
Bachelorarbeit am Institut für Mathematik

Mathematisch-Naturwissenschaftliche Fakultät

Optimization of Pairing Lists

in Sailing Leagues

Name: Cedric Rönnfeld
Matrikelnummer: 221200104

Abgabedatum: 20.08.2025

Betreuer und Gutachter: Prof. Dr. Achill Schürmann

Universität Rostock

Institut für Mathematik

Gutachter: Prof. Dr. Thomas Kalinowski

Universität Rostock

Institut für Mathematik

CONTENTS

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Mathematical Model . 2

2.2 Necessary conditions for fair and almost fair schedules 7

3 Optimization Analysis 12

3.1 Properties of the minimal fairness deviation 12

3.2 Formulation as programming problem 16

3.3 Some special cases . 30

3.4 Algorithmic Abstraction . 48

4 Conclusion 61

5 Literature 63

6 Erklärung über die selbständige Abfassung einer schriftlichen Arbeit 64

I

1. Introduction

1 Introduction

In the proposed thesis we will study the construction of pairing lists in the application

of sailing leagues through the ideas of combinatorial designs and integer optimization,

continuing previous work of Robert Schüler and Achill Schürmann [1] on the topic from

a more theoretical point.

We define a fairness term based on the distribution of co-occurrences between two teams

and aim to find the minimal span f of these distributions for fixed configurations of

teams and flights.

To analyze possible values of f we will find necessary divisibility constraints for the

cases of f = 0 and f = 1, providing alternative proofs to known theorems for specific

types of designs and Hadamard-Matrices.

One of our main theoretical result is a complete characterization of f in the cases of n =

6, k = 3 and n = 8, k = 4 which both showing periodic behavior. Using the developed

method of proving we design an algorithmic way of constructing or contradicting the

existence of fair and almost fair schedules.

On the algorithmic side we compare six MILP and MIQP formulations for finding

optimal schedules in the case of n = 2k and evaluate them for di!erent amounts of

teams and flights.

Lastly we will apply the work on the polish sailing league providing a alternative sched-

ule that increases our understanding of fairness by a significant amount as well as

providing proof for a lower bound of the specific case, because even the showcased al-

ternative may not be optimal. In the scenario of real world application we also discuss

the possibilities to further enhance the schedules to form more robust designs, viable

for cutting the amount of planned flights while still keeping fairness.

1

2. Theoretical Background

2 Theoretical Background

In practice a sailing league competition consists of a fixed number of teams that compete

against each other. The competitions often features multiple flights that each consists

of smaller races, called heats.

In our case, a flight always splits the teams into equally sized heats, this way not all

teams compete at the same time. This allows for more control over the races but makes

it di”cult to create a fair ranking for all teams.

Since the finishing times of each team may vary by outside condition like weather, which

may change from one race to another, the common way of ranking is by adding the

group rankings of each heat. Doing so creates a potential problem, if the teams are not

fairly grouped.

For example it could occur, that an average team always faces below average teams and

therefore wins their group often, while a originally better team always faces way better

teams and loses. The resulting ranking would then place the average team higher.

To avoid such problems and ensure maximal fairness, we hope for a pair of two teams

to face each other as often as every other pair.

2.1 Mathematical Model

To start, we need a mathematical representation of the pairing lists, that decide which

teams are grouped into heats:

Definition 1. Let N be a n-set, i.e. |N | = n < → and let k, r ↑ N ↓ 2 with, such that

n = t · k for t ↑ N>1.

We define a (N, k, r)-schedule as a family

S = (Als | l ↑ [r], s ↑ [t])

with |Als| = k for all l ↑ [r], s ↑ [t] and (Als)ts=1 being a t-partition of N , that is a

division into t disjoint subsets.

We will further call the tuple (Als)ts=1 the l-th arrangement of the schedule and therefore

Als the s-th block in the l-th arrangement.

2

2. Theoretical Background

Here N is the set of all teams, k the size of each heats, and r the amount of flights

that are competed. A Block Als is therefore a set of k teams, forming the groups that

competes in the s-th heat of the l-th flight.

Definition 2. An (N, k, r)-schedule S = (Als) and an (M, k, r)-schedule T = (Bls) are

called similar, if there exists a bijections ω : N ↔ M and permutations ε : [r] ↔ [r],ϑ :

[t] ↔ [t], such that:

ω(Aω(l),ε(s)) = Bls

If ε = idr and ϑ = idt they are called equivalent.

In practice, this definition allows us to call schedules equivalent when the teams have

di!erent labels/orders and similar if they only di!er in the order of heats or flights.

Next, we need a way to describe how often two teams compete against each other:

Definition 3. For a given (N, k, r)-schedule S and i, j ↑ N with i ↗= j, we define

ϖij(S) :=
∣∣{l ↑ [r] | ↘ s ↑ [t] : {i, j} ≃ Als

}∣∣

as the number of co-occurrences of i and j.

We further define

ϖ
+(S) = max

i,j→N
i ↑=j

ϖij(S), and ϖ
↓(S) = min

i,j→N
i ↑=j

ϖij(S)

as the highest and lowest co-occurrences in S.
The di!erence

#(S) = ϖ
+(S)⇐ ϖ

↓(S)

is called fairness deviation of S. If the context is clear, we will just write #,ϖ
+
,ϖ

↓ or

ϖij.

For better readability we will write N
2
↔ :=

{
(i, j) ↑ N

2 | i ↗= j
}
from now on.

Corollary 1. For a given (N, k, r)-schedule S, the co-occurrence numbers are symmet-

rical, i.e.

ϖij(S) = ϖji(S) for all (i, j) ↑ N
2
↔

As the name implies, a high fairness deviation implies an unfair pairing list, while a

fairness deviation close to 0 intuitively leads to a more fair grouping of the teams. Two

important special cases are 0 and 1:

3

2. Theoretical Background

Definition 4. A schedule S is called fair, if its fairness deviation is 0, i.e. #(S) = 0,

and almost fair, if it’s 1.

Remark 1. A fair (N, k, r)-schedule S, implying ϖij = ϖ ↑ N for all i, j ↑ N
2
↔ , is

equivalent to a (n, k,ϖ)-resolvable balanced incomplete Block Design (RBIBD). For

such Designs, many results are already established [2], we therefore aim to abstract the

idea of RBIBDs to non constant values for ϖij.

For later representation of pairing lists in examples and solutions we need a way to

describe S more readable:

Definition 5. Let S = (Als) be a (N, k, r)-schedule. The schedule-tableau is given by

S — N —

1
... (Sli)l→[r],i→N

r

where S is the assignment matrix of the schedule S with Sli = s for i ↑ Als. Note, that

Sli is well defined, because (Als)ts=1 is a partition of N for each l ↑ [r].

For a more readable Table we will often use a renaming of F1,F2,... for the flight

numbers to distinguish between flights and teams.

Similar we have another way to represent the co-occurrence numbers using graphs:

Definition 6. Let S be a ([n], k, r)-schedule. The co-occurrence graphs are defined as

a family of graphs by (Gϑ)ϑ→! where $ = {ϱ | ↘(i, j) ↑ N
2
↔ : ϖij(S) = ϱ} and

Gϑ = (N,Eϑ) with {i, j} ↑ Eϑ ⇒⇑ ϖij(S) = ϱ

Gϑ is called the ϱ-co-occurrence graph of S.

Lemma 1. Let S be a (N, k, r)-schedule with assignment matrix S, then the following

formulations are equivalent definitions for ϖij:

ϖij(S) =
∣∣{(l, s) ↑ [r]⇓ [t] | {i, j} ↑ Als

}∣∣

=
∑

l→[r]

∑

s→[t]

1Als
(i) · 1Als

(j)

=
∑

l→[r]

1{Sli}(Slj) =
∑

l→[r]

1{Slj}(Sli)

4

2. Theoretical Background

Proof. Since for each l ↑ [r] there can only exist at most one s ↑ [t] with {i, j} ↑ Als

the first equation follows directly from Definition 3 of ϖij:

ϖij(S) =
∣∣{l ↑ [r] | ↘ s ↑ [t] : {i, j} ≃ Als

}∣∣ =
∣∣{(l, s) ↑ [r]⇓ [t] | {i, j} ↑ Als

}∣∣

Using the definition of the indicator function, the second equation follows using

1A(x) :=





1, x ↑ A

0, x /↑ A

=⇑ 1A(x) · 1A(y) =





1, {x, y} ≃ A

0, {x, y} ↗≃ A

and therefore

∣∣{(l, s) ↑ [r]⇓ [t] | {i, j} ↑ Als

}
=

∑

(l,s)→[r]↗[t]

1Als
(i) · 1Als

(j)

=
∑

l→[r]

∑

s→[t]

1Als
(i) · 1Als

(j)

The last two equations are based on the initial definition again:

↘s ↑ [t] : {i, j} ↑ Als
s=Sli⇒⇑ j ↑ Al,Sli

⇒⇑ Sli = Slj

To revisit these Definition, we can examine an example:

Example 1. Given 6 teams, labeled 1 through 6, we aim to create a (not necessary

optimal) pairing list for 4 flights, where each race consists of exactly 3 teams.

This is equivalent of finding a ([6], 3, 4)-schedule. One suitable way of organizing the

teams could be as followed

A11 = {1, 2, 3}, A12 = {4, 5, 6},

A21 = {1, 4, 6}, A22 = {2, 3, 5},

A31 = {1, 2, 4}, A32 = {3, 5, 6},

A41 = {1, 3, 6}, A42 = {2, 4, 5}.

5

2. Theoretical Background

The corresponding then schedule-tableau is given by

S T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 2 1 2 1

F3 1 1 2 1 2 2

F4 1 2 1 2 2 1

This schedule has two co-occurrence graphs G0 and G2:

1

2

3

4

5

6

Figure 1: 0-co-occurrence graph

1

2

3

4

5

6

Figure 2: 2-co-occurrence graph

As we can see, this schedule has an fairness deviation of #(S) = 2.

We will later prove, that this is in fact a most fair schedule possible, in a sense of #(S)
being minimal under all ([6], 3, 4)-schedules.

Theorem 1. Let S and T be similar (N, k, r) -and (M,k, r)-schedules with relabelling

function ω : N ↔ M , then

ϖij(S) = ϖϖ(i),ϖ(j)(T), for all (i, j) ↑ N
2
↔

and

ϖ
+(S) = ϖ

+(T), ϖ
↓(S) = ϖ

↓(T), #(S) = #(T)

Proof. Since S and T are similar there exist permutations ε : [r] ↔ [r] and ϑ : [t] ↔ [t]

such that ω(Aω(l),ε(s)) = Bls for all l, s.

6

2. Theoretical Background

From Lemma 1 we use

ϖij(S) =
∑

l→[r]

∑

s→[t]

1Als
(i) · 1Als

(j)

=
∑

l→[r]

∑

s→[t]

1ϖ→1(Bω→1(l),ε→1(s))
(i) · 1ϖ→1(Bω→1(l),ε→1(s))

(j)

=
∑

l→[r]

∑

s→[t]

1ϖ→1(Bls)(i) · 1ϖ→1(Bls)(j)

=
∑

l→[r]

∑

s→[t]

1Bls
(ω(i)) · 1Bls

(ω(j))

= ϖϖ(i),ϖ(j)(T)

2.2 Necessary conditions for fair and almost fair sched-

ules

After understanding our problem, we can start by formulating the first restrictions on

the existence of fair and almost fair schedules.

Lemma 2. Let S be a (N, k, r)-schedule. For every i ↑ N , the following equation holds:

∑

j→N\{i}

ϖij = r · (k ⇐ 1)

Proof. Let i ↑ N be fixes. We define a bipartite graph1
G = (V,E) with

V = [r]⇔̇N\{i} and {l, j} ↑ E ⇒⇑ ↘ s ↑ [t] : {i, j} ≃ Als.

