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Chapter 1

Limits and Continuity

Purpose

Limits of sequences and functions are the main idea of analysis, and analysis is a certain branch
of mathematics that justifies the computations which you did in calculus at school. Later we
will get an understanding that analysis does a bit more.

Limits of Sequences

Example 1. We have limn→∞ n+1
n = 1. We can guess this by testing with n = 100, n = 1000,

n = 106 and computing mentally.

Definition 1.1 (Only a first attempt). Let (a0, a1, a2, . . . ) = (an)n∈N be a sequence of real
numbers.

We say that a real number A is the limit of the sequence (an)n∈N (and we write this as A =
limn→∞ an) if the following holds:

We can make the distance ∣an−A∣ as small as we want for all n above some advantageously large
chosen threshold.

Obviously, ∣an −A∣ is the distance of the real numbers an and A. The last sentence (with the
colours) is much too vague and does not follow scientific standards.

Definition 1.2 (Now properly). Let (a0, a1, a2, . . . ) = (an)n∈N be a sequence of real numbers.

We say that a real number A is the limit of the sequence (an)n∈N (and we write this as A =
limn→∞ an) if the following holds:

For each real positive ε
it exists a natural number N0 (perhaps depending on ε)

such that for all n ≥ N0

it holds that ∣an −A∣ < ε.
We rewrite this much shorter as follows:

∀ε > 0∶ ∃N0(ε) ∈ N∶ ∀n ≥ N0(ε)∶ ∣an −A∣ < ε.

Remark 1.3. The ∀ and ∃ are read as “for all” and “it exists”. The colon “ ∶” starts a new
sub-sentence. We have various layers of sub-sentences inside each other, like the layers of an
onion.

The interesting case for ε is when ε is small. Nobody cares about large ε (say, ε ≥ 1). The
natural number N0 is the threshold value mentioned in the naive definition.

When proving a statement limn→∞ an = A, your task is to present a recipe that computes some
N0 from a given ε such that the colour line becomes true.
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Example 2. We have guessed limn→∞ n+1
n = 1, but a proof is still missing. Here it comes.

Let a positive number ε be given to us. Our job is to find one natural number N0 (which is
allowed to depend on ε) such that for all n ≥ N0 we have ∣n+1n − 1∣ < ε. We think of N0 as a
threshold value: we don’t care what an does for n ≤ N0. But each n above this threshold value
N0 possesses a certain property.

Clearly, ∣n+1n − 1∣ = ∣ 1n ∣ =
1
n , since n is positive. A valid N0 therefore is N0(ε) = 1

ε + 1 (rounded up
to the next integer). Another valid value for N0 is 2

ε + 83 (rounded up to the next integer). It is
not needed to the “the optimal N0”. Our job has only been to find some N0.

Limits of Functions

Limits of functions can be defined similarly to limits of sequences, but unfortunately, there is a
twist.

Consider the function

f(x) =
⎧⎪⎪⎨⎪⎪⎩

7 if x = 2

5 − x if x /= 2.
(♣)

We observe from its graph: if x runs towards 2 (from the left or from the right), then f(x)
runs towards 3 (from the top or from the bottom), but f(2) is something completely different,
namely 7. We have limx→2 f(x) = 3, the definition of which follows now.

Definition 1.4. Let f = f(x) be a function from R into R. We say that a real number A is the
limit of the function f at the point 2 (and write this as A = limx→2 f(x)) if the following holds:

For each real positive ε
it exists a positive real number δ (perhaps depending on ε)

such that for all x with ∣x − 2∣ < δ but x /= 2
it holds that ∣f(x) −A∣ < ε.

In compressed notation:

∀ε > 0∶ ∃δ > 0∶ ∀x with 0 < ∣x − 2∣ < δ∶ ∣f(x) −A∣ < ε.

The twist announced earlier is that we must forbid x = 2. If we allowed1 x = 2 then our function
f from (♣) would not possess any limit at the point 2.

Remark 1.5. The relevant ε and δ are typically small. Nobody cares about large ε or large
δ. When proving a statement of the form limx→x∗ f(x) = A, our task is to present a recipe that
calculates some positive δ from a given positive ε, such that the coloured statement becomes true.

Example 3. We have guessed limx→2 f(x) = 3 for f from (♣), and now we prove it.

Let a positive real number ε be given to us. Our job is to find some δ (that is allowed to depend
on ε) such that for all x /= 2 that differ from 2 by less than δ (which means 0 < ∣x−2∣ < δ) possess
the property ∣f(x) − 3∣ < ε.
Provided x /= 2, we have ∣f(x) − 3∣ = ∣(5 − x) − 3∣ = ∣2 − x∣ = ∣x − 2∣, but now we may exploit that
∣x − 2∣ < δ, and our desire is ∣f(x) − 3∣ < ε. The number ε is given, and δ is wanted. After some
thinking we find the recipe: choose δ as δ ∶= ε. We could choose δ also smaller than ε.

Instead of defining limx→2 f(x), we may define limx→x∗ f(x) for a real number x∗ (instead of 2)
provided we have fixed that x∗ before. Just substitute x∗ for 2 in the definition.

1subjunctive mood of irreality

2



Continuity of Functions

Definition 1.6. We say that a function f = f(x) is continuous at a point x∗ if each of the
following conditions hold:

• f is defined at x∗ (which means that f(x∗) exists)

• limx→x∗ f(x) also exists

• both are equal (which means f(x∗) = limx→x∗ f(x)).

The function f from (♣) is not continuous at x∗ = 2, but continuous for all other x∗.

We present another description of continuity of a function f at a point x∗:

Lemma 1.7. 2 A function f = f(x) is continuous at a point x∗ if and only if the following
condition holds:

∀ε > 0∶ ∃δ > 0∶ ∀x with ∣x − x∗∣ < δ∶ ∣f(x) − f(x∗)∣ < ε.

That is just a re-wording of the definition, and the proof is not very hard. Note that the twist
is no longer needed. (WHY ?)

We have one more description of continuity of a function f at a point x∗:

Proposition 1.8. 3

A function f = f(x) is continuous at a point x∗ if and only if the following condition holds:

For each sequence (x1, x2, x3, . . . ) with limn→∞ xn = x∗: the sequence (y1, y2, y3, . . . ) of associated
function values yn ∶= f(xn) has limit f(x∗).

This can be concisely written as

lim
n→∞ f(xn) = f ( lim

n→∞xn) . (♡)

Exercise 1. Show that the function f from (♣) does not satisfy (♡). You may want to choose
an x–sequence

(2 + 1

2
,2 + 1

3
,2 + 1

4
,2 + 1

5
, . . .)

and another x–sequence
(2,2,2,2, . . . )

and imagine a zip fastener.

2A lemma is a little theorem
3A proposition is some result that is smaller than a theorem but bigger than a lemma
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Chapter 2

On Taylor’s Theorem

Purpose

Taylor’s theorem is useful because it allows to approximate complicated functions by easy func-
tions, and it even enables us to estimate the error of approximation.

The mean value theorem of differentiation is a special case of Taylor’s theorem.

Rolle’s theorem is a theoretical tool, whose only purpose is to help us proving all the other
theorems.

The extended mean value theorem is also a theoretical tool, which is crucial for proving Taylor’s
theorem and for proving l’Hospital’s rule.

The pedagogical use of this note is to show how to write a mathematical text.

Some other result

Theorem 2.1 (Continuous functions on compact sets). Let [a, b] be an interval, and let
f ∶ [a, b]→ R be a continuous function. Then f attains a smallest and biggest value over [a, b].
Expressed in symbols:

∃x ∈ [a, b], ∃x ∈ [a, b]∶ ∀x ∈ [a, b]∶ f(x) ≤ f(x) ≤ f(x). (♠)

We will need this theorem in the next sections.

Differentiable functions on an interval

Lemma 2.2. Let f ∶ [a, b] → R be differentiable on this interval, let x be an interior point of
this interval, where f attains a smallest value.

Then f ′(x) = 0.

Proof. By definition, we have

f ′(x) = lim
x→x

f(x) − f(x)
x − x

.

Since x is an interior point, x is able to approach x from the left, and to approach x from the
right. Observe that

f(x) − f(x)
x − x

⎧⎪⎪⎨⎪⎪⎩

≤ 0 ∶x < x,
≥ 0 ∶x > x,

Letting x approach x from the left then tells us f ′(x) ≤ 0. And letting x approach x from the
right yields f ′(x) ≥ 0. But the left-sided limit and the right-sided limit must coincide, which is
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only possible if

lim
x→x

f(x) − f(x)
x − x

= 0.

This was our goal. The proof is complete.

Remark 2.3. The requirement that x be an interior point of [a, b] is essential. Think about the
sine over [0, π].

Remark 2.4. A similar lemma holds about an interior point x where f attains a largest value.

Rolle’s theorem and its conclusions

Theorem 2.5 (Rolle’s theorem). Let f ∶ [a, b]→ R be differentiable, and let f(a) = f(b) = 0.

Then there is a point ξ ∈ (a, b) with f ′(ξ) = 0.

Expressed in symbols:
∃ξ ∈ (a, b)∶ f ′(ξ) = 0.

Proof. By assumption, f is differentiable. Therefore, f is continuous.

Now we invoke the theorem about continuous functions on compact sets, and that theorem
guarantees us the existence of a point x ∈ [a, b] and a point x ∈ [a, b] where f attains a largest
value and a smallest value1.

We consider x first and x later (but only if needed).

Now we perform a proof by cases.

Case A: f(x) < 0: this is impossible because we are permitted to choose x = a in (♠), and then
we arrive at the contradiction 0 < 0.

Case B: f(x) > 0: then x /= a, because f(a) = 0. And x /= b, because f(b) = 0. Consequently,
x is an interior point of the interval (a, b). Now we apply Remark 2.4 together with
Lemma 2.2, resulting in f ′(x) = 0. We choose ξ ∶= x.

Case C: f(x) = 0: We refine our proof by cases.

Case α: f(x) < 0: then x /= a, because f(a) = 0. And x /= b, because f(b) = 0. Con-
sequently, x is an interior point of the interval (a, b). Now we apply Lemma 2.2,
resulting in f ′(x) = 0. We choose ξ ∶= x.

Case β: f(x) = 0: then f is taking the value zero everywhere on the interval [a, b]. We
pick an arbitrary interior point and call it ξ.

Case γ: f(x) > 0: this is impossible.

In each case, we have delivered a point ξ with the desired properties. Other cases can not
happen, the proof is complete.

Theorem 2.6 (Mean value theorem of differentiation). Let f ∶ [a, b]→ R be differentiable.
Then a point ξ ∈ (a, b) exists with

f ′(ξ) = f(b) − f(a)
b − a

.

Proof. We define an auxiliary function2

h(x) ∶= f(x) − f(a) − f(b) − f(a)
b − a

(x − a).

1Careful: it may happen that x or x are not interior points of [a, b].
2it helps us, therefore we call it h
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Two short calculations reveal h(a) = 0 and h(b) = 0. Now also the function h is differentiable,
because f is. We apply Rolle’s theorem to the function h, hence there is a point ξ ∈ (a, b) with
h′(ξ) = 0. However, we observe that

h′(x) = f ′(x) − f(a) − f(b)
b − a

,

and substituting ξ for x here concludes the proof.

Theorem 2.7 (Extended mean value theorem of differentiation). Let f and g be differ-
entiable functions on an interval [a, b], with g′(x) /= 0 for all x ∈ (a, b), and g(b) − g(a) /= 0.

Then there exists a point ξ ∈ (a, b) with

f(b) − f(a)
g(b) − g(a)

= f
′(ξ)
g′(ξ)

.

Sketch of proof. Apply Rolle’s theorem to the auxiliary function

h(x) = f(x) − f(a) − f(b) − f(a)
g(b) − g(a)

⋅ (g(x) − g(a)).

Now we come to the highlight of this note.

