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Risk phenomena and their management have been
an important topic of investigation since
the financial crisis of 2007 – 2008.
Here, we focus on Counterparty Risk models
for options with risky values V (S, t) ∈ R modelled by
a semi-linear Black-Scholes-equation.
A comprehensive monograph:
Andrew Green:
“XVA: Credit, Funding and Capital Valuation
Adjustments”, John Wiley & Sons Ltd., 2016.

XVA stands for
some (≡ X) Valuation Adjustment.



Possible values of X are, e.g.,
(1) X = C – Credit Valuation Adjustment (CVA)
(2) X = D – Debit Valuation Adjustment (DVA)

to account for credit risk C
−→←− D

(3) X = F – Funding Valuation Adjustment (FVA)
(4) X = M – Margin Valuation Adjustment (MVA)
(5) X = K – Capital Valuation Adjustment (KVA)
(6) X = T – Tax Valuation Adjustment (TVA)

The treatment of

CVA, DVA, FVA, MVA, KVA and TVA as adjustments

reflects the historical development of derivative models

and typical bank organisational design rather than

the economic reality that places credit, funding

and capital costs at the centre of accurate pricing

and valuation of derivatives.

Since the seminal papers by

(Louis Bachelier in 1900 at E.N.S. Paris)

Fischer Black and Myron Scholes and

Robert C. Merton published in 1973,



derivative pricing and valuation has been centred

in the Black-Scholes-Merton framework

complete with its simplifying assumptions:

• Arbitrage opportunities do not exist.

• Any amount of money can be borrowed or lent

at the risk-free rate which is constant and

accrues continuously in time

(continuously compounded interest rate).

• Any amount of stock can be bought or sold

including short selling with no restrictions.

• There are no transaction taxes

or margin requirements.

• The underlying asset pays no dividend.

• The asset price is a continuous function

with no jumps.

• The underlying asset has a constant volatility.

• Neither counterparty to the transaction

is at risk of default.

• The market is complete,

that is there are no unhedgeable risks.



Often additional implicit assumptions

(e.g., the Modigliani-Miller theorem) are imposed

in order to achieve the desired objective(s).

Among the leading researchers in XVA models are

Christoph Burgard (Bank of America – Merrill Lynch)

and Mats Kjaer (Bloomberg L.P.);

both earlier at Barclays Capital, London. (Published

after 2011.)

Leading critics of XVA (especially FVA) are

Finance Professors at the University of Toronto,

John Hull and Alan White

(published online: 28 Dec 2018).

Mathematics:

Christoph Burgard and Mats Kjaer (2011 – 2017).

Let us consider the following semi-linear

Black-Scholes-type model with bilateral CVA.
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1 Introduction

Risk phenomena and their management have been an important topic of investigation since the

financial crisis of 2007 – 2008. In this article we focus our attention on counterparty risk

models for options with risky values V̂ (S, t) ∈ R modelled by a nonlinear Black-Scholes-type

equation:

∂V̂

∂t
+AtV̂ − (r + λB + λC)V̂ = F (V̂ (S, t);S, t)

for (S, t) ∈ (0,∞)× (0, T ) ;

(1.1)

V̂ (S, T ) = h(S) for S ∈ (0,∞) .(1.2)

The nonlinearity, F ( · ;S, t) : R→ R, with R = (−∞,+∞) standing for the real line, is given by

F (M ;S, t)
def
= = (RBλB + λC)M− − (λB +RCλC)M+ + sF M

+

for M ∈ R and (S, t) ∈ (0,∞)× (0, T ) ,
(1.3)

where we use the usual abbreviation x+
def
= max{x, 0} and x−

def
= max{−x, 0} for x ∈ R.

Hence, x = x+ − x− and |x| = x+ + x−. These kinds of nonlinearities, often called “jumping

nonlinearities, have a long tradition in Mathematical Modelling.

The parabolic partial differential equation (1.1) (PDE, for short) corresponds to the case

when the nonlinearity F ( · ;S, t) : M 7→ F (M ;S, t) : R → R on the right-hand side in eq. (1.1)

is taken with the mark-to-market value M = V̂ (S, t). This case corresponds to a derivative

contract V̂ on an asset (stock) S ∈ (0,∞) between a seller B and a counterparty C that

may both default. The asset price S is not affected by a default of either B or C, and is

assumed to follow the Markov process with the (time-dependent) generator (the Black-Scholes

operator) At defined by

(1.4)
(AtV )(S, t)

def
=

1

2
[σ(t)]2S2 ∂

2V

∂S2
+ [qS(t)− γS(t)]S

∂V

∂S
for V : (0,∞)× (0, T )→ R : (S, t) 7→ V (S, t) .

As usual, we take the volatility, σ, to be a positive constant, σ ∈ (0,∞). The value of γS(t)

reflects the rate of dividend income and the value of qS(t) is the net share position finan-

cing cost which depends on the risk-free rate r(t) and the repo-rate of S(t). “Typical”

values for the terminal condition (1.2) are h(S) ≡ VT (S) where VT (S) = (S−K)+ = (eX −K)+

for X = log S ∈ R (in case of the European call option) and VT (S) = (S −K)− = (K − S)+ =

(K − eX)+ (for the European put option).

The simple transformation S 7→ X = log S : (0,∞) → R of the asset (stock) price

S ∈ (0,∞) into the logarithmic asset (stock) price X = log S ∈ R has a “mathematical”

justification in transforming the degenerate elliptic differential operator At in formula (1.4) into

the regular differential operator A(τ) in formula (2.3) below. Further connections between the

asset price S and the logarithmic asset price X = log S can be found in the monograph by

J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Sølna [20, Sect. 1].
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A frequently used alternative to our choice M = V̂ (S, t) of the mark-to-market value

M in the nonlinearity F (M ;S, t) on the right-hand side in eq. (1.1) is M = V (S, t) where V

denotes the same derivative between two parties that cannot default; see e.g. F. Baustian,

M. Fencl, J. Posṕı̌sil, and V. Šv́ıgler [6, Sect. 2] for numerical treatment. This risk-

-free value , V , satisfies the classical (linear) Black-Scholes PDE (partial differential equation)

with the prescribed terminal value V (S, T ) = h(S) for S ∈ (0,∞) at maturity time t = T .