Using the principle of double counting we can conclude:

∑

j→N\{i}

deg j =
r∑

l=1

deg l

By the definition of co-occurrence numbers deg j = ϖij.

1 Note that although the sets [r] and N\{i} may contain the same elements numerically, they
represent disjoint parts in the bipartite graph: [r] corresponds to the left vertex class and N\{i}
to the right.

7

2. Theoretical Background

For l ↑ [r], deg l counts the amount of j ↑ N\{i} that are in the same block as i in the

l-th arrangement, which is just |Als\{i}| = k ⇐ 1, where s = Sli.

∑

j→N\{i}

ϖij =
∑

j→N\{i}

deg j =
r∑

l=1

deg l =
r∑

l=1

(k ⇐ 1) = r · (k ⇐ 1)

This Lemma leads to the first necessary condition on fair schedules:

Corollary 2. Let S be a fair (N, k, r) schedule, then r · (k⇐ 1) ↖ 0 mod (n⇐ 1). The

quotient ϖ = r(k↓1)
n↓1 will be the constant value of ϖij.

Proof. Since #(S) = 0 we can write ϖij = ϖ ↑ N for all (i, j) ↑ N
2
↔ . Using Lemma 2 an

arbitrary i ↑ N gives

(n⇐ 1) · ϖ =
∑

j→N\{i}

ϖij = r · (k ⇐ 1) =⇑ r · (k ⇐ 1) ↖ 0 mod (n⇐ 1)

Revisiting our previous example, we can now say, that for there can not exists a fair

([6], 3, 4)-schedule, since
r · (k ⇐ 1)

n⇐ 1
=

4 · 2
5

=
8

5
/↑ Z.

Another important results of above lemma yields information about the distribution of

co-occurrence numbers in almost fair schedules:

Corollary 3. Let S be an almost fair (N, k, r)-schedule. For a fixed i ↑ N , the distri-

bution of its co-occurrence numbers ϖij is given by

∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = p and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = n⇐ 1⇐ p,

where

r · (k ⇐ 1) = q · (n⇐ 1) + p for 1 ↙ p ↙ n⇐ 2.

This also grants the necessary condition r · (k ⇐ 1) ↗↖ 0 mod (n⇐ 1) for #(S) = 1.

Proof. From #(S) = ϖ
+ ⇐ ϖ

↓ = 1, we can define q := ϖ
↓ and conclude from its

definition, that ϖij ↑ {q, q + 1} for (i, j) ↑ N
2
↔ .

8

2. Theoretical Background

Let i ↑ N be fixed and define

$q̃ :=
{
j ↑ N\{i} : ϖij = q̃

}
for q̃ ↑ {q, q + 1}

Since only q or q+1 are viable co-occurrence numbers, we know that $q and $q+1 form

a disjoint partition of N\{i}. Defining p := |$q+1| allows us to write |$q| = n⇐ 1⇐ p.

Using Lemma 2 we now get

r · (k ⇐ 1) =
∑

j→N\{i}

ϖij =
∑

j→!q+1

ϖij +
∑

j→!q

ϖij = p(q + 1) + (n⇐ p⇐ 1)q = q · (n⇐ 1) + p

From $q,$q+1 ↗= ∝ we have 1 ↙ p ↙ n⇐ 2.

We will later mainly focus on the case of n = 2k and will now present a stronger version

of Corollary 2 as necessary condition for fair schedules:

Theorem 2. Let S be a fair (N, k, r)-schedule with n = 2k and k odd, then r·(k⇐1) ↖ 0

mod 2(n⇐ 1).

Proof. Let N = {x1, . . . , xn}. We define a helper function

g
i
s(a, b) :=

∣∣{l | a ↙ l ↙ b, xi ↑ Als}
∣∣ =

b∑

l=a

1{s}(Slxi)

for i ↑ [n], s ↑ [t] and 1 ↙ a ↙ b ↙ r, as the amount of times, xi appears in the s-th

block of the a-th to b-th arrangement.

Since S is fair, we know ϖxixj = ϖ ↑ N for (xi, xj) ↑ N
2
↔ . This especially implies

ϖx1x2 = ϖx1x3 = ϖx2x3 = ϖ.

From Theorem 1 we can assume

x1 ↑ Al1 and x2 ↑





Al1, 1 ↙ l ↙ ϖ

Al2, ϖ+ 1 ↙ l ↙ r

, for 1 ↙ l ↙ r (1)

Let µ = g
3
1(1,ϖ) with 1 ↙ µ ↙ ϖ the amount of times x3 appears in the first block of

the first ϖ arrangements.

9

2. Theoretical Background

x1 being always in the first block, allows us to write

ϖ = ϖx1x3 = g
3
1(1, r)

=
r∑

l=1

1{1}(Slxi)

=
ϱ∑

l=1

1{1}(Slxi) +
r∑

l=ϱ+1

1{1}(Slxi)

= g
3
1(1,ϖ) + g

3
1(ϖ+ 1, r) = µ+ g

3
1(ϖ+ 1, r)

And therefore g
3
1(ϖ+ 1, r) = ϖ⇐ µ is the amount of times x3 appears in the last block

of the remaining arrangements.

Since we only have 2 blocks per arrangement (n = 2k), the blocks Al1 and Al2 form a

partition N , allowing

g
3
1(a, b) + g

3
2(a, b) =

∣∣{l | a ↙ l ↙ b, xi ↑ Al1}
∣∣+

∣∣{l | a ↙ l ↙ b, xi ↑ Al2}
∣∣

=
∣∣{l | a ↙ l ↙ b, xi ↑ Al1 or xi ↑ Al2}

∣∣

=
∣∣{l | a ↙ l ↙ b, xi ↑ Al1 ⇔ Al2}

∣∣

=
∣∣{l | a ↙ l ↙ b, xi ↑ N}

∣∣

=
∣∣{l | a ↙ l ↙ b}

∣∣

= b⇐ a+ 1

This leads to

g
3
2(ϖ+ 1, r) = r ⇐ ϖ⇐ g

3
1(ϖ+ 1, r) = r ⇐ ϖ⇐ (ϖ⇐ µ) = r + µ⇐ 2ϖ

From the placement of x2 in (1) we get

ϖ = ϖx2,x3 = g
3
1(1,ϖ) + g

3
2(ϖ+ 1, r) = µ+ r + µ⇐ 2ϖ = 2µ+ r ⇐ 2ϖ

Rearranging this equation and using Corollary 2 we have

µ =
1

2
(3ϖ⇐ r) =

1

2

(
3
r · (k ⇐ 1)

n⇐ 1
⇐ r

)
=

r(k ⇐ 2)

2(2k ⇐ 1)

Because µ ↑ N it follows, that 2(2k⇐1) has to be a divisor of r(k⇐2). Since 2(2k⇐1) is

even and k⇐ 2 is odd, we need r to be even and therefore 2 | r(k⇐ 1). Corollary 2 gives

10

2. Theoretical Background

2k ⇐ 1 | r(k ⇐ 1) and since gcd(2, 2k ⇐ 1) this allows for 2(2k ⇐ 1) | r(k ⇐ 1). Granting

the expected result of r · (k ⇐ 1) ↖ 0 mod 2 · (2k ⇐ 1).

Note, that this condition only works for k odd. In a later section we will show that,

for example, there always exists a fair ([8], 4, 7p)-schedule for each p ↑ N, which would

form a contradiction to expanding the theorem to even k. A still open conjecture in

coding theory, is if there always exists a fair ([2k], k, 2k ⇐ 1)-schedule when k is even.

Many cases are already shown, the smallest unproven case being k = 334 (cf. [3],[4]).

Remark 2. A fair (n, n/2, n ⇐ 1)-schedule (for n even) is equivalent to a Hadamard

Matrix, that is a matrix H ↑ {1,⇐1}n↗n with HH
T = nIn. Theorem 2 therefore

provides an alternative proof to the well known fact that such Hadamard Matrices can

only exists for n being a multiple of 4 (or n ↑ {1, 2}) ([5]).

11

3. Optimization Analysis

3 Optimization Analysis

Revisiting Example 1, we now aim to get information about optimal schedules for a

given parameter set (N, k, r)

Definition 7. For n, k, r ↑ N>1 with n = tk for t ↑ N>1 (2) we define the minimal

fairness deviation as

f(n, k, r) = min
{
#(S) | S is a ([n], k, r)-schedule

}

We further extend this definition by

f(n, k, 0) = 0, f(n, k, 1) = 1, f(0, 0, r) = 0, f(t, 1, r) = 0

to allow n, k ↑ N0, even though this was not covered in above section, as it’s analysis

is trivial.

Definition 8. A (N, k, r)-schedule S↔ is called optimal schedule, if

#(S↔) = min{#(S) | S is (M,k, r)-schedule, |M | = n}

Using Theorem 1 this is equivalent to the condition

#(S↔) = min{#(S) | S is ([n], k, r)-schedule}.

Allowing us to only consider the set [n] for optimization analysis.

3.1 Properties of the minimal fairness deviation

Our first important result is that the existence of a fair schedule for ([n], k, r) for k, r ↓ 2

always implies the existence of an almost fair schedule for ([n], k, r ± 1).

Lemma 3. For parameters n, k, r as described in Definition 7, the following inequality

holds:

|f(n, k, r)⇐ f(n, k, r + 1)| ↙ 1

12

3. Optimization Analysis

Proof. For k = 0, 1 this is trivial, since f(n, k, r) is constant.

Considering the special cases for r we see that |f(n, k, 0)⇐f(n, k, 1)| = |0⇐1| = 1 which

satisfies the inequality. Since 0 ↙ f(n, k, r) ↙ r for obvious reasons, it also follows that

|f(n, k, 1)⇐ f(n, k, 2)| = |1⇐ f(n, k, 2)| ↙ 1.

We assume that k, r ↓ 2 and split the absolute value inequality into two parts:

(i) f(n, k, r + 1)⇐ f(n, k, r) ↙ 1

(ii) f(n, k, r)⇐ f(n, k, r + 1) ↙ 1

Allowing us to directly conclude |f(n, k, r)⇐ f(n, k, r + 1)| ↙ 1 from their validity.

Starting with (i), let S(op) = (Als) be an optimal ([n], k, r)-schedule, i.e. #(S(op)) =

f(n, k, r). We construct a ([n], k, r+1)-schedule S ↘ = (Bls) from S(op) by simply adding

a arbitrary arrangement (Br+1,s). Examining a pair (i, j) ↑ N
2
↔ gives us two possible

outcomes for ϖij(S ↘):

ϖij(S ↘) =
r+1∑

l=1

1S↑
li
(S ↘

lj) =
r∑

l=1

1
S
(op)
li

(S(op)
lj) + 1S↑

r+1,i
(S ↘

r+1,j) = ϖ(ij)(S(op)) + 1S↑
r+1,i

(S ↘
r+1,j)

Since 1S↑
r+1,i

(S ↘
r+1,j) ↑ {0, 1} this results in

ϖ(ij)(S(op)) ↙ ϖ(ij)(S ↘) ↙ ϖ(ij)(S(op)) + 1, for all (i, j) ↑ N
2
↔

and therefore

ϖ
+(S ↘) ↙ ϖ

+(S(op)) + 1 and ϖ
↓(S ↘) ↓ ϖ

↓(S(op)).

For the minimal fairness deviation we then get

f(n, k, r + 1) = min
{
#(S) | S is a ([n], k, r + 1)-schedule

}

↙ #(S ↘)

= ϖ
+(S ↘)⇐ ϖ

↓(S ↘)

↙ ϖ
+(S(op)) + 1⇐ ϖ

↓(S(op))

= f(n, k, r) + 1

which finishes (i).