Theorem 2.8 (Taylor’s theorem). Let the function f ∶ [a, b]→ R be (N+1) times differentiable
on the interval [a, b]. Then the following holds: for all x, x0 ∈ (a, b), there is a point ξ between
x and x0 such that

f(x) =
N

∑
n=0

1

n!
f (n)(x0) ⋅ (x − x0)n +RN(x;x0), RN(x;x0) =

1

(N + 1)!
f (N+1)(ξ) ⋅ (x − x0)N+1.

Proof. Keep x and x0 fixed, and let t be a variable running in the interval (a, b). We define two
functions3:

F (t) ∶= f(x) − f(t) − f ′(t) ⋅ (x − t) − 1

2!
f ′′(t) ⋅ (x − t)2 − . . . − 1

N !
f (N)(t) ⋅ (x − t)N ,

G(t) ∶= (x − t)N+1

(N + 1)!
.

We apply the extended version of the mean value theorem, for the pair of functions F&G, but
now on the interval (x0, x) instead of the interval (a, b):

F (x) − F (x0)
G(x) −G(x0)

= F
′(ξ)

G′(ξ)
,

with some ξ between x and x0.

We calculate the four items on the LHS:

F (x) = 0,

F (x0) = f(x) −
N

∑
n=0

1

n!
f (n)(x0) ⋅ (x − x0)n,

G(x) = 0,

G(x0) =
(x − x0)N+1

(N + 1)!
.

3for this step, a large amount of phantasy, bordering on ingenuity, is required
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Hence we obtain

f(x) −
N

∑
n=0

1

n!
f (n)(x0) ⋅ (x − x0)n = F (x0) =

F ′(ξ)
G′(ξ)

⋅G(x0) =
F ′(ξ)
G′(ξ)

⋅ (x − x0)
N+1

(N + 1)!
.

It remains to evaluate F ′(ξ) and G′(ξ). When we calculate F ′(t), we see that many terms
cancel and only one term remains:

F ′(t) = − 1

N !
f (N+1)(t) ⋅ (x − t)N .

And we quickly find

G′(t) = −(N + 1)(x − t)
N

(N + 1)!
= −(x − t)N

N !
.

Plugging in we then get

f(x) −
N

∑
n=0

1

n!
f (n)(x0) ⋅ (x − x0)n =

− 1
N !f

(N+1)(ξ) ⋅ (x − ξ)N

− (x−ξ)
N

N !

⋅ (x − x0)
N+1

(N + 1)!
,

which resolves into

f(x) −
N

∑
n=0

1

n!
f (n)(x0) ⋅ (x − x0)n =

1

(N + 1)!
f (N+1)(ξ) ⋅ (x − x0)N+1.

But this is exactly the desired formula for the remainder RN , which was our claim.

Remark 2.9. In case you struggle finding F ′(t), don’t worry. The calculations are indeed a bit
longer and require concentrated attention. That is why we do them. Consider the case N = 2
first. Consider the case N = 3 next.

Remark 2.10. We may choose even N = 0, and then Taylor’s theorem boils down to the mean
value theorem of differentiation.

l’Hospital’s rule

Theorem 2.11. Let f and g be differentiable functions on an interval [a, b] with the following
properties:

lim
x→a f(a) = 0, lim

x→a g(x) = 0,

∀x ∈ (a, b)∶ g′(x) /= 0.

Suppose that the limit

lim
x→a

f ′(x)
g′(x)

exists. Then also the limit

lim
x→a

f(x)
g(x)

exists, and both are equal.

Proof. Take some x ∈ (a, b). We apply the extended version of the mean value theorem to the
pair f&g, and we choose the interval (a, x):

f(x) − f(a)
g(x) − g(a)

= f
′(ξ)
g′(ξ)

.
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Here ξ is a certain unknown point between a and x. Observe that f(a) = g(a) = 0. Hence we
have

f(x)
g(x)

= f
′(ξ)
g′(ξ)

, for some ξ ∈ (a, x).

Now let x run towards a. Then ξ must also run towards a, because ξ is squeezed between a and
x. We assumed that the limit of the RHS exists (for ξ going to a). Then also the limit of the
LHS must exist.

Remark 2.12. A little warning: there are nasty situations where limx→a
f ′(x)
g′(x) does not exist,

but limx→a
f(x)
g(x) does exist. Then l’Hospital’s rule cannot be applied (and is useless).

Applications

• Apply Taylor’s theorem to the function f(x) = 3
√

1 + x for x ≈ x0 = 0, with the choice N = 1.
Use this formula to find 3

√
1750 without calculator. How many digits of your calculation

are reliable ? The relation 123 = 1728, known from Gulliver’s travels, might be useful here.

• The distance (direct line) between Fort Augustus and Urquhart Castle is 25 kilometres, the
earth radius is 6370 kilometres. Due to the earth being a ball, the surface of Loch Ness is
bent there, and a mountain of water is accumulated between Fort Augustus and Urquhart
Castle. Determine the height of this mountain without calculator, but with an error of
less than 10%.
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Chapter 3

On the Construction of
Complex Numbers

Purpose

We shall define complex numbers in a mathematically correct way. Perhaps you have already
heard that complex numbers are things like 3 − 4i, with 3 being called the real part, −4 being
called the imaginary part, and i being defined as

√
−1. Every real number (the usual numbers

you learned in school) can be seen as a complex number, because you are permitted to write
π + 0 ⋅ i instead of π.

That way of introducing complex numbers is troublesome for various reasons:

• it is mathematically delicate,

• it is philosophically wrong.

Defining i ∶=
√
−1 is mathematically delicate because −1 is a complex number, and taking square

roots of complex numbers is tricky (because each complex number (assuming it is not zero) has
two square roots, and which of the two square roots of −1 shall be i ?), and we should be more
careful.

Defining i ∶=
√
−1 is also philosophically wrong, because a doing a definition means giving birth

to a scientific term. And this newborn scientific term descends from other scientific terms that
are an older generation and have been defined previously. In particular, we know that the older
scientific terms do exist. And here the philosophical mistake has been done: we pretend to know
what

√
−1 is, and that it exists as a rigorously defined scientific term.

The purpose of this note is to show you how to define complex numbers in the mathematically
correct way. Moreover, in the mathematical programme, you will (sooner or later) get acquainted
with various algebraic structures like group, semigroup, ring, field, vector space, topological
space. The definition of such an algebraic structure always involves the following ingredients:

• a set of objects (the numbers, for instance),

• a collection of operations that you can apply to the objects,

• several rules that hold for the operations.

In this note, you will learn in detail these three ingredients of the algebraic structure field of
complex numbers, which prepares you for your later studies.
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Looking again at the real numbers

The three ingredients of the field of real numbers are

the set of real numbers: e.g. 2 or 3.7 or
√

2 or π, but not ∞,

a collection of operations: there are three of them:

equality: you take two numbers, ask if they are equal, and the result is one of the two
states “true” and “false”. The notation is a = b.

addition: you take two numbers, add the second to the first number, and the result is
again a real number. The notation is a + b.

multiplication: you take two numbers, multiply the first by the second number, and the
result is again a real number. The notation is a ⋅ b.

In some sense, we also have subtraction and division, but they are introduced in the rules
part.

a collection of rules: their effect is twofold. On the one hand, the rules restrict what you are
able/allowed to do. For instance, we are not able to solve the equation 0 ⋅x = 17 for x. On
the other hand, the rules empower you: because we are permitted to morph 2 ⋅ (x+y) into
2 ⋅ x + 2 ⋅ y. The rules are the following:

+ is commutative: for all real a and b, we have a + b = b + a,

+ is associative: for all real a, b and c, we have (a + b) + c = a + (b + c),
adding is reversible: for each real a and each real b, the equation a + x = b has exactly

one solution x. If you want, you may write x = b − a.

+ has a neutral element: there is exactly one special real number (called 0) such that,
for each real a, we have a + 0 = a.

⋅ is commutative: for all real a and b, we have a ⋅ b = b ⋅ a,

⋅ is associative: for all real a, b and c, we have (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c),
multiplying is almost always reversible: for each real a that is not equal to 0, and

for each real b, the equation a ⋅x = b has exactly one solution x. If you want, you may
write x = b/a.

multiplying and adding are connected: for each real numbers a, b, c, we have the
equality a ⋅ (b + c) = a ⋅ b + a ⋅ c.

The recipe of constructing complex numbers rigorously is the following:

defining the objects: we define complex numbers and write them in a funny way, in order to
not confuse them with the numbers we already know.

defining the operations: we define operations that are acting upon the complex numbers,
and again we write them in a funny way: Þ, ⊞, ⊡, in order not to confuse them with their
real cousins =, +, ⋅.

checking the rules: we prove that these three operations obey the same list of rules mentioned
above (provided that we use the new notation everywhere).

observation: we find that a certain subset of the set of all complex numbers behaves exactly
as the set of real numbers does.
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changing the notation: the duck test is this one: If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably is a duck. We will have found a subset of the
complex numbers that behaves like the set of real numbers. Now is a good time to stop
being so pedantic about the notation, replace Þ, ⊞, ⊡ by =, +, ⋅ everywhere, and consider
every real number as a complex number. Pedantically speaking, a real number is not a
complex number, but it can be seen as a complex number, which is enough for all purposes.

Defining complex numbers

Definition 3.1 (Complex number). Let a and b be real numbers. Then the ordered pair (a, b)
is called a complex number. We say that a is the real part of (a, b), and b is the imaginary
part of (a, b). The set of all such pairs is denoted by C.

As a formula, this means
C ∶= {(a, b)∶ a ∈ R, b ∈ R}.

We say “ordered pair” because the order matters: (3,4) is not the same as (4,3).
We also introduce the notation

a =R(a, b), b = I(a, b).

Defining operations

Definition 3.2 (Equality). Let (a, b) and (c, d) be complex numbers. We say that they are
equal if and only if a = c and b = d. We write this equality as (a, b) Þ (c, d).

As a formula, this means

(a, b) Þ (c, d) ∶⇐⇒ a = c and b = d.

Definition 3.3 (Addition). Let (a, b) and (c, d) be complex numbers. We define their sum to
be that complex number (a, b) ⊞ (c, d) which equals (a + c, b + d).

As a formula, this means
(a, b) ⊞ (c, d) ∶Þ (a + c, b + d).

Definition 3.4 (Multiplication). Let (a, b) and (c, d) be complex numbers. We define their
product to be that complex number (a, b) ⊡ (c, d) which equals (a ⋅ c − b ⋅ d, a ⋅ d + b ⋅ c).

As a formula, this means

(a, b) ⊡ (c, d) ∶Þ (a ⋅ c − b ⋅ d, a ⋅ d + b ⋅ c).

Well, this notation is indeed cumbersome. Soon we will switch to a shorter one.
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Checking the rules

By means of several mathematical proofs, we show that:

⊞ is commutative

⊞ is associative

the complex adding ⊞ can be reversed

⊞ has a neutral element: this is the number (0,0),

⊡ is commutative

⊡ is associative

the complex multiplying ⊡ can be almost always reversed

complex multiplying and complex adding are connected

The proofs are straight forward. To present an example, we prove the associativity of the
multiplication (the other proofs are easier and nice homeworks).

Lemma 3.5. The operation ⊡ is associative. This means:

∀(a, b) ∈ C, ∀(c, d) ∈ C, ∀(e, f) ∈ C ∶ ((a, b) ⊡ (c, d)) ⊡ (e, f) Þ (a, b) ⊡ ((c, d) ⊡ (e, f)).

Proof. We compute the LHS, which is

((a, b) ⊡ (c, d)) ⊡ (e, f) Þ (a ⋅ c − b ⋅ d, a ⋅ d + b ⋅ c) ⊡ (e, f)

Þ ((a ⋅ c − b ⋅ d) ⋅ e − (a ⋅ d + b ⋅ c) ⋅ f, (a ⋅ c − b ⋅ d) ⋅ f + (a ⋅ d + b ⋅ c) ⋅ e). (♠)

And we compute the RHS, which is

(a, b) ⊡ ((c, d) ⊡ (e, f)) Þ (a, b) ⊡ (c ⋅ e − d ⋅ f, c ⋅ f + d ⋅ e)

Þ (a ⋅ (c ⋅ e − d ⋅ f) − b ⋅ (c ⋅ f + d ⋅ e), a ⋅ (c ⋅ f + d ⋅ e) + b ⋅ (c ⋅ e − d ⋅ f)).