Inserting this known value F (V (S, t);S, t) in eq. (1.1) in place of F (V̂ (S, t);S, t), we thus obtain

an inhomogeneous linear equation for another (new) value of V̂ (S, t). We refer to the works by

C. Burgard and M. Kjaer [12], [13, Section 3], and [14] for details concerning modelling and

to I. Arregui, B. Salvador, and C. Vázquez [3] for numerical results. We warn the reader

that Refs. [3] and [12, 13, 14] use the convention V = V + + V − with V + def
= max{V, 0} and

V −
def
= min{V, 0} ( ≤ 0) for V ∈ R; nevertheless, we will stick with our notation V = V + − V −

with V −
def
= max{−V, 0} ( ≥ 0). We will not worry about this alternative any more and focus

entirely on the nonlinear equation (1.1). Making use of eq. (1.3), we arrive at the following

equivalent form of eq. (1.1), frequently used, cf. [13, Section 2, Eq. (1)]:

(1.5)

∂V̂

∂t
+AtV̂ − rV̂ = − (1−RB)λB V̂

− + (1−RC)λC V̂
+ + sF V̂

+

for (S, t) ∈ (0,∞)× (0, T ) .

This backward parabolic equation is supplemented by the terminal condition (1.2).

Models with nonlinearities are neither popular nor very frequent in Mathematical Fi-

nance. In the present article we treat a class of semilinear parabolic equations of type (1.5) with

the standard linear diffusion operator ∂
∂t +At and the nonlinear reaction function that is more

general that the one on the right-hand side of (1.5) (only uniformly Lipschitz-continuous). As far

as we know, this class was introduced in the work by C. Burgard and M. Kjaer [13, Section 3]

and [14]. Another class of nonlinear models is based on a nonlinear Black-Scholes PDE with

the quasilinear diffusion operator ∂V̂
∂t + 1

2 σ
2S2 ∂2V

∂S2 + . . . , where the volatility σ ≡ σ
(
∂2V
∂S2

)
de-

pends on the second partial derivative, and with a “typical” linear reaction function (sometimes

including also transaction costs). This class can be traced to G. Barles and H. M. Soner

[5, Eq. (1.2), p. 372] with some additional analytic studies (on explicit solutions) performed in

L. A. Bordag and Y. Chmakova [9]. Some additional references to related numerical studies

and simulations will be added in Sections 4 and 5.

Last but not least, we would like to mention “modelling of incertitude in the environment”

investigated in the works by G. D́ıaz, J. I. D́ıaz, and Ch. Faghloumi [16] and J. I. D́ıaz

and Ch. Faghloumi [15, 17]. The stochastic formulation in these problems leads to degenerate

obstacle problems closely related to parabolic problems with a free boundary that arise in Black-

-Scholes PDEs for American options. We believe that our current developments of D. H.

Sattinger’s monotone methods [42] are applicable also to these kinds of Black-Scholes PDEs

with a free boundary .

This article is organized as follows. We begin with a functional-analytic reformulation of

the B-S equation (1.5) in the next section (Section 2). The terminal value problem (1.5), (1.2) will
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be transformed into an initial value Cauchy problem of parabolic type. This Cauchy problem is

an initial value problem for the nonlinear (semilinear) B-S equation with a uniformly Lipschitz-

-continuous (nonlinear) reaction function, as well. In Section 3 we construct a monotone

iteration scheme of supersolutions of this B-S equation that converge as a monotone decreasing

(i.e., nonincreasing) sequence to the solution from above; see our main result, Theorem 3.4. A

closely related ramification of this monotone iteration scheme provides an increasing sequence

of subsolutions of the B-S equation that converge to the solution from below; see Remark 3.5.

Numerical methods play an important role in Mathematical Finance. In Section 4 we

discuss applications of two most common methods to Mathematical Finance, finite differ-

ences/elements and Monte Carlo. We discuss their advantages and problems when compared to

each other. Finally, in Section 5 we derive an explicit formula for the solution of the inhomoge-

neous linear parabolic initial value problem for the B-S equation that serves for computing the

monotone iteration scheme in Section 3. This formula is obtained by variation-of-constants

(with integrals over R1 and [0, T ]) which makes it interesting for Monte Carlo computations. On

the other hand, the solution of the inhomogeneous linear parabolic problem can be computed

also by finite differences/elements.

2 Functional-analytic reformulation of the B-S equation

We wish to treat the terminal value problem (1.5) (or, equivalently, (1.1)) above, with the

terminal condition (1.2), by standard analytic and numerical methods for semilinear parabolic

initial value problems. To this end, we rewrite problem (1.5), (1.2) as the following general

initial value problem for the unknown function v : R1 × (0, T )→ R,

∂v

∂τ
−A(τ)v + r v = F̃ (v(x, τ);x, τ) for (x, τ) ∈ R1 × (0, T ) ;(2.1)

v(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 ,(2.2)

where A(τ) denotes the Black-Scholes operator defined by

(A(τ)v)(x, τ)
def
= (AT−τv)(x, τ)

=
1

2
[σ(T − τ)]2

∂2v

∂x2
+

(
qS(T − τ)− γS(T − τ)− 1

2
[σ(T − τ)]2

)
∂v

∂x

(2.3)

for v : R1 × (0, T )→ R : (x, τ) 7→ v(x, τ) ,

and the nonlinearity F̃ ( · ;x, τ) : R→ R is given by

F̃ (v;x, τ)
def
= − F (v; ex, T − τ)− (λB + λC) v

= (1−RB)λB v
− − (1−RC)λC v

+ − sF v+
(2.4)

for v ∈ R and (x, τ) ∈ R1 × (0, T ) .

Here, τ = T − t stands for the time to maturity and x = log S is the logarithmic asset

(stock) price ; we take (x, τ) ∈ R1 × (0, T ). In the sequel we will never use the real time
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t = T − τ ∈ (0, T ) any more, so we prefer to use the letter t in place of τ to denote the time to

maturity , as it is usual in parabolic problems. According to this new notation, in eq. (2.3) we

replace the time-dependent coefficients σ(T − τ), qS(T − τ), and γS(T − τ) by σ(t), qS(t), and

γS(t), respectively, and thus forget about the original terminal value problem (1.5), (1.2):

(A(t)v)(x, t)
def
=

∂

∂x

[
1

2
[σ(t)]2

∂v

∂x
+

(
qS(t)− γS(t)− 1

2
[σ(t)]2

)
v(x, t)

]
(2.5)

for v : R1 × (0, T )→ R : (x, t) 7→ v(x, t) .

Next, in order to make the initial value problem (2.1), (2.2) compatible with the mono-

tone methods described in the article by David H. Sattinger [42], we rewrite this problem

as follows:

∂v

∂t
−A(t)v + (r + LF̃ ) v = F̃ (v(x, t);x, t) + LF̃ v for (x, t) ∈ R1 × (0, T ) ;(2.6)

with the initial condition v(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 in eq. (2.2), where the constant

LF̃ ∈ R+ = [0,∞) is defined by

(2.7) LF̃ = max{(1−RB)λB, (1−RC)λC + sF } .