13

3. Optimization Analysis

The second part (ii) works analogously by simply removing the r-th arrangement from

an optimal ([n], k, r + 1)-schedule S(op) to construct a ([n], k, r)-schedule S giving

ϖ(ij)(S(op))⇐ 1 ↙ ϖ(ij)(S ↘) ↙ ϖ(ij)(S(op)), for all (i, j) ↑ N
2
↔

This again results in the wanted inequality by estimating f(n, k, r):

f(n, k, r) = min
{
#(S) | S is a ([n], k, r)-schedule

}

↙ #(S ↘)

= ϖ
+(S ↘)⇐ ϖ

↓(S ↘)

↙ ϖ
+(S(op))⇐ (ϖ↓(S(op))⇐ 1)

= f(n, k, r + 1) + 1

As a direct results we get two corollaries:

Corollary 4. The minimal fairness deviation is a contraction in r, i.e.

|f(n, k, r)⇐ f(n, k, r̃)| ↙ |r ⇐ r̃| for all r, r̃ ↑ N>2.

Proof. W.l.o.g. r̃ > r. Using Lemma 3 we get

|f(n, k, r)⇐ f(n, k, r̃)| =

∣∣∣∣∣

r̃↓1∑

j=r

f(n, k, j)⇐ f(n, k, j + 1)

∣∣∣∣∣

↙
r̃↓1∑

j=r

|f(n, k, j)⇐ f(n, k, j + 1)|

↙
r̃↓1∑

j=r

1 = (r̃ ⇐ 1⇐ r + 1) · 1

= r̃ ⇐ r

Corollary 5. The existence of a fair schedule for ([n], k, r) implies the existence of a

almost fair schedule for ([n], k, r ± 1) and prohibits the existence of fair ([n], k, r ± 1)-

14

3. Optimization Analysis

schedules, i.e.

f(n, k, r) = 0 =⇑ f(n, k, r ⇐ 1) = f(n, k, r + 1) = 0

Proof. Applying Corollary 4 to r̃ = ±1 we get, that |f(n, k, r ± 1)| ↙ 1 and since f is

non-negative this implies that f(n, k, r ± 1) is either 0 or 1.

Assuming f(n, k, r ± 1) = 0 while also f(n, k, r) = 0 would give

r · (k ⇐ 1) ↖ 0 mod (n⇐ 1) and (r ± 1) · (k ⇐ 1) ↖ 0 mod (n⇐ 1)

because of Corollary 2. Adding these congruences yield k ⇐ 1 ↖ 0 mod (n ⇐ 1). But

for this congruence to hold we would have |n⇐ 1| ↙ |k ⇐ 1| or k ⇐ 1 = 0, both being a

contradiction to n > k > 2.

We will later prove that, for the cases n = 6, k = 3 and n = 8, k = 4, these are also the

only times f(n, k, r) = 1 occur. Even though numerical analysis leads to the conjecture

that f(n, k, r) = 1 always results in f(n, k, r + 1) = 0 or f(n, k, r + 1) = 0, this still

remains unproven.

To finish the properties of f for now, we will include the subadditivity of f , which is

needed in the next sections.

Lemma 4. The minimal fairness deviation is subadditive in r, i.e.

f(n, k, r1 + r2) ↙ f(n, k, r1) + f(n, k, r2) for all r1, r2 ↑ N.

Proof. The case of n = 0, 1 or r = 0 is trivial and the case r = 1 follows directly from

Lemma 3.

Let S(1) = (Als) and S(2) = (Bls) be optimal schedules for r1 and r2 respectively.

Similar to the proof of Lemma 3 we construct a new ([n], k, r1 + r2)-schedule to create

an upper bound for f(n, k, r1 + r2). We define S ↘ = (Cls) by concatenating S(1) and

S(2):

Cls =





Als, 1 ↙ l ↙ r1

Bl↓r1,s r1 < l ↙ r1 + r2

and therefore S
↘ =

(
S
1

S2

)

15

3. Optimization Analysis

For our new schedule we get

ϖij(S ↘) =
r1+r2∑

l=1

1S↑
li
(S ↘

lj)

=
r1∑

l=1

1S↑
li
(S ↘

lj) +
r1+r2∑

l=r1+1

1S↑
li
(S ↘

lj)

=
r1∑

l=1

1
S
(1)
li
(S(1)

lj) +
r2∑

l=1

1
S
(2)
li
(S(2)

lj)

= ϖij(S(1)) + ϖij(S(2))

and therefore

#(S ↘) = #(S(1)) +#(S(2)) =⇑ f(n, k, r1 + r2) ↙ f(n, k, r1) + f(n, k, r2)

From now on we will mainly focus on the case n = 2k, as needed in Theorem 2, since

this allows for easier analysis, due to the binary behavior of blocks in an arrangement.

3.2 Formulation as programming problem

Based on the definition of our problem we will be able to formulate a optimization

problem, that we can then solve using known algorithms.

We start by defining binary variables

bli = 1{1}(Sli) for l ↑ [r], i ↑ [2k]

This allows for bli to determine if the team i is in the first heat of flight l. (The nature of

n = 2k allows for two cases, that can be represented using binary variables). Technically

this is enough to fully characterize a schedule. Now we are only left with the task of

somehow representing #(S) in terms of these bli and restricting each heat to exactly k

teams.

The restriction to k teams can be done by simply counting how often bli = 1 for a fixed

flight l. This yields the following first set of constraints:

16

3. Optimization Analysis

2k∑

i=1

bli for l ↑ [r]

From the prior chapter we know that we are able to represent ϖij(S) in terms of Sli and

Slj for l = 1, . . . , r. This implies that we can also represent it similar in terms of bli and

blj for l = 1, . . . , r. A trivial way of calculating ϖij(S) is by simply looping over each

flight and counting how often bli and blj are equal. We will model this process using a

new variable

clij =





1, bli = blj

0, bli ↗= blj

for l ↑ [r], i, j ↑ [2k]

Since this way of defining is only good for an intuition but not suitable as an actual

constraint we will rewrite it. Based on the way that the constraint is formulated we

will get di!erent problem formulations that perform di!erently, which is why we will

cover two such approaches.

The first way is by formulating a quadratic constraint. We can check for equality by

evaluating bli ⇐ blj, which will yield 0 if they are equal and ±1 if not. This results in

the following constraint:

clij = 1⇐ (bli ⇐ blj)
2

An alternative way is by modeling this constraint using multiple linear inequalities.

From exhausting all possible combinations:

bli blj clij

0 0 1

0 1 0

1 0 0

1 1 1

we can form a tetrahedron with the di!erent combinations as edges:

17

3. Optimization Analysis

P = conv









0

0

1



 ,




0

1

0



 ,




1

0

0



 ,




1

1

1










By rewriting this set using the intersection of half-spaces and fixing cli ↑ {0, 1} we get

our constraints:

(bli, blj, clij)
T ↑ P ⇒⇑ bli + blj + clij ↓ 1

bli + blj ⇐ clij ↙ 1

bli ⇐ blj + clij ↙ 1

⇐ bli + blj + clij ↙ 1

This now allows us for counting clij to get ϖij(S) =
r

l=1 clij and therefore allowing us

to formulate a problem that minimizes #(S).
Since ϖ

+(S) and ϖ
↓(S) form upper and lower bounds respectively, we can define them

using inequalities.

We therefore get the following two possible formulations:

18

3. Optimization Analysis

Binary quadratic problem:

Min ϖ
+ ⇐ ϖ

↓

s.t.
2k∑

i=1

bli = k, for l ↑ [r]

clij = 1⇐ (bli ⇐ blj)
2
, for l ↑ [r], i, j ↑ [2k]

ϖij =
r∑

l=1

clij, for i, j ↑ [2k]

ϖ
+ ↓ ϖij, for i, j ↑ [2k]

ϖ
↓ ↙ ϖij, for i, j ↑ [2k]

bli ↑ {0, 1}, for l ↑ [r], i ↑ [2k]

clij ↑ {0, 1}, for l ↑ [r], i, j ↑ [2k]

ϖij ↑ N, for i, j ↑ [2k]

ϖ
+
,ϖ

↓ ↑ N, for i, j ↑ [2k]

Linear integer problem:

Min ϖ
+ ⇐ ϖ

↓

s.t.
2k∑

i=1

bli = k, for l ↑ [r]

bli + blj + clij ↓ 1, for l ↑ [r], i, j ↑ [2k]

bli + blj ⇐ clij ↙ 1, for l ↑ [r], i, j ↑ [2k]

bli ⇐ blj + clij ↙ 1, for l ↑ [r], i, j ↑ [2k]

⇐bli + blj + clij ↙ 1, for l ↑ [r], i, j ↑ [2k]

ϖij =
r∑

l=1

clij, for i, j ↑ [2k]

ϖ
+ ↓ ϖij, for i, j ↑ [2k]

ϖ
↓ ↙ ϖij, for i, j ↑ [2k]

bli ↑ {0, 1}, for l ↑ [r], i ↑ [2k]

clij ↑ {0, 1}, for l ↑ [r], i, j ↑ [2k]

ϖij ↑ N, for i, j ↑ [2k]

ϖ
+
,ϖ

↓ ↑ N, for i, j ↑ [2k]

19

3. Optimization Analysis

In practice, we can simplify both problems in multiple ways, by using the symmetry of

clij or by eliminating variables that do not need to occur in the constraints at all (ϖij

as example).

Such simplifications lead to the following systems:

Simplified binary quadratic problem (P1*):

Min ϖ
+ ⇐ ϖ

↓

s.t.
2k∑

i=1

bli = k, for l ↑ [r]

r ⇐ ϖ
+ ↙

r∑

l=1

(bli ⇐ blj)
2
, for 1 ↙ i < j ↙ 2k

r ⇐ ϖ
↓ ↓

r∑

l=1

(bli ⇐ blj)
2
, for 1 ↙ i < j ↙ 2k

bli ↑ {0, 1}, for l ↑ [r], i ↑ [2k]

ϖ
+
,ϖ

↓ ↑ N, for i, j ↑ [2k]

20

3. Optimization Analysis

Simplified linear integer problem (P2*):

Min ϖ
+ ⇐ ϖ

↓

s.t.
2k∑

i=1

bli = k, for l ↑ [r]

bli + blj + clij ↓ 1, for l ↑ [r], 1 ↙ i < j ↙ 2k

bli + blj ⇐ clij ↙ 1, for l ↑ [r], 1 ↙ i < j ↙ 2k

bli ⇐ blj + clij ↙ 1, for l ↑ [r], 1 ↙ i < j ↙ 2k

⇐bli + blj + clij ↙ 1, for l ↑ [r], 1 ↙ i < j ↙ 2k

ϖ
+ ↓

r∑

l=1

clij, for 1 ↙ i < j ↙ 2k

ϖ
↓ ↙

r∑

l=1

clij, for 1 ↙ i < j ↙ 2k

bli ↑ {0, 1}, for l ↑ [r], i ↑ [2k]

clij ↑ {0, 1}, for l ↑ [r], 1 ↙ i < j ↙ 2k

ϖ
+
,ϖ

↓ ↑ N, for i, j ↑ [2k]

There are also ways to restrict the problem more without loosing a minimal solution

by adding symmetry breaking constraints and therefore decreasing the feasible region.

Since #(S) is invariant under similarity (cf. Theorem 1) we can force an order of teams,

flights and heats that may lead to better performance in solving the problems:

To restrict permutations of team labeling we can fix the first flight by adding

b1i =





1, 1 ↙ i ↙ k

0, k + 1 ↙ i ↙ 2k
(C1)

Preventing permutations of heats inside a flight is possible by fixing the first team to

always be in the first heat

bl1 = 1 for 1 ↙ l ↙ r (C2)

These two constraints turn out to be always beneficial to add. This changes with the

restricting the permutation of flights. The natural way of doing so is by defining an

order on the set of all possible flights:

21

3. Optimization Analysis

Definition 9. For finite sets A,B ≃ N (i.e. A,B ↑ [N]<ς) we define a binary relation:

A ↙ B ⇒⇑
∑

a→A

2a ↙
∑

b→B

2b

Lemma 5. The relation from Definition 9 is a total order, i.e.