Exploiting the fact that the real operations +, ⋅ are commutative and associative, we quickly
check that this is the same as (♠). The proof is complete.

Observation

After this hard work, we relax and play with some complex numbers:

(2,3) ⊞ (4,1) Þ (6,4), (2,3) ⊡ (4,1) Þ (5,14).

How about some numbers, with imaginary part equal to zero ?

(2,0) ⊞ (4,0) Þ (2 + 4,0 + 0) Þ (6,0), (2,0) ⊡ (4,0) Þ (2 ⋅ 4 − 0 ⋅ 0,2 ⋅ 0 + 0 ⋅ 4) Þ (8,0).

That looks similar to the real identities 2 + 4 = 6 and 2 ⋅ 4 = 8.

Our conjecture is: the complex operations Þ, ⊞, ⊡ behave on the subset of all those complex
numbers (a,0) with imaginary part equal to zero exactly in the same way as the real operations
=, +, ⋅ behave on the set of real numbers. We just should replace the complex number (a,0) by
the real number a, the complex equality sign Þ by the real equality sign =, the complex addition
symbol ⊞ by the real addition symbol +, and the complex multiplication symbol ⊡ by the real
multiplication symbol ⋅.
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Changing the notation

We are using the cumbersome notation for a last time. Take a complex number (a, b). Observe
that (0, b) Þ (b,0) ⊡ (0,1). Hence we have

(a, b) Þ (a,0) ⊞ (0, b) Þ (a, b) ⊞ (b,0) ⊡ (0,1).

We already announced that we prefer to replace (a,0) by a, and, by analogy, (b,0) by b.

Let us make the agreement
i ∶= (0,1).

Then the above line (a, b) Þ (a, b) ⊞ (b,0) ⊡ (0,1) becomes

(a, b) Þ a ⊞ b ⊡ i,

and if we finally substitute the operation symbols, we get

(a, b) = a + b ⋅ i.

Now what is i ⋅ i ? By its very definition, i is just an abbreviation of (0,1). Hence the answer to
the question is found by this calculation:

i ⋅ i = (0,1) ⊡ (0,1) Þ (0 ⋅ 0 − 1 ⋅ 1,0 ⋅ 1 + 1 ⋅ 0) Þ (−1,0),

and we agreed to write (−1,0) shorter as −1. The answer is

i ⋅ i = −1.

However, we also have (−i) ⋅(−i) = −1, by a very similar calculation in the cumbersome notation.
Consequently, the equation z2 = −1 has at least two solutions, namely i and −i. It might possess
even more solutions, who knows. An attempt to “define” i ∶=

√
−1 then is clearly questionable,

because we have no way to specify which of the (at least) two square root candidates is the one
we mean.

The definitions of the operations in the new notation are easier to remember, perhaps:

a + b ⋅ i = c + d ⋅ i ∶⇐⇒ a = c and b = d,
(a + b ⋅ i) + (c + d ⋅ i)∶= (a + c) + (b + d) ⋅ i,
(a + b ⋅ i) ⋅ (c + d ⋅ i)∶= (a ⋅ c − b ⋅ d) + (a ⋅ d + b ⋅ c) ⋅ i.

The assumption of the author is that you know already these three lines, and now you have
learned where do they come from.

13



Chapter 4

On the Exponential Function

Purpose

We (attempt to) explain the mysteries of the exponential functions and highlight their key
properties. We continue our training in reading proofs and doing mathematics rigorously. We
enjoy beautiful mathematics.

Key Properties

Euler’s number e is e = 2.718281828459 . . . , it is irrational, and the exponential function is

exp(x) = ex, x ∈ R.

Its key properties are mostly these here:

ea+b = ea ⋅ eb, a, b ∈ R,
d

dx
ex = ex, x ∈ R,

elnx = x, ln(ex) = x, x ∈ R+.

The last line means that the natural logarithm ln is the inverse function to the exponential
function. And the natural logarithm is beautiful because it has an exceptionally nice derivative
(which one ???).

In this note, we try to answer four questions which you might have found yourself already (every
teacher appreciates curious students who raise questions):

• where does this funny number 2.718281828459 . . . come from ? Why didn’t we select a
simpler number like 2 or 10 ?

• assuming our pocket calculator is broken, how can we calculate ex if e is the funny number
from above, and x is similarly complicated ? Calculating e3 by hand is easy: you simply
multiply 2.71828 ⋅ 2.71828 ⋅ 2.71828 using pen and paper (which is principally doable if
we have some time), and you take more digits if you need more digits. But if x is more
complicated, like x = 2.34527910 . . . , what exactly is ex supposed to be ? Already its
meaning is a mystery.

• Can we do it with complex numbers x, ideally without investing too much work ?

• Can we find some beauty here ?

14



The real case

Suppose you have 100£ in a bank account, and the bank pays 1% interest. If you keep the
money there from 1 January till 31 December untouched, you will obtain at the end of the year
100 ⋅ (1 + 0.01) = 101£ .

If you withdraw the money on 30 June, the bank will pay you half the interest, so you will get
100 ⋅ (1 + 0.01

2 ) = 100.50£ , and then you directly pay back this amount into your account again.
Then this amount of 100.50£ will earn an interest of 0.5% for the remaining half of the year,
giving you a total amount of 100 ⋅ (1 + 0.01

2 )2 = 101.0025£ on 31 December.

If you withdraw the money of 100£ (plus the earned interests) after a third of a year, you will
receive 100 ⋅ (1 + 0.01

3 )£ , and then you pay back this amount into your account again, and
then you withdraw everything after two thirds of the year (with the interests), and then you
pay what you received back into your account. On 31 December, you will have an amount of
100 ⋅ (1 + 0.01

3 )3 = 101.003337037£ . This is making us even richer (by 0.08337037p) than the
midyear split approach.

The question is: how rich can we become following this scheme ? In mathematical terms: what
is the value of

100 ⋅ lim
n→∞(1 + 0.01

n
)
n

?

The answer is: 100 ⋅ e0.01 = 101.0050167 . . . . We will explain it soon.

The funny number e = 2.718281828459 . . . is Banker’s Constant.

Therefore, we are interested in the limit

lim
n→∞(1 + x

n
)
n

, x ∈ R,

and we do not know yet whether this limit even exists.

Lemma 4.1. For each x ∈ R, the limit

lim
n→∞(1 + x

n
)
n

does exist, and its value is equal to ∑∞n=0 1
n!x

n, where this summation with infinitely many items
is defined like this:

∞
∑
n=0

1
n!x

n ∶= lim
N→∞

(
N

∑
n=0

1
n!x

n) . (♣)

Proof. Let x ∈ R be given (hence fixed). We will prove elsewhere that the limit on the RHS of
(♣) exists. So (for today) we presume that this limit exists and give it the name A∗. Hence we
know the following:

∀ ε > 0∶ ∃ N0(ε)∶ ∀ N ′ ≥ N0(ε)∶
RRRRRRRRRRR

⎛
⎝

N ′

∑
n=0

1

n!
xn

⎞
⎠
−A∗

RRRRRRRRRRR
< ε. (♠)

By the definition of the limit of the sequence, we are required to prove the following:

∀ ε > 0∶ ∃ N1(ε)∶ ∀ n ≥ N1(ε)∶ ∣(1 + x
n
)
n

−A∗∣ < ε (♡)

A positive number ε is given to us. Our job is to deliver a numberN1(ε) with the desired property
mentioned in (♡). Using the binomial formula (a + b)n = ∑nk=0 (

n
k
)an−kbk, where (n

k
) = n!

(n−k)!k! ,
we calculate

(1 + x
n
)
n

=
n

∑
k=0

(n
k
)1n−k (x

n
)
k

=
n

∑
k=0

n ⋅ (n − 1) ⋅ (n − 2) ⋅ . . . ⋅ (n − k + 1)
k!

⋅ x
k

nk

=
n

∑
k=0

n ⋅ (n − 1) ⋅ (n − 2) ⋅ . . . ⋅ (n − k + 1)
n ⋅ n ⋅ . . . ⋅ n

⋅ x
k

k!
.

15



The first fraction behind the summation symbol has k factors in the numerator and k factors in
the denominator, so we can simplify this to

(1 + x
n
)
n

=
n

∑
k=0

1 ⋅ (1 − 1

n
) ⋅ (1 − 2

n
) ⋅ (1 − 3

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
.

Let us pick a special k, say k = 5, and consider a special item of the sum:

1 ⋅ (1 − 1

n
) ⋅ (1 − 2

n
) ⋅ (1 − 3

n
) ⋅ (1 − 4

n
) ⋅ x

5

5!
,

and this term converges (assuming n→∞) to 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ x55! . This looks promising, but we are
not done yet: although we may write

lim
n→∞((1 + x

n
)
n

) = lim
n→∞(

n

∑
k=0

(1 − 1

n
) ⋅ (1 − 2

n
) ⋅ (1 − 3

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
) ,

we are not allowed to swap the limn→∞ and the ∑nk=0 (because then we are in a situation where
the identifier n is used in an outer layer of the formula, but defined only in an inner layer of the
formula, which is logically absurd).

The trouble is that the items in the sum ∑nk=0 are getting more and more as n increases.

For the number ε fixed in the very beginning, the line (♠) gives us a number N0( ε3). Let Ñ be

a number ≥ N0(ε/3) which will be specified later, and let us assume n ≥ Ñ . We will now split
two summations at the index Ñ . Hence we write

∣(1 + x
n
)
n

−A∗∣ = ∣(
n

∑
k=0

(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
) −

∞
∑
m=0

xm

m!
∣

=
RRRRRRRRRRRR

⎛
⎝

Ñ

∑
k=0

(. . . ) +
n

∑
k=Ñ+1

(. . . )
⎞
⎠
−

Ñ

∑
m=0

xm

m!
−

∞
∑

m=Ñ+1

xm

m!

RRRRRRRRRRRR

≤
RRRRRRRRRRRR

Ñ

∑
k=0

((1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
− x

k

k!
)
RRRRRRRRRRRR

(♢)

+
RRRRRRRRRRRR

n

∑
k=Ñ+1

(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!

RRRRRRRRRRRR

+
RRRRRRRRRRRR

∞
∑

m=Ñ+1

xm

m!

RRRRRRRRRRRR
.

Our desire is to prove that this complicated RHS is smaller than ε
3 +

ε
3 +

ε
3 , for all n ≥ N1(ε),

and we still have some freedom in choosing N1(ε). We start with the last item on the RHS (♢),
because it is the easiest one:

RRRRRRRRRRRR

∞
∑

m=Ñ+1

xm

m!

RRRRRRRRRRRR
=
RRRRRRRRRRRR
A∗ −

Ñ

∑
m=0

xm

m!

RRRRRRRRRRRR
< ε

3
,

where we have exploited (♠) and tacitly assumed N1(ε) ≥ N0(ε/3). This is a condition on N1(ε).
Now we consider the middle item on the RHS (♢). The triangle inequality permits us to pull
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the modulus bars into the summation:

RRRRRRRRRRRR

n

∑
k=Ñ+1

(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!

RRRRRRRRRRRR
≤

n

∑
k=Ñ+1

∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
∣

=
n

∑
k=Ñ+1

∣1 − 1

n
∣ ⋅ . . . ⋅ ∣1 − k − 1

n
∣ ⋅ ∣x

k

k!
∣

≤
n

∑
k=Ñ+1

1 ⋅ . . . ⋅ 1 ⋅ ∣x∣
k

k!

=
n

∑
k=Ñ+1

∣x∣k

k!
.