According to [13], sF ≡ rF − r, λB ≡ rB − r, and λC ≡ rC − r are some nonnegative constants

and RB, RC ∈ [0, 1] are the recovery rates on the derivative positions of parties B and C,

respectively. As a consequence, the function G( · ;x, t) : v 7→ G(v;x, t) : R→ R , defined by

G(v;x, t) = F̃ (v;x, t) + LF̃ v

= −
[
LF̃ − (1−RB)λB

]
v− +

[
LF̃ − (1−RC)λC − sF

]
v+

(2.8)

for v ∈ R and (x, t) ∈ R1 × (0, T ) ,

is monotone increasing (i.e., nondecreasing) on R. Notice that both functions, v 7→ − v− and

v 7→ v+, are nondecreasing on R. Indeed, we have also

∂G

∂v
(v;x, t) =

∂F̃

∂v
+ LF̃ =

{
LF̃ − (1−RB)λB if v < 0 ,

LF̃ − ((1−RC)λC + sF ) if v > 0 ;

with 0 ≤ ∂G

∂v
(v;x, t) ≤ LF̃ for all v ∈ R1 \ {0} and (x, t) ∈ R× (0, T ) .

In addition, the left-hand side of eq. (2.6) clearly satisfies the weak maximum principle.

An alternative to D. H. Sattinger’s article [42] on monotone methods for “Nonlinear

Elliptic and Parabolic Problems” is offered in a book form in the monograph C. V. Pao [39,

Chapt. 1], §1.5 (pp. 20–26) and §1.7 (pp. 31–36), and further in Chapters 2 and 3. Numerous

well-known details are included here, such as the relation between the one-sided Lipschitz

condition expressed in the inequality on the left-hand side,

(2.9) − LF̃ ≤
∂F̃

∂v
≤ LF̃ for all v ∈ R1 \ {0} and (x, t) ∈ R× (0, T ) ,
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and the monotonicity hypothesis (G3) below.

We now specify our hypotheses on the general nonlinearity G : R × R1 × (0, T ) on the

right-hand side of eq. (2.6) treated in our present work. We assume that G satisfies the following

hypotheses:

Hypotheses (G1) For each fixed v ∈ R, the function

G(v; · , · ) : (x, t) 7→ G(v;x, t) : R1 × (0, T )→ R is Lebesgue-measurable.

(G2) For almost every pair (x, t) ∈ R1 × (0, T ), the function G( · ;x, t) : v 7→ G(v;x, t) : R→ R
is uniformly Lipschitz-continuous with a Lipschitz constant LG ∈ R+, that is, we have

(2.10)
|G(v1;x, t)−G(v2;x, t)| ≤ LG |v1 − v2|

for all v1, v2 ∈ R and for almost all (x, t) ∈ R1 × (0, T ) .

(G3) For almost every pair (x, t) ∈ R1 × (0, T ), the function G( · ;x, t) : v 7→ G(v;x, t) : R→ R
is monotone increasing, that is, v1 ≤ v2 in R implies G(v1;x, t) ≤ G(v2;x, t).

(G4) There is a constant C0 ∈ R+ such that, at almost every time t ∈ (0, T ), the function

G(0; · , t) : x 7→ G(0;x, t) : R1 → R satisfies the exponential growth restriction

(2.11) |G(0;x, t)| ≤ C0 · exp(|x|)
(
≤ C0(e

x + e−x)
)

for almost all x ∈ R1 .

(G5) There are constants C1 ∈ R+ and ϑG ∈ (0, 1) such that, for every v ∈ R and almost every

x ∈ R1, the function G(v;x, · ) : t 7→ G(v;x, t) : (0, T )→ R is Hölder-continuous with the

Hölder exponent ϑG (0 < ϑG < 1) in the following sense,

(2.12)
|G(v;x, t1)−G(v;x, t2)| ≤ C1 |v| · |t1 − t2|ϑG

for all t1, t2 ∈ (0, T ) and for almost all (v, x) ∈ R× R1 .

From now on, let us consider the following generalization of the initial value problem (2.6),

(2.2):

∂v

∂t
−A(t)v + rG v = G(v(x, t);x, t) for (x, t) ∈ R1 × (0, T ) ;(2.13)

with the initial condition v(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 in eq. (2.2), where the constant

r + LF̃ in eq. (2.6) has been replaced by the new constant rG ∈ R+, owing to our monotonicity

hypothesis (G3). Concerning hypotheses on the time-dependent coefficients that appear in the

Black-Scholes operator A(t) defined in eq. (2.5) (recall that τ = t), we assume the following

Hölder continuity:
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Hypotheses

(BS1) σ : [0, T ]→ (0,∞) is a positive, Hölder-continuous function satisfying

(2.14) |σ(t1)− σ(t2)| ≤ Cσ |t1 − t2|ϑσ for all t1, t2 ∈ [0, T ] ,

where Cσ ∈ R+ and ϑσ ∈ (0, 1) are some constants independent from time t ∈ [0, T ].

(BS2) qS , γS : [0, T ]→ R is a pair of Hölder-continuous function satisfying

|qS(t1)− qS(t2)| ≤ Cq |t1 − t2|ϑq and(2.15)

|γS(t1)− γS(t2)| ≤ Cγ |t1 − t2|ϑγ for all t1, t2 ∈ [0, T ] ,(2.16)

where Cq, Cγ ∈ R+ and ϑq, ϑγ ∈ (0, 1) are some constants (independent from t ∈ [0, T ]).

Remark 2.1 (Hölder exponents.) In Hypotheses (G5), (BS1), and (BS2) we may and will

replace the Hölder exponents ϑG, ϑσ, ϑq, and ϑγ by their minimum ϑ0,

ϑ0 = min{ϑG, ϑσ, ϑq, ϑγ} , ϑ0 ∈ (0, 1) . ut

Clearly, from Hypothesis (BS1) we derive σ(t) ≥ σ0 = mint∈[0,T ] σ(t) > 0 for all t ∈ [0, T ].

This fact, combined with (BS2), guarantees the uniform ellipticity of the Black-Scholes operator

A(t) independently from t ∈ [0, T ].