1. ′A ↑ [N]<ς : A ↙ A

2. ′A,B,C ↑ [N]<ς : A ↙ B and B ↙ C =⇑ A ↙ C

3. ′A,B ↑ [N]<ς : A ↙ B and B ↙ A =⇑ A = B

4. ′A,B ↑ [N]<ς : A ↙ B or B ↙ A

Proof. The properties 1,2 and 4 are trivial.

For proving 3 assume that A ↗= B, if A and B are not equal but both finite there exist

a biggest element k = max(A#B), If this k is in A\B. If k ↑ A and k > b for all b ↑ B,

we can conclude a contradiction to A ↙ B:

∑

a→A

2a ↓ 2k ↓ 2k ⇐ 1 =
k↓1∑

i=0

2i ↓
∑

b→B

2b

If instead k ↑ B\A, analogous reasoning leads to B ↙ A. Resulting in either case

contradicting A ↙ B and B ↙ A.

We can use this total order for adding the constraint Al,1 ↙ Al+1,1 for 1 ↙ l < r,

rewriting this in terms of bli gives

2k∑

i=1

bl,i · 2i ↙
2k∑

i=1

bl+1,i · 2i for 1 ↙ l < r (C3)

As said this constraint does not always increase the performance, mainly because of

the high coe”cients 2i. An alternative way is by adding the weaker constraint

2k∑

i=1

bl,i · i ↙
2k∑

i=1

bl+1,i · i for 1 ↙ l < r (C4)

22

3. Optimization Analysis

This is not an order and therefore will not prevent all permutations, but we hope that

giving a compromise for not having too high coe”cients while still restricting a good

enough portion of permutations may increase performance in some cases (we will see,

that this is not the case).

Considering these new constraints we have a total of 6 di!erent optimization problems

which based on previous thoughts and Theorem 1 all have the same optimal value:

(P1): Problem (P1*) with constraints (C1) and (C2)

(P1s): Problem (P1*) with constraints (C1), (C2), and (C3)

(P1w): Problem (P1*) with constraints (C1), (C2), and (C4)

(P2): Problem (P2*) with constraints (C1) and (C2)

(P2s): Problem (P2*) with constraints (C1), (C2), and (C3)

(P2w): Problem (P2*) with constraints (C1), (C2), and (C4)

When it comes to solving these Problems we start by focusing on the problems P2, P2s

and P2w. The linearity allows for easier solving then the quadratic problems P1, P1s

or P1w. To revisit the procedure we start by looking at linear optimization problems

with real valued variables.

Definition 10. An linear optimization problem (LOP) in standard form is given by

Max c
T
x

s.t. Ax = b

x ↓ 0

where c, x ↑ Rn
, b ↑ Rm and A ↑ Rm↗n.

Such LOP can be solved using the simplex method. When working with arbitrary LOPs

that are not in standard form we can convert them into such:

1. If we have a minimization problem it can be converted to a maximization by going

23

3. Optimization Analysis

from c to ⇐c:

min{cTx |Ax = b, x ↓ 0} = ⇐max{⇐c
T
x |Ax = b, x ↓ 0}

argmin{cTx |Ax = b, x ↓ 0} = argmax{⇐c
T
x |Ax = b, x ↓ 0}

2. If we have an inequality AT
i x ↙ bi they can be converted into an equality by adding

so called
”
slack“ variables and considering A

T
i x + s ↙ bi with s ↓ 0 instead. For

the case of AT
i x ↙ bi we use A

T
i x⇐ s ↙ bi with s ↓ 0.

3. If we have constraints x ↓ c we can shift x
↘ = x ⇐ c to get x

↘ ↓ 0 and have to

shift it back after solving. Similar can be done if x ↙ c by taking x
↘ = ⇐x+ c.

4. If we have free variables x ↑ R they can be represented by x = x
↘ ⇐ x

↘↘ with

x
↘
, x

↘↘ ↓ 0.

5. If we have completely bounded variables c1 ↙ x ↙ c2 we write x
↘ = x ⇐ c1 ↓ 0

and x
↘↘ = (c2 ⇐ c1)⇐ x

↘ ↓ 0.

To work with integer linear optimization problems (ILP) where some (or all) variables

have the restriction to be integer a widely used algorithm to solve such is the branch-

and-cut algorithm. It is a combination of branch-and-bound algorithm and cutting-

plane algorithm.

Both algorithms are best explained on an example[6]:

Example 2 (Branch-and-Bound).

Consider the following ILP:

Max z = 5x1 + 6x2

s.t. x1 + x2 ↙ 5

4x1 + 7x2 ↙ 28

x1, x2 ↓ 0

x1, x2 ↑ Z

Branch-and-Bound works by relaxing the system by its integer constraints to find

bounds and allow for creating new constraints for subproblems.

We therefore start by solving the problem without restricting x1, x2 ↑ Z with the

24

3. Optimization Analysis

simplex method. This yields an optimal value of 83
3 ∞ 27.7 at x1 = 7

3 ∞ 2.3 and

x2 =
8
3 ∞ 2.7.

This already gives us an upper bound of 83
3 for the ILP. The idea of branch-and-bound is

to split our problem and add two cuts x2 ↓ 3 or x2 ↙ 2, since x1 =
7
3 /↑ Z (alternatively

one could have created cuts x1 ↓ 3 and x1 ↙ 2, which would yield to the same final

result, but does not cover all cases that are needed for a good example). When solving

the first subproblem

(1)Max 5x1 + 6x2

s.t. x1 + x2 ↙ 5

4x1 + 7x2 ↙ 28

x1, x2 ↓ 0

x2 ↓ 3

we get an optimal solution of 26.75 at x1 = 1.75 and x2 = 3. Since x1 is still not yet an

integer solution we create new cuts x1 ↓ 2 and x1 ↙ 1 while still holding onto x2 ↓ 3.

In the case of x1 ↓ 2 we do not have any feasible solution (4x1+7x2 ↓ 8+21 = 29 > 28)

therefore we only consider x1 ↙ 1 which yields an optimal solution of 25.57 at x1 = 1

and x2 = 3.43. We again add cuts x2 ↓ 4 and x2 ↙ 3 and get 24 at x1 = 0, x2 = 4 and

23 at x1 = 1, x2 = 3 respectively.

Now that this branch is exhausted we return to our first time we cuttet (at x2 ↓ 3 or

x2 ↙ 2) and keep in mind that our ILP has a lower bound of 24.

We now add the cut x2 ↙ 2 and consider the LP

(1)Max 5x1 + 6x2

s.t. x1 + x2 ↙ 5

4x1 + 7x2 ↙ 28

x1, x2 ↓ 0

x2 ↙ 2

25

3. Optimization Analysis

which yields an optimal solution of 27 at x1 = 3 and x2 = 2. This increases our lower

bound to 27 and also exhaust this branch.

Since we have now covered all possible integer pair x1, x2 in one of the final subproblems

we can say that our maximum of the original ILP is at 27 with (x1, x2) = (3, 2).

Example 3. Cutting Plane For the cutting plane algorithm we consider the same ILP

as in the first example and also relax the integer restriction.

The idea relies on the resulting LP form of after the simplex iterations, not only the

solution, which is why we convert our problem into standard form:

Max z = 5x1 + 6x2

s.t. x1 + x2 + s1 = 5

4x1 + 7x2 + s2 = 28

x1, x2, s1, s2 ↓ 0

After performing the simplex iterations we get

Max z = 83
3 ⇐ 11

3 s1 ⇐
1
3s2

s.t. x1 +
7
3s1 ⇐

1
3s2 =

7
3

x2 ⇐ 4
3s1 +

1
3x2 =

8
3

x1, x2, s1, s2 ↓ 0

We can now choose an arbitrary equation constraint with non integer right-hand side,

we choose the the second constraint, and rewrite the occurring numbers (coe”cients

and rhs) in the form of z + q where z ↑ Z and q ↑ Q with 0 ↙ q < 1:

x2 + (⇐2 + 2
3)s1 + (0 + 1

3)x2 = 2 + 2
3 ⇒⇑ x2 ⇐ 2s1 ⇐ 2 = 2

3 ⇐
2
3s1 ⇐

1
3s2 ↙

2
3

Since in our ILP x2, s1, s2 ↑ Z a rhs of 2
3 is not possible and we can further reduce it to

26

3. Optimization Analysis

x2 ⇐ 2s1 ⇐ 2 ↙ 0

To bring this back to standard form we add a new slack variable s3 and get the cut

x2 ⇐ 2s1 + s3 = 2, s3 ↓ 0

Adding this to our LP and applying the simplex iteration again we get

Max z = 27⇐ 3s1 ⇐ s3

s.t. x1 + 3s1 ⇐ s3 = 3

x2 ⇐ 2s1 + s3 = 2

2s1 + s2 ⇐ 3s3 = 2

x1, x2, s1, s2, s3 ↓ 0

Here x1, x2 and s1 form our basic variables that yield integer solutions x1 = 3, x2 =

2, s2 = 2 and therefore an optimal value of z = 27

If we would have non integer basic variables we could create the next cut and do another

iteration until we find the solution to our ILP.

To summarize both algorithms:

Definition 11. Branch-and-bound

1. Relax integrality and solve the LP

2. If the LP solution is integer update best known integer solution

3. Otherwise choose one fractional variable xi = q ↑ Q\Z and branch by creating

two subproblem with the additional bounds xi ↙ ∈q∋ or xi ↓ △q▽

4. Repeat steps for each subproblem, if integer solution is found, trace back to the

other subproblems

Definition 12. Cutting-Plane

27

3. Optimization Analysis

1. Relax integrality and solve the LP

2. If the LP solution is integer stop

3. Otherwise choose simplex tableau row with fractional right-hand side

4. Create cut and add new constraint by rounding down coe”cients and right-hand

side

5. Repeat the steps until a integer solution is found

In practice the cutting plane is strong in the first few iterations, but finding a solution

by only cutting plane my take many iterations. In contrast branch-and-bound cuts are

not as e!ective early on, which is why the branch-and-cut algorithm combines both

advantages by starting with doing cuts from cutting plane and then branching when

the cuts are no longer e!ective.

Solving quadratic problems, especially in the case of non-convex feasible sets, is gener-

ally way more complicated which is why we won’t go into detail on how to solve such.

Instead we will use an established solver Gurobi for comparing our models with di!erent

parameters. All experiments were conducted on a server running Ubuntu 24.04.3 LTS,

equipped with an Intel Xeon Gold 5218R CPU (80 cores) and 125 GB RAM as well as

an runtime limit of 60 Minutes per Model.

Examining the parameters k = 3, . . . , 9 and r = 3, . . . , 20 we got the following results:

The left table shows the solution to the optimization process in the case that Gurobi

found such in the given time limit and the right table gives information about which

model found said solution the fastest.

The results show that for higher values of k, i.e. k ↓ 7 it turns out to be surprisingly

hard to find optimal solutions for r ↓ 8. Even after increasing the time limit to multiple

hours we are still only left with lower and upper bounds for most of these cases in each

of the six model.