In the same way as we presumed that the summation ∑∞n=0 1
n!x

n exists (and has a certain value
which we called A∗), we may presume that also the summation ∑∞n=0 1

n! ∣x∣
n exists (and has a

certain value A∣∗∣. Expressed as a formula:

∀ ε > 0∶ ∃ N∣0∣(ε)∶ ∀ N ′ ≥ N∣0∣(ε)∶
RRRRRRRRRRR

⎛
⎝

N ′

∑
n=0

1

n!
∣x∣n

⎞
⎠
−A∣∗∣

RRRRRRRRRRR
< ε. (∣♠∣)

Then we can continue our calculation like this:

n

∑
k=Ñ+1

∣x∣k

k!
≤

∞
∑

k=Ñ+1

∣x∣k

k!
=
RRRRRRRRRRRR
A∣∗∣ −

Ñ

∑
k=0

∣x∣k

k!

RRRRRRRRRRRR
< ε

3
,

provided that Ñ ≥ N∣0∣(ε/3). We have exploited (∣♠∣) here.

Now we come to the first item on the RHS (♢). We again use the triangle inequality to pull the
modulus bars into the summation:

RRRRRRRRRRRR

Ñ

∑
k=0

((1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
− x

k

k!
)
RRRRRRRRRRRR
≤

Ñ

∑
k=0

∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
− x

k

k!
∣

=
Ñ

∑
k=0

∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) − 1∣ ⋅ ∣x∣

k

k!
.

And here it is easy to perform the limit n→∞, because the number of items in the sum is never
more than Ñ + 1, and there is no trouble with logics.

Let k be fixed. We easily check

lim
n→∞ ∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) − 1∣ ⋅ ∣x∣

k

k!
= 0.

Expressed as a formula:

∀ ε > 0∶ ∃ N0,k(ε)∶ ∀ n ≥ N0,k(ε)∶ ∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) − 1∣ ⋅ ∣x∣

k

k!
< ε. (△k)

For each k ∈ {0,1, . . . , Ñ}, we have its own statement (△k) written here. These are Ñ + 1
statements.

Now let us assume

N1(ε) ≥ N0,0 (
ε

3(Ñ + 1)
) , N1(ε) ≥ N0,1 (

ε

3(Ñ + 1)
) , . . . , N1(ε) ≥ N0,Ñ ( ε

3(Ñ + 1)
) ,
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and n ≥ N1(ε). For such n, we then have

Ñ

∑
k=0

∣(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
)∣ ⋅ ∣x∣

k

k!
<

Ñ

∑
k=0

ε

3(Ñ + 1)
= ε

3
,

hence we can continue from (♢) like this:

RRRRRRRRRRRR

Ñ

∑
k=0

((1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!
− x

k

k!
)
RRRRRRRRRRRR

(♢)

+
RRRRRRRRRRRR

n

∑
k=Ñ+1

(1 − 1

n
) ⋅ . . . ⋅ (1 − k − 1

n
) ⋅ x

k

k!

RRRRRRRRRRRR

+
RRRRRRRRRRRR

∞
∑

m=Ñ+1

xm

m!

RRRRRRRRRRRR
< ε

3
+ ε

3
+ ε

3
= ε.

The recipe for chosing N1(ε) is this:

• choose Ñ = max{N0(ε/3),N∣0∣(ε/3)} with N0 specified in (♠) and N∣0∣ specified in (∣♠∣);

• with this Ñ , define

N1(ε) ∶= max{Ñ , N0,0 (
ε

3(Ñ + 1)
) , N0,1 (

ε

3(Ñ + 1)
) , . . . , N0,Ñ ( ε

3(Ñ + 1)
)} ,

where N0,k is specified in (△k).

The proof is complete.

After this long proof, we now relax a bit and define the exponential function on R:

Definition 4.2. For x ∈ R, we define

expR(x) ∶=
∞
∑
n=0

1

n!
xn.

And to get a deeper understanding of the behaviour of this function, we prove a key property:

Proposition 4.3. For all x ∈ R and all y ∈ R, we have

expR(x + y) = expR(x) ⋅ expR(y).

Proof. We apply the definition of expR to the LHS and to the RHS. Hence we have

LHS =
∞
∑
n=0

1

n!
(x + y)n =

∞
∑
n=0

1

n!
(
n

∑
k=0

(n
k
)xkyn−k) =

∞
∑
n=0

1

n!
(
n

∑
k=0

n!

k!(n − k)!
xkyn−k)

=
∞
∑
n=0

(
n

∑
k=0

xk

k!
⋅ yn−k

(n − k)!
) .

On the other hand,

RHS =
⎛
⎝

∞
∑
j=0

1

j!
xj

⎞
⎠
⋅ (

∞
∑
m=0

1

m!
ym) .
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We wish to transform the LHS into the RHS. A natural transformation consists in swapping
the summation symbols. This step is non-trivial because infinitely many terms in the sum are
involved, and you will learn a justification of this swapping elsewhere in your maths programme.
In any case, because of 0 ≤ k ≤ n, we have n ≥ k, hence we obtain

LHS =
∞
∑
k=0

(
∞
∑
n=k

xk

k!
⋅ yn−k

(n − k)!
) ∣ rename m ∶= n − k

=
∞
∑
k=0

(
∞
∑
m=0

xk

k!
⋅ y

m

m!
) ∣ xk

k!
has no m, can be taken out

=
∞
∑
k=0

xk

k!
⋅ (

∞
∑
m=0

ym

m!
) ∣ (

⋯
∑
m⋯

. . .) has no k, can be taken out

= (
∞
∑
m=0

ym

m!
) ⋅

∞
∑
k=0

xk

k!
,

which is the same as the RHS, ignoring the different names of the running indices.

Example 4. We have

expR(7) = expR(6 + 1) = expR(6) ⋅ expR(1) = expR(5 + 1) ⋅ expR(1)
= expR(5) ⋅ (expR(1))

2 = . . .
= (expR(1))

7 .

Similarly, we get expR(m) = (expR(1))m for m ∈ N.

Definition 4.4. We define Euler’s number

e ∶= expR(1) =
∞
∑
n=0

1

n!
= 1

0!
+ 1

1!
+ 1

2!
+ 1

3!
+ . . . = 2.718281828459 . . . .

Hence we have expR(m) = em for every m ∈ N.

Definition 4.5. For x ∈ R, we agree to write ex as a short form of expR(x).

In this sense, the key property ea+b = ea ⋅ eb has been proved for all real a and all real b.

Proposition 4.6. The function expR is differentiable everywhere on R, and its derivative is

d

dx
expR(x) = expR(x).

Non–Proof. We do not have the tools yet to give a proof.

Remark 4.7. The Maclaurin formula f(x) = ∑∞n=0 1
n!f
(n)(0) ⋅ xn applied to f = expR gives us

expR(x) =
∞
∑
n=0

1

n!
xn,

because of

( d

dx
)
n

expR(x) = expR(x)

and expR(0) = 1. This Maclaurin formula does not surprise us.
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The complex case

We wish to perform similar investigations in the complex case, and our goal is to preserve as
many properties of the real exponential function as possible. Therefore, we take the freedom to
copy the results and their proofs preferably verbatim:

Lemma 4.8. For each z ∈ C, the limit

lim
n→∞(1 + z

n
)
n

does exist, and its value is equal to ∑∞n=0 1
n!z

n, where this summation with infinitely many items
is defined like this:

∞
∑
n=0

1
n!z

n ∶= lim
N→∞

(
N

∑
n=0

1
n!z

n) .

The proof is literally the same as before, because of the following reasons:

• in the real proof, we have used the four basic operations +, −, ⋅, /, and their rules (+ and
⋅ are commutative and associative, etc.). But the complex versions of these four basic
operations obey exactly the same rules.

• in the real proof, we have used the modulus function (in the calculations as well as in the
definition of limn→∞). There is also a modulus function in C, and they are defined like
this

∣x∣R ∶=
⎧⎪⎪⎨⎪⎪⎩

x ∶x ≥ 0,

−x ∶x < 0,
∣x + yi∣C ∶=

√
x2 + y2.

So they are defined differently. But this does not matter, because we only have used the
following rules of a modulus function:

– if z ∈ C (or ∈ R) then ∣z∣ ≥ 0,

– if ∣z∣ = 0, then z = 0,

– if z, w ∈ C (or ∈ R), then ∣z ⋅w∣ = ∣z∣ ⋅ ∣w∣ and ∣z +w∣ ≤ ∣z∣ + ∣w∣.

Definition 4.9. For z ∈ C, we define

expC(z) ∶=
∞
∑
n=0

1

n!
zn.

Proposition 4.10. For all z ∈ C and all w ∈ C, we have

expC(z +w) = expC(z) ⋅ expC(w).

Proof. Mutatis mutandis the same as in the real case.

Now we wish to understand the complex exponential function slightly better.

By the key property, we have for z = x + yi with real x and y that

expC(z) = expC(x) ⋅ expC(yi) = expR(x) ⋅ expC(yi) = ex ⋅ expC(yi).
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Next we use the Maclaurin–formula for expC(yi):

expC(yi) =
∞
∑
n=0

1

n!
(yi)n

= 1 + 1

1!
(yi) + 1

2!
(yi)2 + 1

3!
(yi)3 + 1

4!
(yi)4 + 1

5!
(yi)5 + 1

6!
(yi)6 + . . .

= 1 + yi − 1

2!
y2 − 1

3!
y3i + 1

4!
y4 + 1

5!
y5i − 1

6!
y6 ± . . .

= (1 − 1

2!
y2 + 1

4!
y4 − 1

6!
y6 + 1

8!
y8 ∓ . . .)

+ (y − 1

3!
y3 + 1

5!
y5 − 1

7!
y7 ± . . .) ⋅ i

= cos(y) + sin(y) ⋅ i,

because the big parantheses contain just the Maclaurin–formulas for cos(y) and sin(y).
If we now make the agreement of writing

ez ∶= expC(z), z ∈ C,

then we have
ex+yi = ex ⋅ (cos y + i sin y), x ∈ R, y ∈ R.

This allows us to reduce the complex exponential function expC to easy real functions which we
know from school.

Mathematics is beautiful.

In the above identity, we choose x = 0 and y = π. Then we have

eπi = e0 ⋅ (cosπ + i sinπ) = 1 ⋅ (−1 + i ⋅ 0) = −1,

which boils down to the most beautiful formula of mathematics:

eπi + 1 = 0.

The beauty comes down from the fact that the five most important mathematical constants e,
π, i, 1, 0 are compressed in one line.

There is more beauty. We have ez+w = ez ⋅ ew for all z ∈ C and all w ∈ C. This is just the key
property of the exponential function. Let us take z = iϕ and w = iψ here with real ϕ and real ψ.
Then we have

ei(ϕ+ψ) = eiϕ ⋅ eiψ,

and the LHS equals cos(ϕ + ψ) + i sin(ϕ + ψ).
However, the RHS equals

(cosϕ + i sinϕ) ⋅ (cosψ + i sinψ) = ( cosϕ cosψ − sinϕ sinψ) + i( cosϕ sinψ + cosψ sinϕ).

We learn a beautiful connection: the angle sum identities sin(ϕ + ψ) = . . . and cos(ϕ + ψ) = . . .
are direct conclusions from the key property of the exponential function.
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Chapter 5

On Polynomials

Purpose

We give a pseudo-proof of the fact that every polynomial of degree n has at least one complex
zero. We then think again about division (with remainder). This enables us to prove that
every polynomial of degree n has even n complex zeros (if you count them according to their
multiplicity). We discuss greatest common divisors (first for numbers, then for polynomials).

The Fundamental Theorem of Algebra

Theorem 5.1 (Fundamental theorem of algebra). Let A(z) = ∑nk=0 akzk be a polynomial
of degree n with complex coefficients. This means an /= 0 and ak ∈ C, ∀k.

Then this polynomial possesses at least one zero z0:

∃ z0 ∈ C∶A(z0) = 0.

Pseudo–proof. For didactical purposes, we only consider the polynomial

A(z) = z4 − 2z3 + 7z2 + (3 + i).