Remark 2.2 (Risk-free interest rate.) One may also suggest to replace the multiplicative

constant rG ∈ R on the left-hand side of eq. (2.13) by the time-dependent risk-free interest

rate r : [0, T ] → R satisfying a Hölder continuity condition analogous to those in eqs. (2.15)

and (2.16). However, this change would not make eq. (2.13) more general in that it could be

reduced to the present form (2.13) with the term rG v as follows:

First, define rG ∈ R by rG = maxt∈[0,T ] r(t); then replace the function G(v;x, t) on the

right-hand side of eq. (2.13) by the sum Gr(v;x, t) = G(v;x, t) + [rG − r(t)] v for (v;x, t) ∈
R× R1 × (0, T ). Clearly, thanks to rG − r(t) ≥ 0 for every t ∈ [0, T ], the function Gr( · ; · , · ) :

(v;x, t) 7→ Gr(v;x, t) : R1 × (0, T ) → R satisfies all Hypotheses (G1) – (G5) imposed on the

function G. We conclude that the interest rate difference, rG − r(t), can be included in the

reaction function G. We thus keep eq. (2.13) in the present form with rG ∈ R being a given

constant. ut

Our last hypothesis in problem (2.13), (2.2) restricts the growth of the initial condition

v(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 in eq. (2.2) as follows:

Hypothesis

(v0) The function v0 : R → R is Lebesgue-measurable and there is a constant Ch ∈ R+ such

that, for almost all x ∈ R1, we have

(2.17) |v0(x)| = |h(ex)| ≤ Ch · exp(|x|)
(
≤ Ch(ex + e−x)

)
.
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As we have already indicated in our hypothesis (G4) on the exponential growth restriction

of G, we are going to look for (strong, weak or mild) solutions v : R1 × (0, T ) → R to the

initial value problem (2.13), (2.2) satisfying an analogous exponential growth restriction of type

v( · , t) ∈ HC at every time t ∈ (0, T ), where HC = L2(R;w) denotes the complex Hilbert space

of all complex-valued Lebesgue-measurable functions f : R→ C with the finite norm

‖f‖H
def
=
(∫

R |f(x)|2w(x) dx
)1/2

<∞ ,

where w(x)
def
= e−µ|x| is a weight function with some constant µ ∈ (2,∞). This norm is induced

by the inner product

(f, g)H ≡ (f, g)L2(R;w)
def
=
∫
R f ḡ ·w(x) dx for f, g ∈ HC .

As usual, the symbol z̄ denotes the complex conjugate of a complex number z ∈ C where

C = R + iR is the complex plane. We consider the complex Hilbert space HC only for better

understanding of our applications using holomorphic semigroups in HC generated by the

(unbounded) Black-Scholes operator A(t) : HC → HC in eq. (2.13) above. Our solutions v(x, t)

to the initial value problem (2.13), (2.2) will be always real-valued, i.e., v( · , t) ∈ H at every time

t ∈ (0, T ), where H denotes the closed real vector subspace of all real-valued functions f : R→ R
from HC. The domain of the differential operator A(t), denoted by D(A(t)), is a complex vector

subspace of HC which is independent from time t ∈ [0, T ], i.e., D(A(t)) ≡ DC ⊂ HC for every

t ∈ [0, T ]. The vector space DC consists of all functions f ∈ HC whose weak (distributional)

derivatives f ′ = df
dx and f ′′ = d2f

dx2
belong to HC, as well. We set D = DC ∩ H to denote the

closed real vector subspace of all real-valued functions f : R → R from DC. The vector space

DC becomes a Banach space under the norm

‖f‖D
def
= ‖f‖H + ‖f ′′‖H for f ∈ DC .

This norm is equivalent with the stronger norm

|||f |||D
def
= ‖f‖H + ‖f ′‖H + ‖f ′′‖H for f ∈ DC ,

by a simple interpolation inequality. We refer to the monograph by K.-J. Engel and R. Nagel

[18] for details concerning holomorphic semigroups and their (infinitesimal) generators, es-

pecially to [18, Chapt. II, Sect. 4a, pp. 96–109].

We denote by H1
C the complex interpolation space between DC and HC that consist of all

functions f : R → R from HC such that both f, f ′ ∈ HC. H1
C is a vector space which becomes

a Banach space under the norm

‖f‖H1
def
= ‖f‖H + ‖f ′‖H for f ∈ H1

C .
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Hence, we have the continuous imbeddings DC ↪→ H1
C ↪→ HC . Moreover, given any fixed t ∈

[0, T ], H1
C is the domain of the sesquilinear form

Q(t) : H1
C ×H1

C → C : (f, g) 7−→ Q(t)(f, g)
def
= −

∫
R

[A(t)f ](x) g(x) ·w(x) dx

= −
∫ +∞

−∞

{
1
2 [σ(t)]2 f ′′(x) +

(
qS(t)− γS(t)− 1

2 [σ(t)]2
)
f ′(x)

}
g(x) ·w(x) dx

=

∫ +∞

−∞

{
1
2 [σ(t)]2 f ′(x) g′(x)− µ

2 [σ(t)]2 sign(x) f ′(x) g(x)

−
(
qS(t)− γS(t)− 1

2 [σ(t)]2
)
f ′(x) g(x)

}
·w(x) dx

(2.18)

= 1
2 [σ(t)]2 ·

∫ +∞
−∞ f ′(x) g′(x) ·w(x) dx

+ µ
2 [σ(t)]2 ·

(∫ 0
−∞−

∫ +∞
0

)
f ′(x) g(x) ·w(x) dx

−
(
qS(t)− γS(t)− 1

2 [σ(t)]2
) ∫ +∞
−∞ f ′(x) g(x) ·w(x) dx

defined first only for f, g ∈ DC .

The continuous extension of Q(t)(f, g) to all f, g ∈ H1
C is immediate, thanks to DC being a

dense vector subspace of H1
C. A few simple applications of the Cauchy-Schwartz inequality show

that the (non-symmetric) sesquilinear form Q(t) on H1
C is coercive . Indeed, with a help from

Hypothesis (BS1) we have σ(t) ≥ σ0 = mint∈[0,T ] σ(t) > 0 for all t ∈ [0, T ]. Consequently, if the

constant λ0 ∈ (0,∞) below is chosen sufficiently large, then we get the following more precise

quantification of coercivity at every time t ∈ [0, T ]:

(2.19) Q(t)(f, f) + λ (f, f)H ≥
σ0
4
‖f‖2H1 + ‖f‖2H for every λ ≥ λ0 ,

thanks to Hypotheses (BS1) and (BS2). We note that the constant λ0 depends neither on time

t ∈ [0, T ] nor on the number λ ≥ λ0.

Let I ≡ IH denote the identity mapping on HC. Given any real number λ ≥ λ0, from

ineq. (2.19) we infer that the linear operator

−Aλ(t)
def
= −A(t) + λI : DC ⊂ HC → HC

is an isomorphism of the Banach space DC onto another Banach space HC, both, algebraically

and topologically. Now we can apply the well-known results for abstract linear initial value

problems of parabolic type, e.g., from L. C. Evans [19], Chapt. 7, §1.1, p. 352, or J.-L.

