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Laplace operator and a nonlinearity of variable

(q(x) — 1)-power-type
(1) Au =\ |u(x)|q<w)—2 u(z) + f(x) for z € Q;
u=0 on 0f2,

with the variable exponent ¢ : Q2 — R which is
assumed to be continuous and .
The nonlinearity s — s4(@)—1 . ]Ri.,. — Ry = [0, 00) is for

1<q(z) <2 concave,

2 < q(z) < g* %Jrz (N >3) convex,
=40 if N=1, 2.



Main Hypothesis: ¢: 2 — R is continuous
and such that 1 < q(z) < ¢* and the (open) sets

Q &« {x € 2: q(z) < 2} and

Q4 e {z e Q2: q(x) > 2}

are nonempty.
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Laplace operator and a nonlinearity of variable

(¢(x) — 1)-power-type
(1) Au = A lu(il?)lq(m)_2 u(z) + l(z) for z€Q;
u=0 on 0f2,

with the variable exponent ¢: Q — R which is
assumed to be continuous and ... .
The nonlinearity s — s2(z)-1 . Ry — Ry =[0,00) is for

1<q(z) <2 concave,

2<q(z) <qg*= ~— (N >3) convex,
¢* = 400 if N=1, 2.



Previous works (e.g. by P.-L. Lions) consider a sum
g(s) = g1(s) + go(s) indepedent of z €  with

91 : Ry — R4 concave and g : R — R} convex.
Under some very natural conditions on the behavior of
the functions g;,9> : Ry — Ry of s € (0,00)

near zero (s — O+) and at infinity (s — +oo)

the following diagram is obtained:

Case3.f'(0) = 1,f(¢) <tfort> 0, t small.
Example. f(1) =t(1 —sint) + (1 <p< (N + 2)/(N - 2)).

fuell..

0 A

T —

Case 4.lim,_,_f(1)t™' = +. —
Example. f(t) = Vt + * (1 <p < (N + 2)/(N 2))

., 1
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Main Hypothesis: ¢:  — R is continuous
and such that 1 < g(z) < ¢* and the (open) sets

def
Q_-E-{:UEQ:q(a:)<2} and

def
Q+§ {r e q(z) > 2}

are nonempty.

If § > 0 is small enough, then both sets

Qs T rre:ga) <2-6#0 and

Ut B {ze:q@)>2+6} £0
are nonempty.

(Hy)

1< q7) e mﬁin q(z) <p(z) =p=2

< q(+) et maxq(z) < co.
Q

0<§<min{2—q(), ¢+ —2}.



We fix § > 0 small enough, such that both (open) sets
Qs T rre:gz) <2-6#0 and
Uy T loeQ:ql@)>2+0)#0

are nonempty.
Next, we estimate the full nonlinearity

(2 f(@,8) = falz,s) = A[s]1D 725 + h(a).
from below by a concave function, for (z,s) € Q2 xRy
fl(ma S) = fl,A(mas) —

(3) A-(min{s, 141 g(z) <2 -6
0) if g(x) >2-29.

Hence, f1(z,s) = X+ (min{s, 1) ®~1.yqo (), s> 0.




Proposition 1. Given any number A > 0 and any
nonnegative function h € L%°(£2), i.e., h € [L™(2)]4,
the Dirichlet problem

— Au=X\f1(z,s) + h(x) for z € Q;

4
(4) u=0 on 0f2,

possesses a unique positive solution u = u)y € W&’Q(Q).

This result is proved in - stab ATt

P. Takac (NA 1990), P. Hess (Theorem 5.1, 1991
Pitman 1991), motivated by M.A. Krasnosel’skij (1964).
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= C(a,8) < 0.

const =

lullorgy < €

const

luallcrgy £ €

const

||U>\||01(§_2) O




We begin with the following two a priori results (bounds)
on the set S C Ry x [W&’Q(Q)]_I_ of all pairs

(A u) € R x W3'?(R) such that A € Ry, u € Wy 2(R) is

nonnegative in €2, i.e., u € [W&’Q(Q)}+, and

— Au = )\u(ac)Q(x)_l + h(x) for x € Q;
u=0 on 0f12.

We assume that h € L°°(2) is a nonnegative function,
e, h € [L™(Q)]4. We set, for (z,s) € 2 x R.

f(z,s) = fa(z,s) = Als|9® 2 s 4+ n(x).

(5)

Proposition 2. There exists a number A\* >0
such that (Au) €S = A<\,
Equivalently, we have

N def sup < oo.

(Au)eS

Proof: Step 1. Consider eq. (5) with A=MXg =0
and h = fpy € [LOO(Q)]+ supported in



Q. € {zeQ: qle) > 2}, fo£0in 2, say, folz) >0
for

wEK(;CQ(g_l_dEf{a:EQ qg(x) > 2496},

where K5 is a compact set with nonempty interior.

Denote the weak solution by ug € W&’Q(Q),

uo(2) Z [(= ) fol(@) = [ Glay) fow) dy

= G(x,y) foly)dy for x € Q2.
4

Hence, by regularity, ug € C19(Q2), 0 < 6 < 1.
It satisfies the Hopf maximum principle:
(HMP) up>0in ©Q and 9%(z) <0 on 8.
The pair (¢,9) = (ug, fo) verifies

the basic Poisson equation

(6) —Ap=g(x) forxe2; ¢=0 on 02.