Choose a positive number R = 1000 and let z ∈ C run along the circle {z ∈ C∶ ∣z∣ = R} in the
complex plane, in counter-clockwise direction, once. Then we can write

z = Reiϕ, 0 ≤ ϕ < 2π,

and its fourth power then is z4 = 1012e4iϕ, with 0 ≤ 4ϕ < 8π, which means that z4 runs along a
circle with radius 1012 in counter-clockwise direction, four times.

If z runs along the circle with radius R, where does A(z) run ? To answer this question, we
compare A(z) and z4:

∣A(z) − z4∣ = ∣−2z3 + 7z2 + 3 + i∣ ≤ 2∣z∣3 + 7∣z∣2 + ∣3 + i∣ ≤ 2 ⋅ 109 + 7 ⋅ 106 + 4 ≤ 1010,

which is much smaller (by a factor of at least 100) than ∣z∣4 = 1012. We can say that A(z) ≈ z4
with a relative error of at most 1%. Therefore, we now consider an annular domain

{w ∈ C∶1012 − 1010 ≤ ∣w∣ ≤ 1012 + 1010} ,

and we know that A(z) stays inside this narrow annulus, and A(z) runs four times in counter-
clockwise direction around the origin w = 0 of the complex plane (imagine a four-fold loop like
a rubber ring).

Now we let R decay continuously, starting from R = 1012 until R = 1
100 , without doing jumps.

What does the rubber ring do ? It seems clear that the rubber ring moves continuously without
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doing jumps (here our proof turns into a pseudo-proof because we are far away from having
precise definitions of the various funny words that we are using). At the end of this decay
process, R = 1

100 , and then we have A(z) ≈ 3 + i because of the following calculation:

∣A(z) − (3 + i)∣ = ∣z4 − 2z3 + 7z2∣ ≤ ∣z∣4 + 2∣z∣3 + 7∣z∣2 = 1

1004
+ 2

103
+ 7

102
≤ 1

2
.

Therefore, the final position of the rubber loop is contained in the disk

{w ∈ C∶ ∣w − (3 + i)∣ ≤ 1
2
} .

Let us summarise: in the beginning, R was 103, and A(z) was running along a rubber loop that
goes four times around the origin. In the end, R is 1

100 , and now A(z) is running along a rubber
loop that is completely contained in a disk that does not contain the origin. And inbetween, the
rubber loop was moving continuously without jumps.

This is only possible if for some intermediate value of R, the origin lies on the rubber loop line.
Then, for this special value of R, we have a number z0 with ∣z0∣ = R such that A(z0) = 0.

That was our goal.

Divisions with remainders

We think about the division x2+7
x−2 and calculate it as we perhaps did in school:

(x2 + 7) ∶ (x − 2) = x + 2 with remainder 11

−(x2 − 2x)
2x + 7

−(2x − 4)
11

On the RHS, we first obtain the x, then the 2, then the remainder 11. The final formula then is

(x2 + 7) = (x + 2) ⋅ (x − 2) + 11.

We call this division with remainder.

Lemma 5.2 (Division with remainder for polynomials). Let A = ∑nk=0 akzk and B(z) =
∑mk=0 bkzk be polynomials with degree n and m respectively, where m ≥ 1 and an /= 0, bm /= 0.

Then there are two polynomials Q(z) and R(z) satisfying the following two conditions:

A(z) = Q(z) ⋅B(z) +R(z), deg(R) < deg(B).

These two polynomials Q and R are unique.

Sketch of proof. The uniqueness of Q and R is proved like this: suppose there are two other
polynomials Q̃ and R̃ with the same properties. Then a subtraction gives

0 = (Q(z) − Q̃(z)) ⋅B(z) + (R(z) − R̃(z)).

Now Q − Q̃ is at either a non-zero constant, or it is a polynomial of degree ≥ 1. Then the
highest-order term of the product (Q − Q̃) ⋅ B has a degree of at least m, hence it cannot be
cancelled by R − R̃ which as degree at most m − 1. Contradiction.

The existence of the polynomials Q and R is proved by mathematical induction on the degree
of A.
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Now we go back to the polynomial A(z) = ∑nk=0 akzk. We know it has a zero z0 ∈ C. This means
A(z0) = 0. Choose B(z) ∶= z−z0. Then deg(B) = 1. The Lemma on the division with remainder
for polynomials then guarantees us the existence of two polynomials Q(z) and R(z) with

A(z) = Q(z) ⋅ (z − z0) +R(z), deg(R) < 1.

Therefore, the degree of R must be zero, hence R(z) is a constant. Which constant ? To answer
this, we substitute z0 for z and get

A(z0) = Q(z0) ⋅ (z0 − z0) +R,

hence R = 0. The result then is A(z) = Q(z) ⋅ (z − z0), where Q is a certain polynomial with
deg(Q) = n − 1.

The Fundamental Theorem of Algebra Reloaded

Let A(z) be the above polynomial. We know that it possesses a zero which we are going to call
z1 instead of z0, for reasons of beauty. Then we can write

A(z) = A1(z) ⋅ (z − z1),

with some new polynomial A1 (which was called Q earlier). We know deg(A1) = n − 1. Now
we apply the Fundamential Theorem of Algebra again, but now to A1, which then has a zero
which we call z2, and this results in A1(z) = A2(z) ⋅ (z − z2), for some new polynomial A2 with
deg(A2) = n − 2. And so on.

The final result then is

A(z) = an ⋅ (z − z1) ⋅ (z − z2) ⋅ . . . ⋅ (z − zn),

for certain zk ∈ C, and the factor an comes from the highest term in A(z) = ∑nk=0 akzk.
We call this procedure splitting a polynomial into linear factors, because each factor (z − zk) is
linear in z.

We observe that each polynomial of degree n has n complex zeros if you count them according
to their multiplicity. For instance, A(z) = (z − 7)2 ⋅ (z − 8) has the three zeros 7, 7, 8.

Greatest common divisors for pairs of numbers

To find gcd(56,12), we do repeated division with remainders:

56 = 4 ⋅ 12 + 8,

12 = 1 ⋅ 8 + 4,

8 = 2 ⋅ 4 + 0.

The last non-zero remainder is the desired greatest common divisor (which is Euclid’s algorithm).
Hence gcd(56,12) = 4. We can also express gcd(56,12) using 56 and 12 working backwards:

gcd(56,12) = 4 = 12 − 1 ⋅ 8 = 12 − 1 ⋅ (56 − 4 ⋅ 12) = (−1) ⋅ 56 + 5 ⋅ 12.

We formalize this:

Lemma 5.3. Let a and b ∈ Z be integers (not both being zero). Then there are integers x, y ∈ Z
such that

gcd(a, b) = x ⋅ a + y ⋅ b.

A rigorous proof is given in the lecture on number theory (but basically, we have it already).

Another way of finding the gcd of two numbers uses their prime factor decompositions (assuming
we are able to find the prime factors which can be a hard task).
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Greatest common divisors for pairs of polynomials

Definition 5.4. Let A(z) and B(z) be polynomials. We say that B(z) is a divisor of A(z) if
there is a polynomial Q(z) such that

A(z) = Q(z) ⋅B(z) ∀ z ∈ C.

In this case, each zero of B is also a zero of A.

Definition 5.5. Let A(z) and B(z) be polynomials. We say that a polynomial G(z) is a greatest
common divisor of A and B if the following three conditions hold:

• G is a divisor of A,

• G is a divisor of B,

• every other polynomial that divides A as well as B is also a divisor of G.

As an example, we mention that the polynomials A(z) = z4 − 1 and B(z) = z3 − 1 have the
greatest common divisor G(z) = 2z − 2. But 7z − 7 is also a greatest common divisor of A and
B.

Greatest common divisors for pairs of polynomials are not unique (you can always multiply them
by a constant factor).

You can find greatest common divisors of pairs of polynomials using their zeroes (assuming we
are able to find all their zeroes which can be a hard task). An easier way exploits Euclid’s
algorithm of repeated polynomial divisions with remainder.

You are strongly invited to figure out the details yourself by doing the homeworks.
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Chapter 6

On the ∀ and ∃. And Series

Purpose

We begin to love the symbols ∀ and ∃ because they help us to keep our thinking clear.

We apply our newly obtained skills to sequences and series.

Distinguishing Assumptions and Claims

When doing financial accounting, we must distinguish the monetary numbers according to credit
and debit.

When doing a calculation, we must distinguish the mathematical objects according to given
objects and wanted objects.

When doing a proof, we must distinguish the statements according to assumption/presupposition
and claim/assertion.

Whatever you do — when you mix these things up, your piece of work will go wrong.

Simple Sentences with ∀ and ∃

Every human has a parent: let H denote the set of all humans (alive or already deceased). Then

∀h ∈H∶ ∃h̃ ∈H∶ h̃ is parent of h.

The expression ∃h̃ does not exclude that there is a second parent of h.

Some humans have children:

∃h ∈H∶ ∃ĥ ∈H∶ h is parent of ĥ.

For all two distinct points in the plane, there is exactly one straight line through these two
points: let P be the set of points in the plane and L be the set of all straight lines in the same
plane. Then

∀p ∈ P ∶ ∀p̃ ∈ P ∖ {p}∶ ∃!` ∈ L∶ (p is on `) and (p̃ is on `).
The expression P ∖ {p} means that we remove the point p from the set P, in order to enforce
that p̃ /= p. This is the subtraction of two sets, and the result is again a set. The exclamation
mark means that there is exactly one such line, not two or more. The purpose of the parantheses
is mostly cosmetic and shall clarify that the word “and” combines two statements.

Each natural number has a prime factor decomposition: let P be the set of primes. Then

∀n ∈ N+∶ ∃k ∈ N+∶ ∃p1, . . . , pk ∈ P∶ ∃α1, . . . , αk ∈ N+∶ n = pα1
1 ⋅ pα2

2 ⋅ . . . ⋅ pαk

k .

We did not assume that the pj are distinct (including such a requirement would complicate the
line even more than it already is).
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The General Principle

Let A be any set and T be a statement taking a variable a. Then a for-all-statement looks in
the formally correct way like this:

∀a ∈ A∶T (a),
and we read it like this:

For all members a of the set A we have that the statement T (a) is true.

In particular, we read the ∶ after the ∀ as “we have that”.

And an it-exists-statement looks in the formally correct way like this:

∃a ∈ A∶T (a),

and we read it like this:

There is some member a of the set A for which the statement T (a) is true.

In particular, we read the ∶ after the ∃ as “for which”.

The symbols ∀ and ∃ are called quantors because they quantify for how many members of the
set A the statement T (a) is true: for all members, or for at least one of the members.

Some survival rules for young students:

• always put the T part behind the ∀/∃ part, never in front.

• do not forget the “∈ A”, or abbreviate carefully. For instance, “∀ε > 0” is an abbreviation
of “∀ε ∈ R>0”, where R> is meant as the set of all positive real numbers, and the authors
hope that it is clear from the context that ε is assumed to be real (and not from N or the
set of prime numbers . . . ).

How to Use Them. How to Prove Them

If we have such quantor statements on the assumption side, then we are permitted to use them
(see the first line in the following table).

If we have such quantor statements on the claim side, then we are required to prove them (see
the second line in the following table).

The statement ∀a ∈ A∶ T (a) ∃a ∈ A∶ T (a)
is on the assumption side: We choose our favourite mem-

ber a, and then there is a guar-
antee that this a satisfies the
statement T (a). Afterwards,
we may choose another a. And
then another. We use this
statement as often as wanted.

We have the guarantee that
T (a) is true for at least one
a ∈ A. Sadly, we are not al-
lowed to assume/hope that a is a
nice member. We cannot choose
a, because somebody else will
choose it. We use this statement
once.

is on the claim side: Whenever some other person
gives us an a, we must prove
that then T (a) holds for that
a. We cannot choose a, because
somebody else has already cho-
sen it. We do many proofs: one
for each a.