Lions [35], Chapt. IV, §1, p. 44, or [36], Chapt. III, eq. (1.11), p. 102, to conclude that the

inhomogeneous linear parabolic initial value problem

∂v

∂t
−A(t)v + rG v = f(x, t) for (x, t) ∈ R1 × (0, T ) ;(2.20)

with the initial condition v(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 in eq. (2.2), possesses a unique

weak solution v : [0, T ]→ H, whenever the initial value v0 ∈ H is given, such that v0 : R1 → R
obeys ineq. (2.17) in Hypothesis (v0). The weak solution v is continuous as an H-valued function
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of time t ∈ [0, T ], that is, v ∈ C([0, T ]→ H). This is the “linear part” of the semilinear problem

(2.13), (2.2) with a prescribed inhomogeneity f : [0, T ] → H that is assumed to be strongly

Lebesgue-measurable and (essentially) bounded on (0, T ), i.e., f ∈ L∞((0, T )→ H). In our case,

f ∈ L∞((0, T )→ H) follows from our stronger hypothesis below:

Hypothesis

(f1) f : [0, T ] → H ⊂ HC = L2(R;w) is a continuous function, i.e., f ∈ C([0, T ] → H), where

f : R1 × [0, T ]→ R : (x, t) 7→ f(x, t) satisfies f(t) ≡ f( · , t) ∈ H for every t ∈ [0, T ].

Although in the following sections we work only with weak solutions v : [0, T ] → H,

v(0) = v0 ∈ H, to the “linear part” (2.20) of the semilinear equation (2.13), we would like to

remark that the unique weak solution v : [0, T ]→ H to the linear initial value problem (2.20),

(2.2) becomes a (unique) classical solution if f : [0, T ] → H satisfies the following stronger,

Hölder-continuity hypothesis with the Hölder exponent ϑf ∈ (0, 1):

Hypothesis

(f1’) f : [0, T ] → H ⊂ HC = L2(R;w) is a ϑf -Hölder-continuous function, i.e., there are

constants ϑf ∈ (0, 1) and Cf ∈ R+ such that

(2.21) ‖f( · , t1)− f( · , t2)‖H ≤ Cf · |t1 − t2|ϑf for all t1, t2 ∈ [0, T ] .

This is the case if the inhomogeneity f : R1 × [0, T ] → R satisfies f( · , t) ∈ H for each

t ∈ [0, T ] and there are some constants C̃f ∈ R+ and κ ∈ R, with 1 ≤ κ < µ/2, such that

(2.22)
|f(x, t1)− f(x, t2)| ≤ C̃f eκ|x| · |t1 − t2|ϑf

for a.e. (almost every) x ∈ R1 and for all t1, t2 ∈ [0, T ] .

Recall that µ (µ > 2) is the constant in the weight function w(x)
def
= e−µ|x| in the Hilbert space

HC = L2(R;w). We remark that for the inhomogeneous linear equation (2.20), the nonlinearity

G on the right-hand side of eq. (2.13) becomes G(v;x, t) ≡ f(x, t); hence, we have ϑG = ϑf in

Hypothesis (G5). Let us recall that, by Remark 2.1, we have replaced the Hölder exponents

ϑG, ϑσ, ϑq, and ϑγ by their minimum ϑ0; hence, we may include also the value of ϑf in that

minimum:

(2.23) ϑ0 = min{ϑG, ϑσ, ϑq, ϑγ , ϑf} , ϑ0 ∈ (0, 1) .

Indeed, according to the existence, uniqueness, and regularity results for problem (2.20),

(2.2) in A. Pazy [40, Chapt. 5, §5.7], Theorem 7.1 on p. 168, if (2.21) holds, then the unique

weak solution v : [0, T ] → H to the linear initial value problem (2.20), (2.2) described above

happens to be a unique classical solution which, among other properties, is continuous as a

function v : [0, T ]→ H, i.e., v ∈ C([0, T ]→ H), continuously differentiable on the time interval
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(0, T ], v(t) ≡ v( · , t) ∈ D for every t ∈ (0, T ], i.e., A(t)v(t) ∈ H for t ∈ (0, T ], and v satisfies the

abstract differential equation

∂v

∂t
−A(t)v + rG v = f(t) in H for t ∈ (0, T ) ;(2.24)

with v(0) = v0 ∈ H (the initial condition).(2.25)

Although in our parabolic evolutionary problems we make use of the monograph by A.

Pazy [40], we would like to point to a closely related (and much newer) monograph by I. I.

Vrabie [45] for interesting alternatives to results in [40].

In typical applications of our results to Mathematical Finance, in particular, to coun-

terparty risk models treated in our present work, both, the coefficients in the Black-Scholes

operator A(τ) defined in eq. (2.3) and the nonlinearity F̃ ( · ;x, τ) : R→ R defined in eq. (2.4),

are assumed to be continuous, or even Hölder-continuous, in time τ ∈ [0, T ]. In contrast, less

restrictive time regularity hypotheses are needed in Stochastic Control Theory , such as piecewise

continuity in time τ ∈ [0, T ]. Because our present work does not treat problems in “Stochastic

Control Theory”, we refer the interested reader to the monograph by A. Bensoussan and J.-L.

Lions [8] for this interesting topic and for methods how to relax our time regularity hypotheses.

3 Monotone methods for the nonlinear B-S equation

We make use of the inhomogeneous linear problem (2.20), (2.2) in order to describe an iterative

scheme for approximating the unique weak solution v : [0, T ] → H, v(0) = v0 ∈ H, to the

semilinear problem (2.13), (2.2).

3.1 Preliminary comparison results for parabolic problems

First, the so-called weak maximum principle for a classical solution v of the inhomogeneous

linear problem (2.20), (2.2) is established e.g. in A. Friedman [22, Chapt. 2, Sect. 4, Theorem 9,

p. 43]. A standard approximation procedure of a weak solution v by a sequence of classical

solutions yields the corresponding weak maximum principle also for the weak solution v. More

precisely, if the inequalities v(x, 0) = v0(x) ≥ 0 and f(x, t) ≥ 0 are valid for almost all (x, t) ∈
R1 × (0, T ), then also v(x, t) ≥ 0 holds for almost all (x, t) ∈ R1 × (0, T ).

