no surprise that similar rules as given in Proposition A.11 hold also for the inverse transform, and in
particular we mention

F−1
ξ→x(f̂ · ĝ)(x) = (f ∗ g)(x),

with the convolution in the x–world defined as

(f ∗ g)(x) :=

∫
Rny
f(y) · g(x− y) dy.

Note that the differential is now dy, instead of d̄η as in (A.1).

A.3 The Fourier Transform on S′(Rn),
Mathematically and Approximately

We still want to explain what the Fourier transform of sin(x) or x2 is. Unfortunately, these functions
belong neither to L1(Rn), nor to L2(Rn) or S(Rn). At least, they have at most polynomial growth for
|x| → ∞.

We now follow the (at the beginning confusing) convention of writing a slowly growing function f and
its associated Schwartz distribution Tf by the same symbol f . Then the expression f = f(·) becomes
ambiguous (the dot could be an x or a test function ϕ), and we resolve this equivocation by writing
〈f, ϕ〉S′×S when we apply the distribution Tf ∈ S′ to the Schwartz function ϕ ∈ S.

Note that Schwartz functions f , g satisfy∫
Rn
f̂g dx =

∫
Rn
fĝ dx,

which can be written as
〈
f̂ , g
〉
S′×S

= 〈f, ĝ〉S′×S for such functions f and g.

Keep in mind that a distribution from S′(Rn) need not be a function; it could be also a Delta distribution.

Definition A.18 (Fourier transform on S′(Rn)). For a distribution T ∈ S′(Rn), we define its Fourier
transform T̂ ∈ S′(Rn) via〈

T̂ , ϕ
〉
S′×S

:= 〈f, ϕ̂〉S′×S , ∀ ϕ ∈ S(Rn).

Example A.19. What is δ̂ ?〈
δ̂, ϕ
〉
S′×S

:= 〈δ, ϕ̂〉S′×S = ϕ̂(0) =

∫
Rn

1 · ϕ(x) dx = 〈1, ϕ〉S′×S .

Answer: the Fourier transform of Dirac’s delta is that function which is one everywhere.

This definition is mathematically correct, but certainly not easy to understand. Perhaps an approximate
transformation, which we develop now, is less complicated.

Definition A.20 (Convergence in S′(Rn)). A sequence (T1, T2, . . . ) ⊂ S′(Rn) converges to a distribution
T ∈ S′(Rn) if limj→∞ 〈Tj , ϕ〉S′×S = 〈T, ϕ〉S′×S for every ϕ ∈ S(Rn). This convergence shall be written as

Tj
S′−→ T.

Proposition A.21. If Tj
S′−→ T , then T̂j

S′−→ T̂ .

We can also say that F is a continuous isomorphism between S′ and S′.

Proof. We know that 〈Tj , ϕ〉S′×S → 〈T, ϕ〉S′×S for each test function ϕ ∈ S, and we want to show that〈
T̂j , ϕ

〉
S′×S

→
〈
T̂ , ϕ

〉
S′×S

. But ϕ̂ ∈ S, and therefore〈
T̂j , ϕ

〉
S′×S

:= 〈Tj , ϕ̂〉S′×S → 〈T, ϕ̂〉S′×S =:
〈
T̂ , ϕ

〉
S′×S

.
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And this continuity of F makes the following recipe of an approximate Fourier transform possible:

• take a function like f = sinx or f(x) = x2, of which you want to know the Fourier transform f̂ ,

• then we typically have f ∈ S′(R1),

• choose a small positive ε and set fε = fε(x) := exp(−|εx|2/2)f(x), which is a function from the
Schwartz space S(R1), or at least from L1(R1) if f had some jumps,

• then limε→0 fε = f in the topology of S′,

• compute the Fourier transform Ffε as usual. This is no problem since fε has fast decay for |x| → ∞,

• do not perform the limit ε → 0. Just keep in mind that the number of protons in the universe is
estimated as 1080, choose ε = 10−800, and stop here. Instead, think about how the function Ffε
looks like.