We also see that there is not one best model to fit every parameter set. An obvious

result is that the models P1w and P2w turned out to perform poorly for moderate values

of k and r and most of the time did not find a optimal solution in 30 minutes where

other models succeeded in only a few minutes. Similar, but inconsistent behavior can be

observed when taking a closer look in some of the results. Take the cases (k, r) = (6, 13)

28

3. Optimization Analysis

r
k

3 4 5 6 7 8 9

3 2 2 3 2 3 2 3
4 2 2 3 3 3 3 3
5 2 2 3 2 4 2 4
6 2 1 2 2 3 2 3
7 2 0 3 3 3 3 3
8 2 1 3 3
9 1 2 2 2
10 0 2 2 1
11 1 2 2 0
12 2 2 2 1
13 2 1 2 2
14 2 0 2 2
15 2 1 2 2
16 2 2 2 2
17 2 2 1 2
18 2 2 0 2
19 1 2 1 2
20 0 1 2 2

Table 1: Optimal Values

r
k

3 4 5 6 7 8 9

3 P1w P2s P2s P1 P1s P2s P2
4 P2w P1s P1 P1 P1 P1 P1
5 P1 P1s P1 P1 P1 P1s P1
6 P1 P1 P1 P1 P2 P1 P1
7 P2s P2s P1 P1s P1s P1s P1
8 P1 P1 P1s P1s
9 P2 P1s P1s P1
10 P2 P1s P2s P1
11 P1 P1s P1s P1
12 P2s P1 P1 P1
13 P2s P1 P1 P1
14 P1s P1 P1s P1s
15 P1s P1 P2s P1s
16 P2s P1s P1 P1
17 P1s P1s P1 P1
18 P1 P1s P1 P1s
19 P1 P1s P1 P1s
20 P1 P1 P1s P1

Table 2: Best Model

and (k, r) = (6, 14) as an example. The model P1 and P1s both needed a few seconds to

find a optimal solution when r was 13. Increasing its value to 14 resulted in P1 taking

more than an hour while P1s still found a solution in under a minute. Conversely when

looking at the pairs (k, r) = (9, 4) and (k, r) = (9, 5) the first pair again required a few

seconds to be solved with both model P1 and P1s and for the second pair model P1

needed only 2 minutes where P1s took an hour for finding an optimal solution. The

same behavior can be found when comparing P2 and P2s on di!erent examples.

When comparing P1/P1s with P2/P2s we can see that in general its better to choose

the models P1 or P1s, since most of the time it performs better than the models P2

or P2s and in in the cases where P2/P2s do perform better, the performance gain is

just by a small amount. Take the case k = 7 and r = 6 for example, where the table

suggests, that P2 was the best choice, but in reality the model P1 took 162 seconds

when P2 took 145 seconds, what may seem like a good improve (10 percent), but can

in generally be neglected, since we do not focus on increasing performance by small

amounts, but finding a approach that works well in general.

So to conclude this section the results of the experiments above show that the best way

29

3. Optimization Analysis

to tackle general parameters is to use the models P1 and P1s. Unfortunately for now

we cannot say beforehand what of both will work better.

3.3 Some special cases

As seen in Table 1, we recognize a common pattern (periodic behavior) in the case of

k = 3 and k = 4. We will now continue proving this observed pattern.

For k = 3 the sequence 0, 1, 2, 2, . . . , 2, 1 seems to repeat every 10 steps, which leads to

the assumption of 10-periodic behavior.

Lemma 6. If r is a multiple of 10, then f(6, 3, r) = 0 and if r ↖ ±1 mod 10 then

f(6, 3, r) = 1

Proof. We are using the fact, that f(6, 3, 10) = 0 by giving an explicit example of a fair

([6], 3, 10)-schedule:

S T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 1 2 1 2 2

F3 1 2 2 2 1 1

F4 1 2 2 1 1 2

F5 1 2 1 2 2 1

F6 1 1 2 2 1 2

F7 1 2 1 2 1 2

F8 1 2 1 1 2 2

F9 1 2 2 1 2 1

F10 1 1 2 2 2 1

The given schedule satisfies ϖij(S) = 4 for all i, j ↑ [6] and is therefore a fair schedule.

This allows us to use the subadditivity (Lemma 4) for r = 10q with q ↑ N:

f(6, 3, 10q) = f


6, 3,

q∑

j=1

10


↙

q∑

j=0

f(6, 3, 10) = 0

Combined with the fact, that f(6, 3, r) ↓ 0 and f(6, 3, 0) = 0 by definition, this com-

pletes the first statement.

30

3. Optimization Analysis

For the second part, we consider r
↘ = r ± 1 = 10q with q ↑ N. Using the first

part we can see that f(6, 3, r↘) = 0 and therefore, using Corollary 5, it follows that

f(6, 3, r↘) = 1

Lemma 7. For r ↓ 0 we have an upper bound of 2, i.e. f(6, 3, r) ↙ 2

Proof. The case r = 0, 1 are again trivial, so assume r ↓ 2:

There exists ([6], 3, p)-schedules S for 2 ↙ p ↙ 8 with #(S) = 2:

S2 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 1 1 2 2 2

S3 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 2 2 1 1

F3 1 1 2 2 2 1

S4 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 1 2 1 2

F3 1 1 2 2 2 1

F4 1 2 2 2 1 1

S5 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 1 2 1 2

F3 1 1 2 1 2 2

F4 1 2 1 2 2 1

F5 1 1 2 2 2 1

S6 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 1 2 2 2 1

F3 1 2 2 1 1 2

F4 1 2 1 2 2 1

F5 1 2 1 1 2 2

F6 1 2 1 2 1 2

S7 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 1 1 2 2

F3 1 1 2 2 1 2

F4 1 1 2 2 2 1

F5 1 1 2 1 2 2

F6 1 2 1 2 2 1

F7 1 2 2 2 1 1

31

3. Optimization Analysis

S8 T1 T2 T3 T4 T5 T6

F1 1 1 1 2 2 2

F2 1 2 1 2 1 2

F3 1 1 2 2 1 2

F4 1 1 2 2 2 1

F5 1 2 1 2 2 1

F6 1 2 1 2 1 2

F7 1 1 2 1 2 2

F8 1 2 2 1 1 2

Let r = 10q + p for 2 ↙ p ↙ 8 and use the contraction property (Corollary 4), we get:

f(6, 3, 10q + p) ↙ f(6, 3, 10q) + f(6, 3, p) ↙ 0 + 2 = 2

For the remaining case of r = 10q or r = 10q± 1, the Lemma 6 gives f(6, 3, r) ↙ 2.

The last simple case is r ↖ 5 mod 10:

Lemma 8. If r ↖ 5 mod 10 then f(6, 3, r) = 2.

Proof. From Lemma 7 we have f(6, 3, r) ↙ 2.

When r ↖ 5 mod 10 then r ↖ 0 mod 5 and therefore 2r ↖ 0 mod 5. This allows us

to use Corollary 3 for f(6, 3, r) ↗= 1 and Theorem 2 for f(6, 3, r) ↗= 0, since k is odd and

r · (k ⇐ 1) = 2k is divisible by n ⇐ 1 = 5. Leaving us with f(6, 3, r) ↓ 2 and therefore

f(6, 3, r) = 0.

Lemma 9. For r = 10q + p, where 2 ↙ p ↙ 8, there exists no fair ([n], k, r)-schedule,

i.e. f(6, 3, r) ↗= 0.

If p = 5 there also does not exists a almost fair ([n], k, r)-schedule, leaving (6, 3, 10q +

5) = 2.

Proof. When p = 5, i.e. r ↖ 5 mod 10 then r ↖ 0 mod 5 and therefore 2r ↖ 0 mod 5.

This allows us to use Corollary 3 for f(6, 3, r) ↗= 1 and Theorem 2 for f(6, 3, r) ↗= 0,

since k is odd and r ·(k⇐1) = 2k is divisible by n⇐1 = 5. Leaving us with f(6, 3, r) ↓ 2

and therefore f(6, 3, r) = 0.

If p ↑ {2, 3, 4, 6, 7, 8} we have p mod 5 ↑ {1, 2, 3, 4}, which means

(k ⇐ 1) · r = 2r = 20q + 2p ↖ 2p mod 5 =⇑ (k ⇐ 1) · r mod (n⇐ 1) ↑ {2, 4, 1, 3}

32

3. Optimization Analysis

Using Corollary 2 this prohibits the existence of a fair ([n], k, r)-schedule.

This leaves us with a current characterization of:

f(6, 3, r) =






0, r ↖ 0 mod 10

1, r ↖ ±1 mod 10

1 or 2, otherwise

For the remaining cases we will need the helper function used in the proof of Theorem 2,

it’s recommended to revisit the proof to remind of the idea behind it.

Definition 13. Let S = (Als) be a schedule, s ↑ [t], i ↑ [n] and 1 ↙ a ↙ b ↙ r, the

helper function g is defined as

g
i
s(a, b) :=

∣∣{l | a ↙ l ↙ b, i ↑ Als}
∣∣ =

b∑

l=a

1Als
(i) =

b∑

l=a

1{s}(Sli)

Lemma 10. Let g be defined as in Definition 13, then:

t∑

s=1

g
i
s(a, b) = b⇐ a+ 1

Proof. Using the Definition of Sli we get

t∑

s=1

g
i
s(a, b) =

t∑

s=1

b∑

l=a

1{s}(Sli) =
b∑

l=a

t∑

s=1

1{s}(Sli) =
b∑

l=a

1 = b⇐ a+ 1

Theorem 3. If r ↖ 2 mod 5 there exists no almost fair ([6], 3, r)-schedule and therefore

f(6, 3, r) = 2 for r mod 10 ↑ {2, 7}.

Proof. Assume there exists an almost fair ([6], 3, r)-schedule. From r ↖ 2 mod 5 it

follows that 2r ↖ 4 mod 5 and Corollary 3 gives

∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = 4 and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 1.

This leaves every node in the q-co-occurrence graph with degree 1.

Up to permutations, which do not impact f by Corollary 1, the only way to achieve

33

3. Optimization Analysis

this is by

ϖ12 = ϖ21 = ϖ34 = ϖ43 = ϖ56 = ϖ65 = q

and ϖij = q + 1 otherwise.

Using Corollary 1 again, we set Sl1 = 1 and

Sl3 =





1, 1 ↙ l ↙ q + 1

2, q + 2 ↙ l ↙ r

.

This ensures, that 1 and 3 are in exactly q + 1 blocks together which was given by

ϖ13 = q + 1.

We now define µ := q
2
1(1, q+1) as the number of times 2 is in the first block of the first

q + 1 assignments. Using Lemma 1 to represent ϖ12 and ϖ13 gives

ϖ12 =
r∑

l=1

1{Sl1}(Sl2)

=
q+1∑

l=1

1{Sl1}(Sl2) +
r∑

l=q+2

1{Sl1}(Sl2)

=
q+1∑

l=1

1Sl2
{1} +

r∑

l=q+2

1Sl2
{1}

= g
2
1(1, q + 1) + g

2
1(q + 2, r)

=⇑ g
2
1(q + 2, r) = q ⇐ µ

and

ϖ32 =
r∑

l=1

1{Sl3}(Sl2)

=
q+1∑

l=1

1{Sl3}(Sl2) +
r∑

l=q+2

1{Sl3}(Sl2)

=
q+1∑

l=1

1Sl2
{1} +

r∑

l=q+2

1Sl2
{2}

= g
2
1(1, q + 1) + g

2
2(q + 2, r)

=⇑ g
2
2(q + 2, r) = q + 1⇐ µ

34

3. Optimization Analysis

Lemma 10 gives g21(q + 2, r) + g
2
2(q + 2, r) = r ⇐ (q + 2) + 1 and therefore


q ⇐ µ


+

q + 1⇐ µ


= r ⇐ (q + 2) + 1 =⇑ µ =

3q + 2⇐ r

2

Since 2r = 5q + 4 this gives us:

q =
2r ⇐ 4

5
=⇑ µ =

3 · 2r↓4
5 + 2⇐ r

2
=

r ⇐ 2

10
(2)

As q has to be a natural number we can conclude r ↖ 2 mod 10, which is a contradiction

for r mod 10 = 7. 2

From µ := q
2
1(1, q + 1) we may assume w.l.o.g. that Al1 ≃ {1, 2, 3} for 1 ↙ l ↙ µ. Note

that |Als| = k = 3 which implies equality.