Second, let v : [0, T ]→ H be a classical solution of the inhomogeneous linear problem

∂v

∂t
−A(t)v + rG v = g(t) in H for t ∈ (0, T ) ;(3.1)

with v(0) = vg ∈ H (the initial condition),(3.2)

where g : [0, T ] → H is a function continuous and bounded in (0, T ), i.e., g ∈ C((0, T ) → H)

with ‖g‖L∞((0,T )→H)
def
= supt∈(0,T ) ‖g(t)‖H < ∞. We say that v is a supersolution to the

inhomogeneous linear problem (2.20), (2.2), if the inequalities vg(x) ≥ v0(x) and g(x, t) ≥ f(x, t)
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hold for almost all (x, t) ∈ R1×(0, T ). Analogously, a subsolution v to the inhomogeneous linear

problem (2.20), (2.2) is a classical solution v of problem (3.1), (3.2) for which the inequalities

vg(x) ≤ v0(x) and g(x, t) ≤ f(x, t) hold for almost all (x, t) ∈ R1 × (0, T ). More generally, if

v : (x, t) ∈ R1×(0, T )→ R is a weak solution to the inhomogeneous linear problem (2.20), (2.2),

then the notions of super- and subsolution to the inhomogeneous linear problem (2.20), (2.2)

are defined by means of an approximation procedure by a sequence of classical solutions again.

A rigorous functional-analytic way to define super- and subsolution v to problem (2.20), (2.2)

is to require that v : (x, t) ∈ R1 × (0, T ) → R have all regularity properties of a weak solution

to problem (2.20), (2.2) stated in L. C. Evans [19], Chapt. 7, §1.1, p. 352, or J.-L. Lions [35],

Chapt. IV, §1, p. 44, or [36], Chapt. III, eq. (1.11), p. 102, and, in addition to these regularity

properties, the following inequality is valid in the sense of distributions on R1 × (0, T ):

∂v

∂t
−A(t)v + rG v ≥ f(t) ( ≤ f(t)) in H for t ∈ (0, T ) ;(3.3)

with v(0) ≥ v0 ∈ H ( ≤ v0 ∈ H) (the initial condition).(3.4)

Here, the inequalities with “≥ ” (“≤ ”, respectively) specify a (weak) supersolution (a (weak)

subsolution). The reader is referred to A. Friedman [21, Chapt. 3, Sect. 3, Theorem 8,

p. 51] for details about positive (or nonnegative) distributions. Clearly, any function v : (x, t) ∈
R1×(0, T )→ R which is simultaneously a (weak) supersolution and a (weak) subsolution) of

the inhomogeneous linear problem (2.20), (2.2) is a (weak) solution to this problem. Combining

these definitions of super- and subsolution , denoted by v, v : R1 × (0, T ) → R, respectively,

having the initial values satisfying v(0) ≤ v0 ≤ v(0) a.e. in R1, with the weak maximum principle

for the difference w = v − v, we obtain the following auxiliary weak comparison result.

Lemma 3.1 (Weak comparison.) Assume that v, v : R1 × (0, T ) → R, respectively, is a

pair of (weak) super- and subsolutions of problem (2.20), (2.2) satisfying v(0) ≤ v(0) a.e. in

R1. Then, at every time t ∈ [0, T ), we have v(x, t) ≤ v(x, t) for a.e. x ∈ R1.

Observe that we have left the initial value v0 ∈ H out of this lemma since we use it usually

with either v(0) = v0 or v(0) = v0 as the initial condition attached to the differential equation

∂v

∂t
−A(t)v + rG v = f(x, t) for (x, t) ∈ R1 × (0, T ) ,(3.5)

or

∂v

∂t
−A(t)v + rG v = f(x, t) for (x, t) ∈ R1 × (0, T ) ,(3.6)

respectively, where f( · , t) ≤ f( · , t) a.e. in R1, at every time t ∈ (0, T ).

Proof of Lemma 3.1. We subtract equation (3.5) from (3.6), thus obtaining an analogous

equation for the difference w = v−v with the right-hand side equal to g(x, t) = f(x, t)−f(x, t) ≥
0 for a.e. (x, t) ∈ R1 × (0, T ). Then the desired result, w( · , t) ≥ 0 a.e. in R1, at every time



Monotone methods for nonlinear Black-Scholes equations 13

t ∈ [0, T ), follows from A. Friedman [22, Chapt. 2, Sect. 4, Theorem 9, p. 43], cf. also [22,

Chapt. 2, Sect. 6, Theorem 16, p. 52].

We now give simple examples of super- and subsolutions of problem (2.13), (2.2).

Example 3.2 (Super- and subsolutions.) Let us define the function

(3.7) V (x, t) = K eλt
(
eκx + e−κx

)
= 2K eλt · cosh(κx) for (x, t) ∈ R1 × [0, T ] ,

where κ ∈ R is a constant satisfying 1 ≤ κ < µ/2, and K,λ ∈ R with K ≥ 1 and λ ≥ 0 are some

other constants (large enough) to be determined below:

The left-hand side of eq. (2.13) with v = V becomes

(3.8)

l.h.s.(x, t) =
∂V

∂t
−A(t)V + rG V (x, t)

= λV (x, t)− 1

2
κ2[σ(t)]2 V (x, t)

− κ
[
qS(t)− γS(t)− 1

2
[σ(t)]2

]
· eκx − e−κx

eκx + e−κx
V (x, t) + rG V (x, t)

≥
[
(λ+ rG)− 1

2
κ2[σ(t)]2

]
V (x, t)− κ ·

∣∣∣∣qS(t)− γS(t)− 1

2
[σ(t)]2

∣∣∣∣ V (x, t)

≥
{

(λ+ rG)− 1
2 κ

2‖σ‖2L∞(0,T ) − κ
[
‖qS − γS‖L∞(0,T ) + 1

2 ‖σ‖
2
L∞(0,T )

]}
V (x, t)

for (x, t) ∈ R1 × [0, T ] .

As usual, ‖σ‖L∞(0,T ) stands for the supremum norm of a continuous function σ : [0, T ]→ R.