Some examples may elucidate this. Put hε(x) = exp(−|εx|2/2).

To compute the approximate Fourier transform of the one-function (which takes the value one for each
x ∈ Rn), we write

(F1)(ξ)
S′

≈ (F(1 · hε))(ξ) = ĥε(ξ) = ε−n(2π)n/2 exp(−|ξ/ε|2/2),

and this is a function with a peak at the origin ξ = 0, and the volume under this peak is (2π)n:∫
Rnε
ĥε(ξ) dξ = (2π)n.

The precise Fourier transform is (F1) = (2π)nδ.

Next we choose a function g(x) = xα on Rn, and we look for Fg:

(Fg)(ξ)
S′

≈ (F(ghε))(ξ) =

∫
Rnx
e−ixξxαhε(x) dx = (−1)|α|

∫
Rnx

(
Dα
ξ e
−ixξ

)
hε(x) dx

= (−1)|α|Dα
ξ ĥε(ξ) = i|α|∂αξ ĥε(ξ).

Compare the figures for n = 1.

Next we consider a planar wave: g(x) = exp(ix · k) on Rn, for some fixed wave vector k ∈ Rn. Then

(Fg)(ξ)
S′

≈ (F(ghε))(ξ) =

∫
Rnx
e−ixξg(x)hε(x) dx =

∫
Rnx
e−ix(ξ−k)hε(x) dx = ĥε(ξ − k),

which is a peak of volume (2π)n located at the point k ∈ Rn.

And finally, on R1 we take g(x) = cos(ωx) for some ω ∈ R, ω 6= 0. By g(x) = (exp(iωx) + exp(−iωx))/2
we see that ĝ is approximately a collection of two peaks located at +ω and −ω, each of volume (2π)n/2.
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Figure A.1: ĥε(ξ) = (2π)1/2ε−1 exp(−ξ2/(2ε2)) with ε = 0.1,
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Figure A.2: ĥ′ε(ξ) = −ĥε(ξ) · ξ/ε2 with ε = 0.1
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Figure A.3: ĥ′′ε (ξ) = ĥε(ξ) · (ξ2 − ε2)/ε4 with ε = 0.1
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Appendix B

Core Components

Ten chapters is quite a lot of stuff, so we now give a list of the key results you should understand (with their
proofs, of course). The concepts not mentioned here are also important, but they are mostly conclusions
from the core components mentioned now.

Chapter 1: transforming a higher order equation into a first order system, the Theorem of Picard and
Lindelöf,

Chapter 2: the drum example, and how it is related to the Fourier series expansion from the second
semester,

Chapter 3: Duhamel’s formula (3.3) for single equations, Wronski determinants, fundamental solutions
for the case of general coefficients, fundamental solutions for the case of constant coefficients, how
to compute them,

Chapter 4: stationary points, stable/unstable points, asymptotically stable points, and how they are
related to the eigenvalues of the Jacobian,

Chapter 5: one method, order of consistency, purpose of implicit methods,

Chapter 6: solution behaviour and rôle of the characteristic matrix CX , all of Section 6.4 and Section 6.5
(because this is the heart of our three semester course), and study again the drum example from
Chapter 2,

Chapter 7: complex logarithm, complex root function, Cauchy–Riemann equations,

Chapter 8: definition of curve integrals, Cauchy integral theorem, Cauchy integral formula, analytic
function, equivalence of holomorphy and analyticity, the several formulae for the coefficients of the
Taylor expansion, Liouville’s theorem,

Chapter 9: identity theorem, Theorem on the Laurent series, residue theorem.

Concerning the Chapters 8 and 9, please invest the time to observe how each theorem builds upon the
other theorems mentioned before. For instance, in an attempt to prove the Cauchy integral formula, you
can not exploit that each holomorphic function can be expanded (locally) into a Taylor series, because
this Taylor expansion is itself a conclusion of the Cauchy integral formula, and therefore you would prove
the C.I.F. by means of the C.I.F., which is clearly philosophical nonsense.
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