We must find at least one mem-
ber a ∈ A and prove T (a) for
this a. We are allowed to choose
a (among those for which T (a)
holds), and we pick an a with an
easy proof (since laziness is hu-
man). We do one proof.
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How to Negate Them

The rule is: you write the negation operator in the left-most position. Then you shift it from
left to right and turn ∀ into ∃ and conversely:

not(∀a ∈ A∶ T (a)) ⇐⇒ ∃a ∈ A∶ not(T (a))

not(∃a ∈ A∶ T (a)) ⇐⇒ ∀a ∈ A∶ not(T (a)).

The negation of “all people like marmite” is “there exists a person who does not like marmite”.

The negation of “there was one sunny day of our summer vacation” is “all the days of our
summer vacation were non-sunny”.

We know that limn→∞ an = A∗ means:

∀ε ∈ R>0∶ ∃N0 ∈ N∶ ∀n ∈ N with n ≥ N0∶ ∣an −A∗∣ < ε.

The logical negation limn→∞ an /= A∗ then means

∃ε ∈ R>0∶ ∀N0 ∈ N∶ ∃n ∈ N with n ≥ N0∶ ∣an −A∗∣ ≥ ε.

This line has been obtained in a completely automatic way:

• write the “not” in the left-most place,

• read from left to right, flip the first quantor which you find, and move the “not” behind
the ∶

• lather, rinse, repeat

However, typically mathematicians write it in a different way. The line of thinking is that some
member which is announced by an ∃ statement is perhaps something very special, something
unique, something precious. And special members of society receive a medal which we write as
a subscript0. Therefore, the statement limn→∞ an /= A∗ is formalized like this:

∃ε0 ∈ R>0∶ ∀N ∈ N∶ ∃n0 ∈ N with n0 ≥ N ∶ ∣an0 −A
∗∣ ≥ ε0.

This is logically totally equivalent to the previous one, but it follows more closely the mathe-
matical traditions.

Something about Series

Let (a1, a2, . . . ) = (an)n∈N be a sequence of complex numbers. For N ∈ {1,2, . . .}, we define the
partial sums

SN ∶= a1 + a2 + . . . + aN =
N

∑
n=1

an.

If limN→∞ SN = S∗ exists with S∗ ∈ C, then we say that the series ∑∞n=1 an converges with limit
S∗, and then the expression ∑∞n=1 an means two things at the same time:

• the sequence (S1, S2, S3, . . . ) of complex numbers,

• the limit S∗ of this sequence.

It is a bit unfortunate that this expression ∑∞n=1 an possesses two meanings, but this is the
mathematical habit.

Lemma 6.1. If ∑∞n=1 an converges, then limn→∞ an = 0.
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Pre-Proof on scratch paper just to get a better understanding: We have the statement

∃S∗ ∈ C∶ ∀ε > 0∶ ∃NS,0(ε) ∈ N∶ ∀n ≥ NS,0(ε)∶ ∣Sn − S∗∣ < ε

on the assumption side, and we have the statement

∀ε > 0∶ ∃Na,0(ε) ∈ N∶ ∀n ≥ Na,0(ε)∶ ∣an − 0∣ < ε

on the claim side.

In order to obtain a better feeling what the assumption means, we choose some special ε, namely
ε = 0.1. We are allowed to do this because ε comes with an ∀ on the assumption side. Hence we
have the guarantee that the following is true:

∃NS,0(0.1) ∈ N∶ ∀n ≥ NS,0(0.1)∶ ∣Sn − S∗∣ < 0.1.

We choose one more special ε, namely ε = 0.01, and we are sure that

∃NS,0(0.01) ∈ N∶ ∀n ≥ NS,0(0.01)∶ ∣Sn − S∗∣ < 0.01.

So these Sn are even closer to S∗ than before (which then should mean that NS,0(0.01) ≫
NS,0(0.1) because we should throw away the bad values of n when making ε ten times smaller).

Now phantasy kicks in and recommends to compare Sn and Sn−1:

Sn = a1 + a2 + ⋅ ⋅ ⋅ + an, Sn−1 = a1 + a2 + ⋅ ⋅ ⋅ + an−1,

and therefore an = Sn − Sn−1. However, if n and n − 1 are both at least NS,0(0.01), then
∣Sn − Sn−1∣ < 0.02, which means ∣an∣ < 0.02, which means ∣an − 0∣ < 0.02.

Our formal proof will be complete when we leave the special values 0.1 and 0.01 behind and
return to general positive ε.

Proof. We know

∃S∗ ∈ C∶ ∀ε > 0∶ ∃NS,0(ε) ∈ N∶ ∀n ≥ NS,0(ε)∶ ∣Sn − S∗∣ < ε.

Let us be given a positive ε. For this ε, we define

N0,a(ε) ∶= N0,S (ε
2
) + 1.

Let n ∈ N be any number with n ≥ N0,a(ε). Then we have

n ≥ N0,S (ε
2
) , n − 1 ≥ N0,S (ε

2
) ,

and the assumption then implies (for this fixed n)

∣Sn − S∗∣ <
ε

2
, ∣Sn−1 − S∗∣ <

ε

2
.

Now we conclude (using the triangle inequality) that

∣an − 0∣ = ∣an∣ = ∣Sn − Sn−1∣ = ∣(Sn − S∗) + (S∗ − Sn−1)∣ ≤ ∣Sn − S∗∣ + ∣S∗ − Sn−1∣ <
ε

2
+ ε

2
.

The proof is complete.
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Chapter 7

On Matrices

Purpose

What is a matrix ? This is easily answered: you write certain numbers in a tabular form and
put a pair of parentheses around. Next we could learn how to manipulate a matrix, with just a
shallow understanding of what this is all about. I prefer another learning style.

A much better question is: What does a matrix ? We will give a geometrical answer and obtain
a deeper understanding.

Cakes. Their Ingredients. Their Prices

Imagine a cake shop that is baking their own cakes every day. Consider two types of different
cakes (type 1, type 2). On a certain day, they are baking c1 cakes of type 1 and c2 cakes of
type 2. We write this as

c⃗ ∶= (c1
c2

) ∈ R2.

Well, technically we have c1 ∈ N and c2 ∈ N, hence c⃗ ∈ N2, but each natural number is a real
number.

Vectors are always written as columns.

The cakes have recipes like this:
flour butter sugar eggs

type 1 0.4 kg 0.2 kg 0.25 kg 3

type 2 0.5 kg 0.2 kg 0.2 kg 4

And we arrange them in a recipe matrix R:

R ∶=
⎛
⎜⎜⎜
⎝

0.4 kg 0.5 kg
0.2 kg 0.2 kg
0.25 kg 0.2 kg

3 4

⎞
⎟⎟⎟
⎠
.

We calculate the matrix-vector-product Rc⃗:

Rc⃗ =
⎛
⎜⎜⎜
⎝

0.4 kg 0.5 kg
0.2 kg 0.2 kg
0.25 kg 0.2 kg

3 4

⎞
⎟⎟⎟
⎠
(c1
c2

) =
⎛
⎜⎜⎜
⎝

c1 ⋅ 0.4 kg + c2 ⋅ 0.5 kg
c1 ⋅ 0.2 kg + c2 ⋅ 0.2 kg
c1 ⋅ 0.25 kg + c2 ⋅ 0.2 kg

c1 ⋅ 3 + c2 ⋅ 4

⎞
⎟⎟⎟
⎠
. (♠)

This is a vector (column, as we agreed), with 4 entries, and it means the amount of ingredients
taken out of the storage room on that particular baking day. This vector is a member of R4.
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What does the matrix R ?

It translates from the cake-amount-vector c⃗ to the ingredient-amount-vector i⃗ = Rc⃗.

A matrix with q columns and r rows induces a mapping from Rq into Rr.

Now let us consider prices of the ingredients:

flour butter sugar egg

price 1.2 £
kg 1.4 £

kg 0.9 £
kg 0.15£

We arrange them in the price matrix:

P ∶= (1.2 £
kg 1.4 £

kg 0.9 £
kg 0.15£) .

Now what is the product P i⃗ ?

The matrix P has q = 4 columns and r = 1 rows, so it induces a mapping from R4 into R1, and
the meaning of the product P i⃗ is the total financial value of the ingredients i⃗.

What is the product PR ? Let us calculate:

PR = (1.2 £
kg 1.4 £

kg 0.9 £
kg 0.15£) ⋅

⎛
⎜⎜⎜
⎝

0.4 kg 0.5 kg
0.2 kg 0.2 kg
0.25 kg 0.2 kg

3 4

⎞
⎟⎟⎟
⎠
.

Our calculations are too long for this line, so we proceed in steps. The first entry of PR is

(1.2 £
kg 1.4 £

kg 0.9 £
kg 0.15£) ⋅

⎛
⎜⎜⎜
⎝

0.4 kg
0.2 kg
0.25 kg

3

⎞
⎟⎟⎟
⎠

= (1.2 £
kg ⋅ 0.4 kg + 1.4 £

kg ⋅ 0.2 kg + 0.9 £
kg ⋅ 0.25 kg + 0.15£ ⋅ 3)

= (0.48£ + 0.28£ + 0.225£ + 0.45£)
= 1.435£.

This is the price of all the ingredients in one cake of type 1. Now we perform a dance of joy and
happiness because all the kilogramm units have nicely cancelled, and all the four items which
we added have the same unit £.

And the second entry of the product PR is calculated here:

(1.2 £
kg 1.4 £

kg 0.9 £
kg 0.15£) ⋅

⎛
⎜⎜⎜
⎝

0.5 kg
0.2 kg
0.2 kg

4

⎞
⎟⎟⎟
⎠

= (1.2 £
kg ⋅ 0.5 kg + 1.4 £

kg ⋅ 0.2 kg + 0.9 £
kg ⋅ 0.2 kg + 0.15£ ⋅ 4)

= (0.6£ + 0.28£ + 0.18£ + 0.6£)
= 1.66£.

Our final answer then is:
PR = (1.435£ 1.66£) .

This is a matrix with q = 2 columns and r = 1 rows, so it induces a mapping from R2 into R1,
and this mapping c⃗ ↦ (PR)c⃗ means to calculate the total-ingredient-price (PR)c⃗ associated to
the cake-amount-vector c⃗.

31



The following seems plausible:
(PR)c⃗ = P (Rc⃗).

The LHS means: we calculate the matrix-matrix-product PR first, and then we multiply by the
cake-amount-vector c⃗. The RHS means: we calculate Rc⃗ first, obtain the ingredient-amount-
vector i⃗, and then we calculate the matrix-vector-product P i⃗.

The matrix-matrix-product is associative.

If necessary, we read column vectors as matrices with just one column.

Be careful not to change the order of the letters: P , R, c⃗ must remain in this order.

The matrix-matrix-product is not commutative.

This means PR /= RP , because the product RP does not make any sense. Moreover, the formats
of the matrices do not fit together (try it and you will see what I mean).

Now consider two matrices A and B. Even if their formats fit together, typically AB will not
be the same as BA:

A = ( 1 1
−1 −1

) , B = (1 1
1 1

) ,

AB = ( 1 1
−1 −1

) ⋅ (1 1
1 1

) = ( 2 2
−2 −2

) ,

BA = (1 1
1 1

) ⋅ ( 1 1
−1 −1

) = (0 0
0 0

) .

We learn that a matrix-matrix-product can result in the zero-matrix, without any of the factors
being a zero-matrix. That is surprising.

Some Theory: What is a Vector Space

A vector space (also called linear space) is an algebraic structure. When we define an algebraic
structure, we go three steps:

• list the members,

• list the actions which we can perform upon the members,

• list the rules that these actions have to obey.