The solution ¢ € CL9(2), 0 < 0 < 1, satisfies
the Hopf maximum principle:

(HMP) ¢>0in 2 and %(w) < 0 on 012.

Furthermore, g € [L°°(£2)] . is supported in

def {re2: qg(x) >2+ 46} D54, hence,
g(fv)>0 = q(z) >22+9.

j A (qQx) > 2+6§
:’_:— :\ }-. ~
/ ] — 3 \
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Main Hypothesis: ¢: Q — R is continuous
and such that 1 < g(z) < ¢* and the (open) sets

Q5. Eize: qz) <2-6} £ 0 and

Ut E {zeQ: q@)>2+6) £ 0

are nonempty.
- s O<5<m|n{2—q( ),q —2}.
(Hg)



Step 2. A priori estimates for the Dirichlet problem
—Au = A[u(@)]9® 1 L h(z)  for z € Q;
u=0 on 012, and u > 0 in €2;

with the variable exponent ¢: Q — R
which is assumed to be continuous.

((1))

In accordance with Step 1, we work in the set

QL = det {fx e Q: q(x) > 2}.

The well-known identity, for u, ¢ € Wo (Q),

| (= 2u@)-s(@) de = | u(@): (- A¢(2)) da.
yields

A /Q[u@)]q@)—l . p(z) dz
+ [ h@) - ¢(@)de = [ u(@)-g(x)da

— . d
{zeQ: g(x)>0} u(@) - g(x) da

(7)

— [{azeQ: (22248} u(x) - g(x) de.



Since v > 0 in €2, the a priori estimates on

“a suitable LP-norm” of u are obtained from

the last equation in a way analogous to that developed
in the articles by R. D. Nussbaum (1975),

H. Brézis and R. E. L. Turner (1977), and

D. G. Figueiredo, P.-L. Lions, and

R. D. Nussbaum (1982).

We decompose the nonnegative function v : €2 — R as
e - u(x)
= [(e u(@)) @1 ()] T )V @D,

with € > 0 and apply Young’s inequality to estimate
the integral on the right-hand side of eq. (7) to get



— —1
/Q w(x) - g(x) de = /Q eu(x) - € “g(x)dx
cq(z)—1

<
(8) —JQq(x) —1

4 [ 1@ =2 (g()-1)/(a(x)-2)
Qq(x) —1

x p(z) "t g(z) 1)1

[u(2)]9®) =1 () da

}1/((1(%)—2) do

Substituting
e =el®=1/(g(x) —1) >0
we get
e = e(z) = [e(q(z) — 1))/ @@=

Consequently, inequality (8) becomes



(9)

/Q u(z) - g(z) dz
<e. /Q[uw)]q(@‘)—l . p(z) dz

Q(x)_z. —1/(q(x)—2) _ 1y1/(g(z)—-2)
[ K2 (a(a) — 1)

x)—1 x)—2
" [¢(x)_1/(q(x)_1) .g(x)}(Q( -1/ (e(@)=2)

—c. /Q [w(2)] 7L p(x) da

+ [ e Ha@-2), @) =2
& (q(x) — 1) Ta@2
1 x)—2
" [¢(:L‘)_1 .g(aj)q(a;)_l] /(q(z)—2) A

= e [L[u(@)1 - g(2) da
(g(z)—1)

+ [ OO (g(a) - 2) (a(a) - 1) G

X [Cb(:v)_l 'g(x)Q(x)_l]l/(Q(x)_Q) dz .

We estimate the left-hand side of eq. (7) by ineq. (9)
as follows, provided 0 < € < .



We recall that, for all x € 2 we have

9(z) >0 = q(z) 22+59.

(A =&) [ fu(@]?) 1 g(a) da

+ /Qf(a;) é(z)dz < Cs < 0o where

(10) [ def [ —1/(qw)-2), __ a@) =2
o (@)D
(4(x) — 1)

1 x)—2
X @) g1 12 g

This inequality clearly imposes an upper
bound on the solution u
for any fixed value of \ > \g = const > 0.



It, ineq. (10), remains valid even if u is
only a nonnedgative subsolution, i.e., if

~Au > MNu@)]9® 1 4 h(x)  for x € Q;

(11)
u=0 on 012, and u >0 in €2.

Theorem 1. Assume that the variable exponent gq :
Q — R is a continuous function that satisfies hypothesis

(Hg)
1< q(_) def mﬁin glx) <plx) =p=2

< q(+) det maxg(x) < co.
Q

In addition, let 0 < e < A < 0.



Assume that u € C§(2) = C3(2) ﬂW&’Q(Q) is any non-
negative subsolution to the Dirichlet problem (1), such
that u verifies the Hopf maximum principle:

(HMP) up>0inQ and 9%(z) <0 on 8%,
together with u > us in Q, where us € C3(Q) is the
unique positive solution constructed in Proposition 1

for the concave nonlinearity (2) and (3).

T hen this subsolution, u, obeys the a priori estimate
(10) above.
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