On the other hand, the right-hand side of eq. (2.13) with v = V becomes

r.h.s.(x, t) = G(V (x, t);x, t) = G(0;x, t) + [G(V (x, t);x, t)−G(0;x, t)]

≤ C0 exp(|x|) + LG V (x, t) ≤ C ′0 V (x, t) for (x, t) ∈ R1 × [0, T ] ,
(3.9)

where C ′0
def
= (C0/K) + LG ( > 0) ,

and we have taken advantage of inequalities (2.10) and (2.11) in Hypotheses (G2) and (G4),

respectively. Subtracting eq. (3.9) from (3.8) we arrive at

l.h.s.(x, t)− r.h.s.(x, t) =
∂V

∂t
−A(t)V + rG V (x, t)−G(V (x, t);x, t)

≥
{
λ+ rG − 1

2 κ
2‖σ‖2L∞(0,T )

− κ
[
‖qS − γS‖L∞(0,T ) + 1

2 ‖σ‖
2
L∞(0,T )

]
− C ′0

}
V (x, t) ≥ 0

(3.10)

for (x, t) ∈ R1 × [0, T ] ,

provided λ ∈ R satisfies

(3.11)
λ+ rG ≥ Λ

def
= 1

2 κ
2‖σ‖2L∞(0,T )

+ κ
[
‖qS − γS‖L∞(0,T ) + 1

2 ‖σ‖
2
L∞(0,T )

]
+ C ′0 ( > 0) .
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Recalling our Hypothesis (v0) with ineq. (2.17) on the growth of the initial condition, we take

the constant K ∈ R such that K ≥ max{1, Ch} which guarantees also

(3.12)
|v0(x)| = |h(ex)| ≤ Ch · exp(|x|) ≤ Ch · exp(κ|x|)

≤ V (x, 0) = K
(
eκx + e−κx

)
= 2K · cosh(κx) for (x, t) ∈ R1 × [0, T ] .

It follows that the function V : R1× [0, T ]→ R defined in eq. (3.7) is a supersolution of problem

(2.13), (2.2).

Analogous arguments show that the function − V : R1 × [0, T ] → R is a subsolution of

problem (2.13), (2.2). Notice that in this case, ineq. (3.9) has to be replaced by

(3.13)
G(−V (x, t);x, t) = G(0;x, t) + [G(−V (x, t);x, t)−G(0;x, t)]

≥ − C ′0 V (x, t) for (x, t) ∈ R1 × [0, T ] .

ut

3.2 Construction of monotone iterations

Recalling Lemma 3.1, our Hypothesis (v0) with ineq. (2.17), and applying Example 3.2 with

κ = 1 (< µ/2), we are now ready to construct a monotone iteration scheme for calculating

a (weak) solution v : R1 × (0, T ) → R to the initial value problem (2.13), (2.2). We start by

setting κ = 1 and fixing the constants K,λ ∈ R with K ≥ 1 and λ+ rG ≥ Λ (> 0) large enough,

such that both inequalities, (3.11) and (3.12), are valid. It follows from eq. (3.7) and ineq. (3.10)

that the function u0 : R1 × (0, T )→ R defined by

(3.14) u0(x, t) = K eλt
(
ex + e−x

)
= 2K eλt · cosh(x) for (x, t) ∈ R1 × [0, T ] ,

is a supersolution of problem (2.13), (2.2). We remark that − u0 happens to be a subsolution

of this problem, by Example 3.2 with κ = 1, as well. The first iterate, u1 : R1 × [0, T ] → R,

is constructed as the (weak) solution u1 to the following analogue of the inhomogeneous linear

initial value problem (2.20), (2.2):

∂u1
∂t
−A(t)u1 + rG u1 = G(u0(x, t);x, t)(3.15) (

≤ C ′0 u0(x, t)
)

for (x, t) ∈ R1 × [0, T ] ;

u1(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 .(3.16)

Since u0 is a (weak) supersolution of problem (2.13), (2.2), by Example 3.2 with κ = 1, we

may apply Lemma 3.1 to conclude that u1(x, t) ≤ u0(x, t) holds for a.e. (x, t) ∈ R1 × (0, T ). In

addition, making use of eq. (3.13), we get also

(3.17)
− u0(x, t) ≤ u1(x, t) ≤ u0(x, t)

(
= K eλt

(
eκx + e−κx

))
for (x, t) ∈ R1 × [0, T ] .

Our next step is the following induction hypothesis. Let us assume that, for some integer

m ≥ 1, in addition to u0 and u1 above, we have already constructed the first (m+ 1) functions

u0, u1, u2, . . . , um : R1 × [0, T ]→ R with the following properties:
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(a) Every function uj : R1 × [0, T ] → R; j = 0, 1, 2, . . . ,m, is Lebesgue-measurable and

continuous in time as a function uj : [0, T ]→ H, i.e., uj ∈ C([0, T ]→ H).

(b) The inequalities

(3.18) − u0(x, t) ≤ uj(x, t) ≤ uj−1(x, t) ≤ u0(x, t) for (x, t) ∈ R1 × [0, T ] ,

are valid for every j = 1, 2, 3, . . . ,m.

(c) For each j = 1, 2, 3, . . . ,m, the function uj : R1 × [0, T ] → R is the (weak) solution to

the following analogue of the inhomogeneous linear initial value problem (2.20), (2.2); cf.

problem (3.15), (3.16) above:

∂uj
∂t
−A(t)uj + rG uj = G(uj−1(x, t);x, t)(3.19) (

≤ C ′0 u0(x, t)
)

for (x, t) ∈ R1 × [0, T ] ;

uj(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 .(3.20)

In our last step (induction on the index m ≥ 1) we construct the (m + 1)-st iterate,

um+1 : R1 × [0, T ] → R, to be the (weak) solution um+1 to the following problem; cf. problem

(3.15), (3.16):

∂um+1

∂t
−A(t)um+1 + rG um+1 = G(um(x, t);x, t)(3.21) (
≤ C ′0 u0(x, t)

)
for (x, t) ∈ R1 × [0, T ] ;

um+1(x, 0) = v0(x)
def
= h(ex) for x ∈ R1 .(3.22)

By arguments analogous to those used in the construction of u1 from u0 above, we conclude

that um+1 exists and satisfies

(3.23) − u0(x, t) ≤ um+1(x, t) ≤ um(x, t) ≤ u0(x, t) for (x, t) ∈ R1 × [0, T ] .

Here, we have used our monotonicity hypothesis (G3) to conclude that um ≤ um−1 a.e. in

R1 × [0, T ] entails G(um(x, t);x, t) ≤ G(um−1(x, t);x, t) for a.e. (x, t) ∈ R1 × [0, T ]. Finally, we

get um+1 ∈ C([0, T ]→ H). This concludes the construction of the desired iterates.