The members of the vector space R3 can be understood as all points in R3, or as equivalence
classes of arrows. There are two actions: adding two vectors produces a vector (in the usual
parallelogram style). And multiplying a vector by a real number produces again a vector (for
instance in the sense of stretching the arrow if the number is greater than 1). And the rules are:

∀u⃗, ∀v⃗ ∶ u⃗ + v⃗ = v⃗ + u⃗,
∀u⃗, ∀v⃗, ∀w⃗ ∶ (u⃗ + v⃗) + w⃗ = u⃗ + (v⃗ + w⃗),
∀u⃗, ∀v⃗, ∀λ ∈ R ∶ λ ⋅ (u⃗ + v⃗) = λ ⋅ u⃗ + λ ⋅ v⃗,
∀u⃗, ∀λ ∈ R, ∀µ ∈ R ∶ (λ + µ) ⋅ u⃗ = λ ⋅ u⃗ + µ ⋅ u⃗,
∀u⃗, ∀λ ∈ R, ∀µ ∈ R ∶ (λ ⋅ µ) ⋅ u⃗ = λ ⋅ (µ ⋅ u⃗),
∀a⃗, ∀b⃗∶ ∃!x⃗ ∶ a⃗ + x⃗ = b⃗,
∀u⃗ ∶ 1 ⋅ u⃗ = u⃗.
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Some Theory: What is a Linear Mapping

Adding vectors: Consider again the recipe matrix R and the cake-amount-vector c⃗. Suppose
that the bake shop produces the cake-amount c⃗m on monday and the cake-amount c⃗t on
tuesday. Then the cake shop takes (Rc⃗m) + (Rc⃗t) of ingredients from the storage room.

But the cake shop could have baked c⃗m + c⃗t cakes on one day together and hence taken
R(c⃗m + c⃗t) out of the storage room. Which is the same amount of ingredients. Hence

(Rc⃗m) + (Rc⃗t) = R(c⃗m + c⃗t).

The addition on the LHS is a vectorial addition in R4, and the addition on the RHS is a
vectorial addition in R2. Both are done in parallelogram style.

Multiplying vectors by numbers: Baking a triple amount of cakes needs a triple amount of
ingredients:

R(3 ⋅ c⃗) = 3 ⋅ (Rc⃗).
The multiplication by 3 on the LHS is a number-times-vector multiplication in R2. The
multiplication by 3 on the RHS is a number-times-vector multiplication in R4.

We recall that R induces a mapping from R2 into R4. These are vector spaces (also called linear
spaces), and the typical actions in each of them are vector plus vector gives vector and number
times vector gives vector. These two actions are called linear operations.

A mapping between linear spaces is linear when it is compatible with the 2 linear operations.

Definition 7.1 (Linear mapping). A mapping f ∶Rq → Rr is called linear if the following two
statements are true:

∀u⃗ ∈ Rq, ∀v⃗ ∈ Rq ∶ f(u⃗ + v⃗) = f(u⃗) + f(v⃗),
∀u⃗ ∈ Rq, ∀λ ∈ R ∶ f(λ ⋅ u⃗) = λ ⋅ f(u⃗).

Matrices and mappings are related:

• each matrix A ∈ Rr×q induces a linear mapping fA from Rq into Rr. The vector u⃗ ∈ Rq is
mapped to the result fA(u⃗) ∶= Au⃗.

• for each linear mapping f from Rq into Rr, there is exactly one matrix A ∈ Rr×q with the
property that f(u⃗) = Au⃗ for all u⃗ ∈ Rq.

How to Find a Mapping From a Matrix

Easy (just multiply matrix times vector).

How to Find a Matrix From a Mapping

Harder, but not by much. We have the linear mapping f and want to find the matrix A.

Or in the cake example: there is another cake shop, and we as outsiders want to determine their
recipe matrix. This can be done like this: let them bake one cake of type 1 and record1 how the
storage changes. This gives the first column of R. Let them bake one cake of type 2 and record
how the storage changes. This gives the second column of R.

Baking just one cake of type 1 corresponds to the cake-amount-vector (1
0
).

Baking just one cake of type 2 corresponds to the cake-amount-vector (0
1
).

1yes, this analogy is broken a bit
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A bit more schematic: f maps from R2 into R4. The first canonical basis vector of R2 is e⃗1 ∶= (1
0
).

The second canonical basis vactor of R2 is e⃗2 ∶= (0
1
). Then the first column of R is f(e⃗1), and

the second column of R is f(e⃗2).
Now more general: let f be a linear map from Rq into Rr. Consider the canonical basis vectors
e⃗1, e⃗2, . . . , e⃗q of Rq. They look like this: e⃗j is a column with q entries, almost all of them are
zero, except a number one at the position j. Then the corresponding matrix A for f looks like
this: A has q columns, and the j-th column of A is f(e⃗j).

The columns of the associated matrix are the images of the canonical basis vectors.

The deeper reason becomes visible when we rewrite (♠):

Rc⃗ =
⎛
⎜⎜⎜
⎝

0.4 kg 0.5 kg
0.2 kg 0.2 kg
0.25 kg 0.2 kg

3 4

⎞
⎟⎟⎟
⎠
(c1
c2

) =
⎛
⎜⎜⎜
⎝

c1 ⋅ 0.4 kg + c2 ⋅ 0.5 kg
c1 ⋅ 0.2 kg + c2 ⋅ 0.2 kg
c1 ⋅ 0.25 kg + c2 ⋅ 0.2 kg

c1 ⋅ 3 + c2 ⋅ 4

⎞
⎟⎟⎟
⎠
= c1 ⋅

⎛
⎜⎜⎜
⎝

0.4 kg
0.2 kg
0.25 kg

3

⎞
⎟⎟⎟
⎠
+ c2 ⋅

⎛
⎜⎜⎜
⎝

0.5 kg
0.2 kg
0.2 kg

4

⎞
⎟⎟⎟
⎠
.

Now c⃗ = e⃗1 means c1 = 1 and c2 = 0, but c⃗ = e⃗2 means c1 = 0 and c2 = 1.

Let us generalize this a bit: the matrix-vector-product

Ax⃗ =
⎛
⎜⎜⎜
⎝

a11 a12 . . . a1q
a21 a22 . . . a2q
⋮ ⋮ ⋱ ⋮
ar1 ar2 . . . arq

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

x1
x2
⋮
xq

⎞
⎟⎟⎟
⎠

means that we take the first column of A multiplied by x1, the second column of A multiplied
by x2, the third column of A multiplied by x3, and so on, the q-th column of A multiplied by
xq, and then we make the summation over these q vectors (each having r entries).

Example: How to Find a Rotation Matrix

Consider in R2 the rotation about the origin in counter-clockwise sense by 37○. This is a mapping
from R2 into R2 because each point is sent to a point. We should check that this map is linear.

How to find its corresponding matrix ?

We know how to do it: the first canonical basis vector is (1
0
), and a little bit of trigonometry

reveals that its image is (cos 37
○

sin 37○
). The second canonical basis vector is (0

1
), and its image is

(− sin 37○

cos 37○
). Hence we obtain the mapping matrix

A = (cos 37○ − sin 37○

sin 37○ cos 37○ ) .

This was not hard. You just need some training.

Exercise 2. Consider the line through the origin which has an angle 38○ to the horizontal axis.
What is the matrix that corresponds to the reflection across this line ?

Exercise 3. Imagine the sun in winter as it is only 30○ above the horizon. Each point in the
atmosphere (imagine a bird) casts a shadow on the ground. We consider a two-dimensional
analogue and ask for the matrix associated to this shadow map. This means: the sunlight comes
from the left top part of the paper, as a parallel pencil of rays ( not looking like a cone), with
an angle of 30○ to the horizontal axis y = 0. Determine the mapping matrix (two rows, two
columns).
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Some Theory: What is a Linear Combination,
Linear Dependence, Linear Independence

We start with a family2 (u⃗1, u⃗2, . . . , u⃗m) of m vectors, each of them living in the space Rn. When
you combine them in a linear manner, you obtain a linear combination. This means that only
the two typical operations of a linear space are allowed, which are vector plus vector gives vector
and number times vector gives vector.

Definition 7.2 (Linear combination). We say that a vector v⃗ ∈ Rn is a linear combination
of the vectors u⃗1, . . . , u⃗m ∈ Rn if real numbers λ1, . . . , λm exist with

v⃗ = λ1 ⋅ u⃗1 + λ2 ⋅ u⃗2 + . . . + λm ⋅ u⃗m.

Let us write this in another way. The entries of the u⃗j are christened following this scheme:

u⃗1 =
⎛
⎜⎜⎜
⎝

u11
u21
⋮
un1

⎞
⎟⎟⎟
⎠
, u⃗2 =

⎛
⎜⎜⎜
⎝

u12
u22
⋮
un2

⎞
⎟⎟⎟
⎠
, . . . , u⃗m =

⎛
⎜⎜⎜
⎝

u1m
u2m
⋮

unm

⎞
⎟⎟⎟
⎠
.

Then the equation v⃗ = λ1 ⋅ u⃗1 + λ2 ⋅ u⃗2 + . . . + λm ⋅ u⃗m turns into

v⃗ =
⎛
⎜⎜⎜
⎝

u11 u12 . . . u1m
u21 u22 . . . u2m
⋮ ⋮ ⋱ ⋮
un1 un2 . . . unm

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

λ1
λ2
⋮
λm

⎞
⎟⎟⎟
⎠
.

Every matrix-vector-product is a linear combination of the columns of the matrix.

Now keep the vectors u⃗1, . . . , u⃗m fixed and let the real numbers λ1, . . . , λm run through all of
R. All the linear combinations which you then get are the linear span.

Definition 7.3 (Linear span). The linear span of the family (u⃗1, . . . , u⃗m) is this subset of Rn:

span(u⃗1, . . . , u⃗m) ∶=
⎧⎪⎪⎨⎪⎪⎩

m

∑
j=1

λj ⋅ u⃗j ∶ λ1 ∈ R, . . . , λm ∈ R
⎫⎪⎪⎬⎪⎪⎭
.

Definition 7.4 (Linearly dependent). We say that a family (u⃗1, . . . , u⃗m) of Rn is linearly
dependent if one of the members can be written as a linear combination of the other ones.

As an example, we take

u⃗1 =
⎛
⎜
⎝

1
2
5

⎞
⎟
⎠
, u⃗2 =

⎛
⎜
⎝

3
−4
2

⎞
⎟
⎠
, u⃗3 =

⎛
⎜
⎝

7
14
35

⎞
⎟
⎠
. (♣)

Then the family (u⃗1, u⃗2, u⃗3) is linearly dependent because we can write u⃗1 = 0 ⋅ u⃗2 + 1
7 ⋅ u⃗3. We

can also write u⃗3 = 0 ⋅ u⃗2+7 ⋅ u⃗1. It is impossible to express u⃗2 as linear combination of u⃗1 and u⃗3,
but this does not harm the linear dependence of the family (u⃗1, u⃗2, u⃗3). We have three vectors
here, but their linear span is a two-dimensional plane that lies in R3.

Definition 7.5 (Linearly independent). We say that a family (u⃗1, . . . , u⃗m) of Rn is linearly
independent when it is not linearly dependent.

Another way of stating the linear independence of the family (u⃗1, . . . , u⃗m): whenever the equation

λ1 ⋅ u⃗1 + λ2 ⋅ u⃗2 + . . . + λm ⋅ u⃗m = 0⃗

is true, then the real numbers λ1, λ2, . . . , λm must all be zero.

2The difference between family and set is that a family may contain an element twice or even more often,
which is forbidden for a set.
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Image Spaces, Rank, and Null Spaces of Matrices

Consider a matrix A with m columns and n rows. If x⃗ ∈ Rm runs through all of Rm, then Ax⃗
runs through some set which we call image space of A.

Definition 7.6 (Image space). For A ∈ Rn×m, we define

img(A) ∶= {Ax⃗∶ x⃗ ∈ Rm}

and call it the image space of A.

This is the linear span of the columns of A, and it is a sub-vector-space of the vector space Rn.

Definition 7.7 (Rank of a matrix). For A ∈ Rn×m, we define

rank(A) ∶= dim ( img(A)),

the dimension of the image space of A, and we call it the rank of A.

This is the maximal number of linearly independent columns of A.

