DEPARTMENT OF MATHEMATICS

ABOUTUS ▼

PEOPLE

COURSES ▼

UNDERGRADUATE ▼

GRADUATE ▼

RESEARCH ▼

ACTIVITIES ▼

ΓIES ▼ SEN

SEMINARS ▼

GIVING

Home » Events » Analysis and Operator Theory - Peter Takac

Analysis and Operator Theory - Peter Takac

Tuesday, October 21, 2014 - 1:50pm to 2:45pm

Title: Nonlinear spectral analysis and the Fredholm alternative for the p-Laplacian

Speaker: Peter Takac, Institut fur Mathematik, Universitat Rostock, Germany

Seminar Type: Analysis and Operator Theory

Abstract: We briefly describe some basic mathematical challenges in the (nonlinear) spectral theory for the p-Laplace operator. It has been a long-standing open problem if all eigenvalues of the p-Laplace operator mapping the Sobolev space $W_0^{1,p}(\Omega)$ into its dual space $W^{-1,p'}(\Omega)$, $\frac{1}{p}+\frac{1}{p'}=1$, $1< p<\infty$, are

variational in some reasonable sense, e.g., given by the Ljusternik-Schnirelmann formula. For a closely related nonlinear operator, we will provide a counterexample, although for the genuine p-Laplacian this problem still remains open.

The first eigenvalue λ_1 and the corresponding eigenfunction φ_1 enjoy analogous properties as in the (classical) linear case p=2. We are concerned with the existence of a weak solution $u\in W_0^{1,p}(\Omega)$ to the degenerate quasilinear Dirichlet boundary value problem

$$-\Delta_p u = \lambda |u|^{p-2} u + f(x) \text{ in } \Omega; \qquad u = 0 \text{ on } \partial \Omega.$$
 \rm (P)

It is assumed that 10 small enough). More precisely, we obtain at least three distinct solutions if either p < 2 and $\lambda_1 - \delta < \lambda < \lambda_1$, or else p > 2 and $\lambda_1 < \lambda < \lambda_1 + \delta$. Naturally, the (linear selfadjoint) Fredholm alternative for the linearization of problem (P) about φ_1 (with $\lambda = \lambda_1$) appears in the proofs.

◀	JANUARY 2019					•
S	М	Т	W	Т	F	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

THE OHIO STATE UNIVERSITY

Search

Contact Us 100 Math Tower 231 West 18th Avenue Columbus OH, 43210-1174

E-Mail: math@osu.edu