Similar as before we define ς := g
4
1(µ+1, q+1) and get g42(q+2, r) = q⇐ ς for securing

ϖ34 = q, repeating the same as above we get ς = r↓2
10 by ϖ14 = q + 1.

Introducing another variable

b :=
r∑

l=q+2

1{Sl2}(Sl4)

gives us a full characterization of 4:

q + 1 = ϖ24

=
r∑

l=1

1{Sl2}(Sl4)

=
µ∑

l=1

1{Sl2}(Sl4) +
q+1∑

l=µ

1{Sl2}(Sl4) +
r∑

l=q+2

1{Sl2}(Sl4)

=
µ∑

l=1

1{1}(Sl4) +
q+1∑

l=µ+1

1{2}(Sl4) +
r∑

l=q+2

1{Sl2}(Sl4)

= 0 + g
4
2(µ+ 1, q + 1) + b

= (q + 1⇐ (µ+ 1)⇐ 1)⇐ g
4
1(µ+ 1, q + 1) + b

= q + 1⇐ µ⇐ ς + b

=⇑ b = µ+ ς = 2µ

2 Note that rearranging to µ = q/4, which forces q to be a multiple of 4 may seem like a stronger
statement, but would just change the problem to cases of r = 40q + p.

35

3. Optimization Analysis

We can further analyze by writing

φ =
r∑

l=q+2

1{1}({Sl2}) · 1{1}(Sl4), ↼ =
r∑

l=q+2

1{2}({Sl2}) · 1{2}(Sl4)

as the amount of times that we have the blocks {1, 2, 4} and {3, 2, 4} in the arrangements

from q + 2 to r.

This allows for:

ϖ12 =
q+1∑

l=1

1{Sl1}(Sl2) +
r∑

l=q+2

1{Sl1}(Sl2)

= µ+
r∑

l=q+2

1{1}(Sl2)

= µ+
r∑

l=q+2

1{1}(Sl2) ·

1{1}(Sl4) + 1{2}(Sl4)



= µ+ φ +
r∑

l=q+2

1{1}(Sl2) · 1{2}(Sl4)

and analogously

ϖ34 =
q+1∑

l=1

1{Sl3}(Sl4) +
r∑

l=q+2

1{Sl3}(Sl4)

= ς + ↼ +
r∑

l=q+2

1{1}(Sl2) · 1{2}(Sl4)

Using ϖ12 = ϖ34 and µ = ς then gives φ = ↼, the definition of b grants b = φ + ↼ and

therefore φ = ↼ = b/2.

This does not directly results in a contradiction, but since k = 3 this fills enough blocks,

such that there can’t exists placements for 5 and 6, which won’t break #(S) = 1. To

be specific this leaves us with q + 1⇐ b incomplete arrangements in the first q + 1 and

r ⇐ (q + 1)⇐ b in the remaining. Let

↽ =
q+1∑

l=1

1{1}({Sl5}) · 1{2}({Sl6}), ↽
↘ =

r∑

l=q+2

1{1}({Sl5}) · 1{2}({Sl6})

describe the amount of times a 5 is in the first block of such incomplete arrangements,

split between the (q + 1)-th and (q + 2)-th arrangement for easier analysis ofϖ15 and

36

3. Optimization Analysis

ϖ35.

When considering ϖ15 = ϖ35 = q + 1 we get

ϖ15 =
r∑

l=1

1{Sl1}({Sl5})

=
µ+φ∑

l=1

1{Sl1}({Sl5}) +
q+1∑

l=µ+φ+1

1{Sl1}({Sl5}) +
r∑

l=q+2

1{Sl1}({Sl5})

= 0 + ↽ +
r∑

l=q+2

1{1}({Sl5}) ·

1{1}(Sl6) + 1{2}(Sl6)



= ↽ + ↽
↘ +

r∑

l=q+2

1{1}({Sl5})1{1}(Sl6)

= ↽ + ↽
↘ +

r∑

l=q+2

1{2}({Sl2})1{2}(Sl4)

= ↽ + ↽
↘ + ↼

and analogously

ϖ35 = ↽ + φ +

r ⇐ (q + 1)⇐ b


⇐ ↽

↘

Using ϖ15 = ϖ35 and φ = ↼ gives:

0 = 2↽↘ ⇐ r + q ⇐ 1 + b =⇑ ↽
↘ =

r ⇐ (q + 1)⇐ b

2

Since r ↖ 2 mod 10 by assumption we know 2r⇐4 ↖ 0 mod 10 and therefore q = 2r↓4
5

has to be even, but r and b = 2µ are also both even making r ⇐ (q + 1)⇐ b odd which

contradicts ↽↘ ↑ N.

Using the same procedure one is able to cover the cases r ↖ 3 mod 5, since using

Corollary 3 yields

∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = 1 and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 4.

Corollary 6. If r ↖ 3 mod 5 there exists no almost fair ([6], 3, r)-schedule and there-

fore f(6, 3, r) = 2 for r mod 10 ↑ {3, 8}.

37

3. Optimization Analysis

The last cases missing to complete a characterization of f(6, 3, r) are r ↖ 4 mod 10

and r ↖ 6 mod 10 which makes the analysis more complex: By using Corollary 3 we

get ∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = 2 and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 3.

or ∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = 3 and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 2.

respectively, allowing for multiple possible co-occurrence graphs, that are not isomorph.

We start by finding them all:

Lemma 11. Let G̃ be a finite, undirected, simple and 2-regular (i.e. all nodes have

degree 2) graph, then all components of G̃ have to be cyclic.

Proof. Let G = (V,E) be a component of G. Since G̃ is 2-regular the component is

2-regular too.

We do an induction over n = |V | :
There are no 2-regular graphs with less than 3 nodes, since the degree of a node v ↑ V

is bounded by deg v ↙ n⇐1. Up to permutations, there are a total of 4 di!erent graphs

with n = 3 nodes:

1

23

(a) First Graph

1

23

(b) Second Graph

1

23

(c) Third Graph

1

23

(d) Fourth Graph

Figure 3: All graphs with 3 nodes.

Only the fourth graph is 2-regular, it’s also cyclic proving the base step.

For the induction step, let G = (V,E) be a 2-regular, connected graph with V =

{v1, . . . , vn+1}. Since deg vn+1 = 2 there exists nodes vl and vl↑ , such that l
↘
> l and

38

3. Optimization Analysis

{vl, vn+1}, {vl↑ , vn+1} ↑ E. This allows to construct a new graph G
↘ = (V ↘

, E
↘) with

V
↘ = V \{vn+1} and

E
↘ =

{
{vi, vj} ↑ E | i, j ↑ [n]

}
⇔
{
{vl, vl↑}

}

by simply removing vn+1 and reconnecting vl and vl↑ . We can assure that {vl, vl↑} /↑ E for

n > 3, because otherwise {vl, vl↑ , vn+1} would form a component in G, which contradicts

its connectivity.

We can conclude that G
↘ is also connected and 2-regular and since |V ↘| = n using

the induction hypothesis it follows that G
↘ is cyclic, i.e. there exists a permutation

ω : [n] ↔ [n] with

{
{vϖ(1), vϖ(2)}, {vϖ(2), vϖ(3)}, . . . , {vϖ(n↓1), vϖ(n)}, {vϖ(n), vϖ(1)}

}
= E

↘
.

Since {vl, vl↑} ↑ E
↘ and G

↘ is 2-regular, on of these edges must be {vl, vl↑}, because
otherwise ω wouldn’t be a permutation.

This allows constructing a permutation ⇀ : [n+ 1] ↔ [n+ 1] on G:

w.l.o.g. ω(1) = l
↘ and ω(n) = l. Define

⇀(i) =





ω(i), 1 ↙ i ↙ n

n+ 1, i = n+ 1

This results in

{
{v↼(1), v↼(2)}, {v↼(2), v↼(3)}, . . . , {v↼(n↓1), v↼(n)}, {v↼(n), v↼(n+1)}, {v↼(n+1), v↼(1)}

}

=
{
{vϖ(1), vϖ(2)}, {vϖ(2), vϖ(3)}, . . . , {vϖ(n↓1), vϖ(n)}, {vl, vn+1}, {vn+1, vl↑}

}
= E.

proving that G is cyclic.

Corollary 7. For a finite, undirected, simple and 2-regular graph with exactly 6 nodes,

there are only two possible graphs up to isomorphism, a cyclic or the union of two K3

graphs3.

Proof. Using Lemma 11 we can partition G into its cyclic components, leaving us with

3 di!erent cases:

1. There is only one component, which implies G is cyclic.

3 The graph Kn is a complete Graph with |V | = n Nodes, i.e. E =
V
2


.

39

3. Optimization Analysis

2. There are two components of size 3, which are both cyclic and therefore equal K3

3. There is at least one component that doesn’t have have 3 or 6 nodes. This would

result in an component of size 1 or 2, which contradicts that G was 2-regular.

Knowing the possible types of co-occurrence graphs we can now dedicate ourself to the

cases r ↖ 4 mod 10 and r ↖ 6 mod 10:

Theorem 4. If r ↖ 4 mod 10 there exists no almost fair ([6], 3, r)-schedule and there-

fore f(6, 3, r) = 2.

Proof. Assuming the existence of a ([6], 3, r)-schedule S with #(S) = 1 we can use

Lemma 3 and get

∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = 2 and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 3.

since r ↖ 4 mod 10 implies 2r = 5q + 3.

Looking at the (q)-co-occurrence graph Gq of S we observe that it’s 2-regular allowing

the usage of Corollary 7, i.e. Gq is either a cycle or the union of two K3 graphs.

In the case of two K3 graphs we can w.l.o.g. assume that

ϖ12 = ϖ21 = ϖ13 = ϖ31 = ϖ23 = ϖ32 = q

ϖ45 = ϖ54 = ϖ46 = ϖ64 = ϖ56 = ϖ65 = q

ϖij = q + 1 otherwise

If we have such schedule we are able to construct a new ([6], 3, r + 1)-schedule S ↘ by

adding ({1, 2, 3}, {4, 5, 6}) as (r + 1)-th arrangement.

Now we have ϖij = q + 1 for all (i, j) ↑ N
2
↔ resulting in f(6, 3, r + 1) = 0. But since

r + 1 ↖ 5 mod 10 this is a contradiction to Lemma 8 allowing us to focus on a cycle

as (q)-co-occurrence graph.

40

3. Optimization Analysis

The proof then follows analogously to the one of Theorem 3 by assuming

ϖ12 = ϖ23 = ϖ34 = ϖ45 = ϖ56 = ϖ61 = q

ϖ21 = ϖ32 = ϖ43 = ϖ54 = ϖ65 = ϖ16 = q

ϖij = q + 1 otherwise

We then set Sl1 = 1 and

Sl3 =





1, 1 ↙ l ↙ q + 1

2, q + 2 ↙ l ↙ r

.

writing µ = g
2
1(1, q + 1) and ς = g

4
1(µ+ 1, q + 1) and following from similar calculation

as before that

µ =
3q ⇐ r + 1

2
, andς =

3q ⇐ r + 2

2

Since both µ and ς are natural numbers this implies 3q ⇐ r + 1 and 3q ⇐ r + 2 both

being even which is impossible.

The last case is again analogously proven and only really di!ers in the reasoning why

two K3 graphs are not viable co-occurrence graphs.

Corollary 8. If r ↖ 6 mod 10 there exists no almost fair ([6], 3, r)-schedule and there-

fore f(6, 3, r) = 2.