Remark 3.3 (Inhomogeneous linear problem.) An explicit formula for calculating the

weak solution um+1 : R1×[0, T ]→ R to problem (3.21), (3.22) will be described later in Section 5,

Corollary 5.2. Numerical methods for computing this solution will be discussed in Remark 5.4,

as well. ut

As an obvious consequence of our construction we conclude that, in addition to u0, also

each iterate uj ; j = 1, 2, 3, . . . , is a (weak) supersolution of problem (2.13), (2.2).
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Standard application of Lebesgue’s monotone (or dominated) convergence theorem yields

the monotone pointwise convergence um(x, t) ↘ v(x, t) as m ↗ ∞ for a.e. (x, t) ∈ R1 × [0, T ],

as well as the L2-type norm convergence ‖um(t) − v(t)‖H ↘ 0 as m ↗ ∞, for a.e. t ∈ (0, T ),

where v(t) ≡ v( · , t) ∈ H satisfies

(3.24) − u0(x, t) ≤ v(x, t) ≤ um(x, t) ≤ u0(x, t) for (x, t) ∈ R1 × [0, T ] .

Furthermore, we get another L2-type norm convergence in the Lebesgue(-Hilbert) space

L2([0, T ]→ H), namely,

(3.25) ‖um − v‖L2([0,T ]→H)
def
=
(∫ T

0 ‖um(t)− v(t)‖2H dt
)1/2

↘ 0 as m↗∞ .

We combine this result with Theorem 1.2 (and its proof) in A. Pazy [40, Chapt. 6, §6.1, pp.

184–185] to conclude that v ∈ C([0, T ] → H) and v : R1 × [0, T ] → R is a mild solution

to the initial value problem (2.13), (2.2). Finally, applying the well-known results from L. C.

Evans [19], Chapt. 7, §1.1, p. 352, or J.-L. Lions [35], Chapt. IV, §1, p. 44, or [36], Chapt. III,

eq. (1.11), p. 102, we find out that v is a (weak) solution to problem (2.13), (2.2).

We summarize the most important results from our monotone iteration scheme (3.14)

– (3.23) for problem (2.13), (2.2) in the following theorem. Precise definitions of the Hölder

spaces used in this theorem, Hθ,θ/2
(
D

(T )
1+1

)
(a local Hölder space) and H2+θ,1+(θ/2)(Q′) over the

parabolic domain D
(T )
1+1 = R1 × (0, T ) (an open strip in R1 × R) and its compact subset Q′ =

[a, b] × [τ, T ′] ⊂ D
(T )
1+1 (a compact rectangle), respectively, with θ ∈ (0, 1), −∞ < a < b < +∞,

and 0 < τ < T ′ < T , can be found in O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N.

Ural’tseva [32, Chapt. I, §1, pp. 7–8].

Theorem 3.4 (Monotone iterations.) Let v0 ∈ H obey Hypothesis (v0) with ineq. (2.17).

Then the monotone iterations u0 ≥ u1 ≥ · · · ≥ uj−1 ≥ uj ≥ · · · ≥ − u0 , described in items

(a), (b), and (c) above, converge in the Lebesgue(-Hilbert) space L2([0, T ] → H) to a function

v : R1 × (0, T ) according to formula (3.25). The limit function, v ∈ L2([0, T ] → H), is a

(weak) solution to problem (2.13), (2.2). Furthermore, there is a constant θ ∈ (0, 1) such that

um ∈ Hθ,θ/2
(
D

(T )
1+1

)
holds for every m = 1, 2, 3, . . . , and v ∈ Hθ,θ/2

(
D

(T )
1+1

)
, as well.

Finally, assume that the function

(G1’)

G(v;x, · ) : t 7→ G(v;x, t) : R1 × (0, T )→ R

is uniformly Hölder-continuous on (0, T ),

uniformly for (v, x) in every bounded subset of R× R1 .

Then we get even um ∈ H2+θ,1+(θ/2)
(
D

(T )
1+1

)
for every m = 1, 2, 3, . . . , together with v ∈

H2+θ,1+(θ/2)
(
D

(T )
1+1

)
, where the convergence um → v holds in the norm of the Hölder space

H2+θ′,1+(θ′/2)(Q′) over any compact rectangle Q′ = [a, b] × [τ, T ′] ⊂ D
(T )
1+1 in the open strip

D
(T )
1+1 = R1 × (0, T ), with −∞ < a < b < +∞ and 0 < τ < T ′ < T , and with any Hölder

exponent θ′ ∈ (0, θ). In particular, each function um (m = 1, 2, 3, . . . ) is a strong (classical)

solution to problem (3.19), (3.20), whereas v is a strong (classical) solution to problem (2.13),

(2.2).
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Remark 5.4 (i) Eq. (2.20) being a linear “diffusion equation”, the Monte Carlo method is a

very natural way for approximating the precise analytic solution to problem (2.20), (2.2) (i.e.,

(2.24), (2.25)) by numerical simulations produced by this method. We refer to the works by

I. Arregui, B. Salvador, and C. Vázquez [3, Sects. 3–4, pp. 18–23], F. Baustian, M.

Fencl, J. Posṕı̌sil, and V. Šv́ıgler [6, §3.6, p. 52] and to M. Yu. Plotnikov [41, Sect. 1,

pp. 121–125] for greater details. The first two references, [3, 6], treat exactly the problem of

“Option pricing under some Value Adjustment” (xVA) in Mathematical Finance; under “Credit

Value Adjustment” (CVA), for instance. The third one, [41], treats linear integral equations of

type (5.16) which envolve the evolutionary family of bounded linear integral operators T(t, s) :

H → H (0 ≤ s < t ≤ T ) on the Hilbert space H. In fact, a numerical method for solving the

full, nonlinear integral equation (5.1) for the unknown function v ∈ C([0, T ] → H) substituted

into the (subsequently unknown) nonlinearity

f(τ) ≡ f( · , τ) : R1 → R : x 7→ f(x, τ) = G(v(x, τ);x, τ) with f(τ) ∈ H

for every τ ∈ [0, T ], is provided in [41]. This work is based in an iteration method for a nonlinear

integral equation similar to ours, cf. [41, Eq. (1.1), p. 121].

(ii) In contrast with the probabilistic Monte Carlo methods for solving the Cauchy prob-

lem (2.20), (2.2), analytic methods based on a finite difference (or finite element) scheme

provide a highly competitive alternative to Monte Carlo in a series of works, such as the mono-

graph by Y. Achdou and O. Pironneau [1] and the articles by I. Arregui et al. [3, §3.4,

pp. 20–21], [4, Sect. 4, pp. 734–737], F. Baustian et al. [6, §3.5, pp. 50–51], M. N. Koleva

[30, Sect. 3, pp. 367–368], and M. N. Koleva and L. G. Vulkov [31, Sects. 3–4, pp. 510–515].

(iii) Last but not least, a “hybrid” algorithm mixing Monte Carlo with finite differ-

ence/element methods in quest for optimization on both, precision and speed, is presented in

G. Loeper and O. Pironneau [37]. ut
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