Exercise 4. We take the vectors u⃗1, u⃗2, u⃗3 from (♣) and build a matrix from them:

A ∶=
⎛
⎜
⎝

1 3 7
2 −4 14
5 2 35

⎞
⎟
⎠
. (♢)

Check that the family (u⃗1, u⃗2) is linearly independent. Check that the family (u⃗1, u⃗2, u⃗3) is
linearly dependent. Now determine rank(A).

For this A, we may also ask for the maximal number of linearly independent rows. It equals
two, because the first two rows are linearly independent (check this !), but all three rows are
not:

24
10
⋅ (1 3 7)

+ 13
10
⋅ (2 −4 14)

= (50
10

20
10

350
10

)

The following theorem gives the theoretical reason for this surprise:

Theorem 7.8. For each matrix, the maximal number of linearly independent rows equals the
maximal number of linearly independent columns.

This enables us to calculate the rank of a matrix by transforming it into the row echelon form.

Exercise 5. Determine the rank of the matrix from Exercise 2, and the rank of the matrix from
Exercise 3.

Exercise 6. Let A ∈ Rn×m be any matrix with m columns and n rows, and let b⃗ ∈ Rn by any
vector. Let us consider the problem of finding all x⃗ ∈ Rm that solve Ax⃗ = b⃗. We consider the
matrix A, and the extended matrix (A∣⃗b) which is obtained when we write b⃗ next to A.

Give a reason why rank(A) ≤ rank(A∣⃗b). Explain why the system Ax⃗ = b⃗ is unsolvable if
rank(A) /= rank(A∣⃗b).

Next we discuss all those x⃗ for which Ax⃗ = 0⃗.

Exercise 7. Consider A from (♢). Determine all those x⃗ ∈ R3 with Ax⃗ = 0⃗. Where have you
seen these numbers before ?
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Definition 7.9 (Null space, kernel). Let A ∈ Rn×m be a matrix. Then the following subset of
Rm is called the null space of A:

ker(A) ∶= {x⃗ ∈ Rm∶Ax⃗ = 0⃗} .

It also has the name kernel of A.

This is a sub-vector-space of Rm.

Definition 7.10 (Nullity). For A ∈ Rn×n, we define

nul(A) ∶= dim (ker(A)),

the dimension of the null space of A, and we call it the nullity of A.

Exercise 8. Determine the nullity of the matrix from Exercise 2, and the nullity of the matrix
from Exercise 3, and the nullity of the matrix A of (♢). How do they relate to the ranks ?

Now we have prepared the highlight of this note:

Theorem 7.11 (Rank–Nullity Theorem). For each A ∈ Rn×m, inducing a linear mapping
from Rm into Rn, we have

m = nul(A) + rank(A).

One advantage of this is that we can draw a lot of information about a matrix from its row
echelon form.
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Chapter 8

The Beauty of Mathematics

Introduction

Mathematics is beautiful, because

• it gives us deeper insight into structures (“the truth behind something”),

• it requires phantasie and creativity,

• it surprises,

• it connects seemingly unrelated topics.

Certainly there are more reasons, but we focus on these four here.

A Question

We define the Fibonacci numbers f0, f1, f2, . . . , via the recursion

f0 ∶= 1, f1 ∶= 1, fn+2 ∶= fn+1 + fn (∀ n ∈ N0).

Is there a non-recursive formula for fn, which enables us to compute f1273 without computing
“all the earlier ones” ?

One Answer

We start with some seemingly unrelated topic and consider, for a complex variable z, the
power series

F (z) ∶=
∞
∑
n=0

fnz
n, z ∈ C.

This is a definition, and after each definition it is reasonable to ask whether that newly defined
object exists at all. So, for which z does the series on the RHS converge ? To this end, we
benefit from a little result:

Lemma 8.1. For each n, the Fibonacci number fn is a natural number with 1 ≤ fn ≤ 2n.

A proof can be done by mathematical induction. Then the root test applies and we deduce that
the above series converges for all z ∈ C with ∣z∣ < 1

2 . In the sequel, we always assume ∣z∣ < 1
2 .
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Now the Formula Fairy speaks to us and recommends to have a look at (1 − z − z2)F (z):

(1 − z − z2)F (z) = f0 + f1z + f2z2 + f3z3 + f4z4 + . . .
− f0z − f1z2 − f2z3 − f3z4 − . . .

− f0z2 − f1z3 − f2z4 − . . .
= f0 + (f1 − f0)z
= 1,

hence we find one more formula for F (z), namely

F (z) = −1

z2 + z − 1
, ∀z ∈ C with ∣z∣ < 1

2
.

This means that we have two different formulas for F (z), and a very powerful principle of maths
is to have two representations for the same object1. And now we find a third representation of
F . To this end, we recall that poles of a function are always interesting, and this motivates a
partial fraction decomposition: the equation z2 + z − 1 = 0 has the solutions

z1 ∶= −
1

2
+

√
5

2
, z2 ∶= −

1

2
−

√
5

2
,

and then the ansatz

F (z) != A1

z − z1
+ A2

z − z2
gives A1 = −1√

5
and A2 = 1√

5
.

What we are doing here is connecting seemingly unrelated topics, and since this is fun, we
proceed to connect with another seemingly unrelated topic, now the geometric series:

F (z) = A1

z − z1
+ A2

z − z2

= −A1

z1
⋅ 1

1 − z
z1

− A2

z2
⋅ 1

1 − z
z2

= −A1

z1

∞
∑
n=0

( z
z1

)
n+1

− A2

z2

∞
∑
n=0

( z
z2

)
n+1

=
∞
∑
n=0

(−A1

zn+11

+ −A2

zn+12

) zn.

Now we refer to some theoretical result (which must be proved !) that comparing coefficients is
allowed even for power series, and this then gives

fn =
−A1

zn+11

+ −A2

zn+12

.

We consider fractions with a variable in the denominator ugly, so we connect to Vieta’s theorem:
since z1 and z2 are solutions to z2+z−1 = 0, we have z1+z2 = −1 and z1z2 = −1, hence 1

zj
= −z3−j

for j = 1,2, and therefore

fn = − (A1(−z2)n+1 +A2(−z1)n+1)

= 1√
5

⎛
⎝
(1 +

√
5

2
)
n+1

− (1 −
√

5

2
)
n+1⎞

⎠
, n ∈ N0.

This is known as Binet’s Formula and it is an answer to our question.

Exercise 9. Compute f0, f1, f2, f3 from this formula (as a check).
1For instance, the scalar product a⃗ ⋅ b⃗ can be written in two ways: a⃗ ⋅ b⃗ = ∣a⃗∣ ⋅ ∣⃗b∣ ⋅ cos(∠(a⃗, b⃗)) and a⃗ ⋅ b⃗ = ∑k akbk,

and this is the whole point of the scalar product: to be able to compute angles from the coordinates only.
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Every Answer Generates a New Question

Binet’s formula surprises us: the LHS is a natural number, but the RHS contains fractions,
and even more disturbing are the various

√
5 terms on the RHS. So we have a new question:

Why do the
√

5 on the RHS cancel, for every n ?

Answer to the Second Question

We consider an algebraic structure which is called a field. This is a set of things (which we
typically call numbers) and the four operations +, −, ⋅, ÷ that behave in the expected way, and
these four operations do not leave the set.

So, N is not a field (because − and ÷ leave N), Z is also not a field, but Q, R, C are fields.

Another example is

Q[
√

5] ∶= {a + b
√

5∶a ∈ Q, b ∈ Q} .

It is clear that you can add, subtract, multiply a+b
√

5 and c+d
√

5 (where a, b, c, d are rational),
and the result will then be again in Q[

√
5]. It is a bit more work to consider the division:

a + b
√

5

c + d
√

5
= a + b

√
5

c + d
√

5
⋅ c − d

√
5

c − d
√

5
= ac − 5bd

c2 − 5d2
+ bc − ad
c2 − 5d2

√
5,

and therefore also ÷ stays inside Q[
√

5], which is consequently a field.

This brings back old memories: we have seen something similar when we built C. So we connect

Q[
√

5] to C, which we could write as C ,= R[
√
−1]. To this end, we define a conjugation in

Q[
√

5]:
a + b

√
5 ∶= a − b

√
5, a, b ∈ Q.

Lemma 8.2. The conjugation in Q[
√

5] commutes with the four operations +, −, ⋅, ÷ and with
taking powers in Q[

√
5].

Sketch of Proof. Basically the same as in C.

Lemma 8.3. If akz
k + ak−1zk−1 + . . . + a1z + a0 is a polynomial in the variable z ∈ Q[

√
5], and

if the coefficients ak, . . . , a0 are rational, then the following holds: if z ∈ Q[
√

5] is a zero, then
also z.

Sketch of Proof. Basically the same as the proof of a similar result in C: if all the a` are real
and z ∈ C is a zero, then also z.

Now the polynomial z2 + z − 1 qualifies for this lemma, and therefore z1 and z2 should be
conjugates to each other. Indeed, they are, as a quick check reveals: z1 = z2.
Since conjugation commutes with taking powers, we have

zn+12 = (z2)n+1 = zn+11 ,

hence we can conclude: if (1+
√
5

2 )n+1 = a + b
√

5, then (1−
√
5

2 )n+1 = a − b
√

5, hence (1+
√
5

2 )n+1 −
(1−
√
5

2 )n+1 = 2b
√

5, and therefore fn = 2b which is rational.

We have found a structural reason why the
√

5 in Binet’s formula cancel !

Hence we know that the fn must be rational. We have no reason though why they are integers.

Finally, we compare Q[
√

5] and R[
√
−1] = C:
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Q[
√

5] R[
√
−1] = C

First we augment Q with
√

5, First we augment R with i,

then we fill the resulting set up with as many
numbers as needed, until the operations stay
inside (but not more numbers !).

then we fill the resulting set up with as many
numbers as needed, until the operations stay
inside (but not more numbers !).

Note that
√

5 is a solution to x2 − 5 = 0, Note that i =
√
−1 is a solution to x2 + 1 = 0,

but x2 − 5 = 0 is unsolvable in Q. but x2 + 1 = 0 is unsolvable in R.
These ideas are taken to a much higher structural level in the lectures on Higher Algebra, in
particular Galois Theory.

We Connect to Matrix Theory and Get One More Answer

By means of Phantasy, we find that the recursion formula fn+2 = fn+1 + fn can be written like
this:

fn+2 = (1 1)(fn+1
fn

) ,

understood as a product of two matrices on the RHS. We prefer matrices to be quadratic, and
therefore we include the triviality fn+1 = fn+1 into the above equation as second line, giving us

(fn+2
fn+1

) = (1 1
1 0

)(fn+1
fn

) .

If we introduce the notation A ∶= ( 1 1
1 0 ), then we have, for instance,

(f5
f4

) = A(f4
f3

) = A2 (f3
f2

) = A3 (f2
f1

) = A4 (f1
f0

) = A4 (1
1
) ,

and similarly we have

(fn+1
fn

) = An (1
1
) , n ∈ N0.

Now we only have to figure out how to compute An with little effort.

The eigenvalues λ1 and λ2 of A are solutions to det(A− λI) = 0, which means −λ(1− λ)− 1 = 0,
or λ2 − λ − 1 = 0, hence

λ1 =
1 +

√
5

2
, λ2 =

1 −
√

5

2
.

Associated eigenvectors are

for λ1∶ u⃗1 = (λ1
1
) , for λ2∶ u⃗2 = (λ2

1
) ,

and then we build matrices

Λ ∶= (λ1 0
0 λ2

) , S ∶= (λ1 λ2
1 1

) ,

and then the two equations Au⃗j = λj u⃗j turn into AS = SΛ, hence A = SΛS−1, and therefore

An = SΛnS−1 = (λ1 λ2
1 1

) ⋅ (λ
n
1 0

0 λn2
) ⋅ (λ1 λ2

1 1
)
−1
.

This then boils down again to Binet’s formula. Please fill in the details yourself.
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