Proof. From Lemma 3 we can again conclude a 2-regular graph as (q+1)-co-occurrence

graph, when assuming an almost fair ([6], 3, r)-schedule S.
By looking at the case of two K3 components of this graph we have

ϖ12 = ϖ23 = ϖ34 = ϖ45 = ϖ56 = ϖ61 = q + 1

ϖ21 = ϖ32 = ϖ43 = ϖ54 = ϖ65 = ϖ16 = q + 1

ϖij = q otherwise

Taking an arbitrary fair ([6], 3, 10)-schedule S ↘ = (A↘
ls) we find a permutation ω : [6] ↔

[6] such that ω(A10,1) = {1, 2, 3} and ω(A10,1) = {4, 5, 6}. From Theorem 1 this does

not change the values of ϖij and therefore the ([6], 3, 9)-schedule S ↘↘ = (ω(Als)↘)l=1..9,s=1,2

41

3. Optimization Analysis

has the following co-occurrence numbers:

ϖ12 = ϖ23 = ϖ34 = ϖ45 = ϖ56 = ϖ61 = q

ϖ21 = ϖ32 = ϖ43 = ϖ54 = ϖ65 = ϖ16 = q

ϖij = q + 1 otherwise.

When concatenating S and S ↘↘ we get a ([6], 3, r+9)-schedule with constant co-occurrence

number 2q+1. This would result in f(6, 3, r+9) = 0 which contradicts Lemma 8 since

r + 9 ↖ 5 mod 10.

Now focusing on a cyclic Gq+1 works as before in Theorem3.

Combining the now proven Characteristics for each case of r mod 10 we can summarize

it in an final Corollary:

Corollary 9. For an arbitrary r ↑ N the following characterization of f(6, 3, ·) holds:

f(6, 3, r) =






0, r ↖ 0 mod 10

1, r ↖ ±1 mod 10

2, otherwise

It is noteworthy that we can proof a similar result for the special case of k = 4 and

n = 8:

Theorem 5. For an arbitrary r ↑ N the following characterization of f(6, 3, ·) holds:

f(8, 4, r) =






0, r ↖ 0 mod 7

1, r ↖ ±1 mod 7

2, otherwise

This theorem is stated without giving full proof, since the deviation would be signifi-

cantly longer than for the case of k = 3 without showing any new methods of proving

or other interesting properties.

The idea follows the same techniques as used for proving the above case. By providing

example schedules for schedules fulfilling our hypothesis when r ↙ 7 we can ensure

an upper bound of 2. Following Corollary 3 we can further give an lower bound of 1

42

3. Optimization Analysis

for the case of r being no multiple of 7. For proving the characterization we are left

with contradicting the existence of a almost fair schedules in the cases of r mod 7 ↑
{2, 3, 4, 5} which would give p ↑ {6, 2, 5, 1}.

Contradicting such existence works similar to Theorem 4 and Theorem 3, while keeping

the simplicity of these proofs the case k = 4 turns out to be much longer, especially for

the cases of p = 2 and p = 5 since we have to cover multiple di!erent co-occurrence-

graphs where before we were able to break it down to cover only one of such.

Conjecture 1. It remains unclear if such periodic behavior can be generalized for the

cases of k > 4 and n = 2k or for n being another multiple of k than 2k.

Our method is limited to k ↙ 4, because after that we have to contradict the existence

of schedules with a fairness deviation of 2 or more, which, sheer to the amount of

potential co-occurrence-graphs, is not possible with our approach neither by hand nor

using an computer.

Despite this rather demotivating limitation we can still use the proofs ideas to give lower

bounds to parameters too big for our computers to find solution using the presented

optimization formulations from Section 3.2.

One such case that we wish to highlight is (n, k, r) = (18, 9, 15). This seemingly ar-

bitrary parameters have an actual application in sailing league problems. The polish

sailing league normally consists of four rounds, each containing a number of flights. A

flight splits the 18 competing teams into two smaller heats. The number of flights per

round is not always the same as weather conditions may influence the total amount of

races possible, but it is generally aimed to have 15 flights. Scheduling such 15 flights

leaves us with a setup of n = 18, k = 9 and r = 15.

To analyze the current situation we can look at an example of their schedule. We

are therefore inspecting the fourth round of the 2021 Ekstraklasa[8] which consisted of

exactly 15 flights. We can construct the corresponding schedule table to analyze the

fairness deviation of given round:

43

3. Optimization Analysis

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F1 1 1 2 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1

F2 2 2 1 2 2 1 2 2 1 1 2 1 1 1 2 1 2 1

F3 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2

F4 2 2 1 1 1 2 1 1 1 2 1 2 2 1 2 2 2 1

F5 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 2 1 1

F6 1 1 1 2 2 1 1 2 2 1 2 2 2 1 2 2 1 1

F7 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2

F8 2 2 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 2

F9 1 2 2 1 2 1 2 1 1 2 1 1 2 1 2 2 1 2

F10 2 2 1 2 2 1 1 1 2 1 1 1 2 2 1 1 2 2

F11 2 1 1 1 1 1 1 2 1 2 2 1 1 2 2 2 2 2

F12 2 2 2 2 1 1 1 2 1 1 1 2 2 1 1 2 1 2

F13 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2

F14 1 2 1 1 2 1 2 1 1 1 2 2 1 2 1 2 2 2

F15 2 2 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 2

For simplicity we have ordered the team labels based on the result, i.e. team number 1

corresponds to
”
Yacht Klub Polski Gdynia“ which placed first, while team 18 represents

”
Yacht Club Sopot“ which placed last. Analyzing the co-occurrence numbers of this

schedule yields the following table:

44

3. Optimization Analysis

ϖij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 - 10 5 8 7 6 5 9 8 7 8 5 7 7 6 6 7 9

2 10 - 6 9 10 5 6 8 7 8 7 6 6 6 5 7 6 8

3 5 6 - 6 3 8 11 5 8 7 4 9 9 7 8 10 7 7

4 8 9 6 - 10 5 4 12 11 8 9 6 6 4 5 3 6 8

5 7 10 3 10 - 6 7 9 8 7 10 5 7 7 6 4 5 9

6 6 5 8 5 6 - 8 6 5 8 5 10 10 10 9 7 8 4

7 5 6 11 4 7 8 - 3 6 5 6 9 7 9 10 8 9 7

8 9 8 5 12 9 6 3 - 8 9 12 5 5 5 6 6 5 7

9 8 7 8 11 8 5 6 8 - 8 9 6 6 6 5 5 6 8

10 7 8 7 8 7 8 5 9 8 - 8 5 5 5 8 6 7 9

11 8 7 4 9 10 5 6 12 9 8 - 4 4 6 5 7 8 8

12 5 6 9 6 5 10 9 5 6 5 4 - 9 9 10 10 7 5

13 7 6 9 6 7 10 7 5 6 5 4 9 - 7 8 10 7 7

14 7 6 7 4 7 10 9 5 6 5 6 9 7 - 8 8 9 7

15 6 5 8 5 6 9 10 6 5 8 5 10 8 8 - 9 8 4

16 6 7 10 3 4 7 8 6 5 6 7 10 10 8 9 - 8 6

17 7 6 7 6 5 8 9 5 6 7 8 7 7 9 8 8 - 7

18 9 8 7 8 9 4 7 7 8 9 8 5 7 7 4 6 7 -

We can therefore extract that ϖ+(S) = 12 and ϖ
↓(S) = 3, giving #(S) = 9

From our optimization part we know that these parameters are too big to expect find-

ing an optimal schedule using the formulated programs. We still aim to improve the

presented schedule.

Using the presented branch-and-cut algorithm one is able to find a (18, 9, 15)-schedule

with fairness deviation of 4 creating an upper bound f(18, 9, 15) ↙ 4.

Using the created technique from above we are also able to find a lower bound of 2.

Theorem 6. For the fairness deviation of the parameters (n, k, r) = (18, 9, 15) the

following bounds hold:

2 ↙ f(18, 9, 15) ↙ 4

Proof. We start by presenting an example of a (18, 9, 15)-schedule with fairness devia-

tion of 4 to proof the upper bound:

45

3. Optimization Analysis

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

F2 1 2 1 1 2 2 2 2 1 1 1 1 1 2 2 1 2 2

F3 1 1 1 2 1 2 2 2 2 1 2 1 1 1 2 1 2 2

F4 1 1 2 1 2 1 2 2 2 2 1 1 2 1 1 2 2 1

F5 1 1 2 1 2 2 1 1 1 2 2 1 2 1 2 2 1 2

F6 1 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 1 1

F7 1 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2

F8 1 2 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 1

F9 1 2 1 2 1 1 2 2 2 2 1 2 2 1 1 1 1 2

F10 1 2 1 2 1 2 1 2 2 2 1 1 1 2 2 2 1 1

F11 1 2 1 1 2 2 2 1 2 2 2 1 2 2 1 1 1 1

F12 1 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2 1

F13 1 1 1 1 2 2 1 2 2 1 1 2 1 1 2 2 2 2

F14 1 1 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1 1

F15 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 2 1 2

Table 3: (18, 9, 15)-schedule with fairness deviation 4

Next, we can ensure f(18, 9, 15) ↗= 0 because Corollary 2 requires r · (k ⇐ 1) ↖ 0

mod (n⇐ 1) for the existence of a fair schedule and r · (k⇐ 1) = 120 is not divisible by

n⇐ 1 = 17.

For showing that no almost fair schedule exists we again assume such existence and use

Corollary 3 to conclude

∣∣{j ↑ N\{i} : ϖij = 8
}∣∣ = 1 and

∣∣{j ↑ N\{i} : ϖij = 7
}∣∣ = 16.

Up to permutation this yields

ϖ12 = ϖ21 = ϖ34 = ϖ43 = · · · = ϖ17,18 = ϖ18,17 = 8

and ϖij = 7 for the remaining pairs.

w.l.o.g. we set

Sl1 = 1, and Sl2 =





1, 1 ↙ l ↙ 8

2, 9 ↙ l ↙ 15

46

3. Optimization Analysis

From 7 = ϖ13 = ϖ23 we get

7 = ϖ13 = g
3
1(1, 15) = g

3
1(1, 8) + g

3
1(9, 15)

7 = ϖ13 = g
3
1(1, 8) + g

3
2(9, 15) = g

3
1(1, 8)⇐ g

3
1(9, 15) + 7

Solving this system for the unknown g
3
1(1, 8) and g

3
1(9, 15) yields

g
3
1(1, 8) = 7/2 and g

3
1(9, 15) = 7/2

From g
3
1(1, 8) ↑ N we already have a contradiction, resulting in f(18, 9, 15) ↗= 1.

For practical application we have to consider that while having 15 flights is the goal,

this often gets shortened and the last few flights get canceled. A good schedule should

therefore cover this case in a sense that the cut schedule is still optimal. A perfect

solution would be a schedule S where each subschedule Sr consisting of the first r

arrangements fulfills #(Sr) = f(18, 9, r) for r = 3, . . . 15. Finding such perfect schedule

would be increasingly harder than finding an optimal schedule and at this time it is not

even clear if such perfect schedule must exist, which is why we propose an alternative

way of of finding a
”
good“ schedule.

By optimizing only a few flights per iteration while fixing the previous ones, we are

creating a schedule that is robust against cancellations of later flights. For example the

schedule from table 3 was created using an optimization with step-size 2, i.e. starting

by taking an optimal (18, 9, 3)-schedule S3, we find a (18, 9, 5)-schedule with minimal

fairness deviation under all such schedules where the first three flights are predetermined

by S5. Continuing this idea we take this newly found schedule S5 and optimize for a

(18, 9, 7)-schedule given the first 5 flights are fixed, repeating this step gives a robust

(18, 9, 15)-schedule and even allows for extending more flights if needed without having

to restart the computation.

Using such step-by-step optimization may break optimality but provides a more practi-

cal relevant solution. For some step-sizes even this method even provided upper bounds

with short computation time in cases where Gurobi took significantly longer finding the

same bound. One may experiment with di!erent step-sizes or a controllable step-size

which might lead to an even better bound.

Another way of increasing the robustness of a schedule after its found, is by permuting

47

3. Optimization Analysis

the arrangements. Given a (n, k, r)-schedule we can cross out each arrangement and

check for the fairness deviation that the remaining r ⇐ 1 arrangements form, placing

the one providing best results at the r-th position. Repeating this recursively ensures

that the flights that are less important for overall fairness are scheduled at the end.

3.4 Algorithmic Abstraction

To a certain extend it is possible to abstract the work from previous section for creating

a constructive algorithm, that allows for either finding an optimal fair / almost fair

schedule or returning that there does not exists such schedule for given parameters k

and r, resulting in f(2k, k, r) ↓ 2. While it may be technically possible to also exhaust

the possibilities of a schedule with #(S) = 2 or even higher but we will see that this is

not realistic from a computational point of view, at least not for the idea behind the

presented algorithm.

As first step, revisiting the problems of Theorem 4, we need a way of finding all possible

assignments for the co-occurrence numbers. Since we know that there can’t exist a fair

and an almost fair schedule at the same time we can start by writing r(k ⇐ 1) =

(2k ⇐ 1)q + p for 0 ↙ p ↙ 2k ⇐ 2.

If p = 0 we will check for the existence of a fair schedule. In this case ϖij = q for all

i, j ↑ N
2
↔ by Corollary 2.

Checking for the existence of an almost fair schedule in the case of p ↗= 0 does turn out

as a harder task. Using Corollary 3 we know that the co-occurrence graphs are going

to be regular:

∣∣{j ↑ N\{i} : ϖij = q + 1
}∣∣ = p and

∣∣{j ↑ N\{i} : ϖij = q
}∣∣ = 2k ⇐ 1⇐ p,

resulting in the (q + 1)-co-occurrence graph being p-regular and the q-co-occurrence

graph being (2k ⇐ 1 ⇐ p)-regular. Luckily both graphs are complementary to each

other, allowing us to construct one by the other. We can therefore focus on finding, up

to isomorphism, all p-regular graphs (w.l.o.g. we can assume p ↙ 2k ⇐ 1⇐ p). Markus

Meringer already did some work on constructing regular graphs [7] that we can use

48

3. Optimization Analysis

for constructing possible co-occurrence graphs. His algorithm only returns complete

graphs, but a small modification will yield arbitrary p-regular graphs. For the purpose

of completion we will shortly discuss the approach of this generation:

We start by revisiting the idea of isomorphic graphs. For simplicity we can assume to

have vertices 1 through n.

Definition 14. Let Gn describe the set of all simple, labeled and undirected graphs with

vertices [n]. Since the vertices are fixed, we can identify a graph % ↑ Gn by its edges

and will therefore write

% = {e1, e2, . . . , et} ≃
(
[n]

2

)
=: Xn

where Xn describes the set of all possible edges (w.l.o.g. we assume v < w for an edge

e = (v, w) ↑ Xn).

The neighborhood of a vertex v ↑ [n] is defined as all vertices w that are connected to

v, i.e.

N”(v) := {w ↑ [n] | (v, w) ↑ % ̸ (w, v) ↑ %}

Definition 15. Rn,k ≃ K describes the set of all k-regular n graphs, i.e. % ↑ Rn,k if

deg v = |N”(v)| = k for all v ↑ %.

For a formal definition of isomorphism we also need to remember the idea of a group

operating on sets by a group action:

Definition 16. Let X be a set and (G, ◦) be a group with identity element id. A

function φ : G⇓X ↔ X is called group action, if

1. ′x ↑ X : φ(id, x) = x

2. ′x ↑ X, g, h ↑ G : φ(g,φ(h, x)) = φ(g ◦ h, x)

The orbit of such group action on a x ↑ X is the given by

Gx := {φ(g, x) | g ↑ G}.

We denote G\\X := {Gx |x ↑ X} as the set of all orbits.

49

3. Optimization Analysis

By trivial reasoning the symmetric group Sn acts on Gn with the group action φ :

Sn ⇓ Gn ↔ Gn defined by

φ(ω, {(v1, w1), . . . , (vt, wt)}) := {φ̃(ω, (v1, w1)), . . . , φ̃(ω, (vt, wt))}

where

φ̃(ω, (v, w)) := (min(ω(v), ω(w)),max(ω(v), ω(w)))

This group action also allows Sn to act on Rn,k:

Lemma 12. Let % ↑ Rn,k where ei = (vi, wi), then φ(ω,%) ↑ Rn,k, which implies that

φ|Sn↗Rn,k
is a corresponding group action.

Proof. Let ω ↑ Sn, i.e. ω is a permutation on [n]. For a fixed u, w ↑ [n] there exist

v, x ↑ [n] with ω(v) = u, ω(x) = w and therefore:

(u, w) ↑ φ(ω,%) ⇒⇑ (u, w) = φ̃(ω, ((v, x))) and ((v, x) ↑ % or (x, v) ↑ %)

This implies

(u, w) ↑ φ(ω,%) or (w, u) ↑ φ(ω,%) ⇒⇑ (v, x) ↑ % or (x, v) ↑ %

⇒⇑ (ω↓1(u), ω↓1(w)) ↑ % or (ω↓1(w), ω↓1(u)) ↑ %,

which gives

N↽(ϖ,”)(u) : = {w | (u, w) ↑ φ(ω,%) or (w, u) ↑ φ(ω,%)}

= {w | (ω↓1(u), ω↓1(w)) ↑ % or (ω↓1(w), ω↓1(u)) ↑ %}

= {ω(w) | (ω↓1(u), w) ↑ % or (w, ω↓1(u)) ↑ %}

= ω(N”(ω
↓1(u))).

By definition of regularity it follows that φ(ω,%) is also k-regular since

deg u = |N↽(ϖ,”)(u)| = |ω(N”(ω
↓1(u)))| = |N”(ω

↓1(u))| = k

Definition 17. Two graphs %1,%2 ↑ Gn are isomorph if they have in the same orbit,

i.e. Sn%1 = Sn%2

50

3. Optimization Analysis

For our goal of finding all k-regular graphs we aim to find a set of orbit representatives

of Sn\\Rn,k, which satisfies the task of finding all such graphs up to isomorphism.

For algorithmic purpose the proposed paper narrows this down to finding minimal

representatives.

Definition 18. For e1, e2 ↑ Xn where e1 = (v1, w1) and e2 = (v2, w2) we define a

lexicographic order on Xn by

e1 < e2 ⇒⇑ v1 < v2 or (v1 = v2 and w1 < w2)

and therefore an order on Gn. Let %1,%2 ↑ Gn where %1 = {e1, . . . , et},%2 = {f1, . . . , fr}.
w.l.o.g. assume that these edges are ordered by above logic, then

%1 < %2 ⇒⇑ (↘i ↙ min t, r : ′j < i : ej = fj and ei < fi)

or (t < r and ′j ↙ t : ej = fj)

We therefore define a set of minimal orbit representatives by

rep<(Sn\\Gn) := {% ↑ Gn | ′ω ↑ Sn : % ↙ φ(ω,%)}

rep<(Sn\\Rn,k) := {% ↑ Rn,k | ′ω ↑ Sn : % ↙ φ(ω,%)}

Using minimal representatives allows for an simple backtracking algorithm, that is based

on the following theorem.

Theorem 7. If % ↑ Gn is a minimal orbit representative, i.e. % ↑ rep<(Sn\\Gn), than

every smaller subset of % is also minimal.

Proof. Suppose, for a proof by contradiction, that % = %1 ⇔ %2 where %1 < % but

%1 /↑ rep<(Sn\\Gn). Since %1 is not minimal there exists a permutation ω ↑ Sn such

that φ(ω,%1) < %1.

Let φ(ω,%1) = {e1, . . . , et},%1 = {f1, . . . , ft}, by definition of the order there must

exists a i with ei < fi and ej = fj for each j < i.

If we now consider φ(ω,%) = φ(ω,%1)⇔%3 (where %3 = {b1, . . . , br} are just the remain-

ing edges), then we get two di!erent cases:

1. If minj bj > ei then we can simply follow that φ(ω,%) < %1 < %.

51

3. Optimization Analysis

2. If minj bj < ei, i.e. there exists 2 ↙ k ↙ i such that ek↓1 < minj bj < ek then in

the compare of φ(ω,%) and %1 the edge minj bj is the k-th biggest edge in φ(ω,%).

Since for all j < k we know that ej = fj and minj bj < ek = fk its also clear that

φ(ω,%) < %1 < %.

Either case resulting in a contradiction to the minimality of %.

We can now formulate an algorithm for finding rep<(Sn\\Rn,k):

Algorithm 1 Recursive enumeration of k-regular graphs on n vertices

1: procedure Ordrek(%)
2: if not Extendable(%) then
3: return

4: end if

5: if % /↑ rep<(Sn \Gn) then
6: return

7: end if

8: if % ↑ Rn,k then

9: add % to output
10: return

11: end if

12: for all e ↑ Xn with e > max% do

13: Ordrek(% ⇔ {e})
14: end for

15: end procedure

The function Extendable(%) checks for multiple necessary conditions to allow filtering

out graphs, that can not be extended to an k-regular graph. An simple example for such

necessary condition is that all vertices have degree at most k, more complex conditions

can be found in chapter 2 and 3 of [7].

The most time consuming part of the algorithm is found in line 5 where one has to

check for minimality of a graph. We won’t go into detail on how this can be done

e!ectively and only refer to the work of Markus Meringer again.

After finding all k-regular n-graphs, we can go back to our primary goal of checking for

the existence of almost fair schedules by iterating over these graphs and using them as

candidates for the co-occurrence-graphs.

52

3. Optimization Analysis

For a outline of the idea we will try to fill the assignment Matrix (Sli)l→[r],i→[2k] it-

erative column after column while not breaking the conditions that we got from the

co-occurrence-graph for the co-occurrences between two teams. Each step will give us

an linear diophantine system of equation with some bounds. Solving this system will

give a finite solution set that is going to be explored by an divide-and-conquer approach

until we either find a full assignment matrix or a system yields no solutions allowing us

for discard this branch and backtrack to the next solution to explore.

Since every step will create a finite amount of smaller cases we can ensure the algorithm

is deterministic and will either output a assignment matrix of a almost fair schedule or

will exhaust all possible placements and ensures that no such schedule can exist.

To finish up we are left with two tasks:

1. Formulating the systems needed solve in a similar, but abstracted way to the

proofs from Section 3.3

2. E”ciently getting all solutions to bounded linear diophantine system of equation

Assuming we want to place the i column of the assignment matrix, where the columns

1 to i⇐1 are already set, one could think of simply trying out all possible combinations.

In the long run this would be highly cost intensive which is why we are going to use

the symmetry of our problem to place bigger blocks of 1s and 2s. Lets revisit the proof

of Theorem 3 with the explicit value of r = 12 as an example:

Let n = 2k where k = 3 and let r = 12. Then (k⇐ 1)r = q(n⇐ 1) + p where q = 4 and

p = 4. We want to check for the existence of an almost fair schedule and observe the

following co-occurrence-graphs:

53

3. Optimization Analysis

1

2

3

4

5

6

Figure 4: 4-co-occurrence graph

1

2

3

4

5

6

Figure 5: 5-co-occurrence graph

Note that this graph is not minimal nor the exact same as used in the proof of said theo-

rem, but chosen because it demonstrate the idea of formulating the system of equations

really well. One could choose arbitrary other fitting co-occurrence-graph but potentially

need more steps to see the abstraction.

We start by placing the first column of the assignment matrix and see that there are

no real restrictions, since no other team has been places, and therefore start with

Sl1 = 1 for all 1 ↙ l ↙ 2k

For placing the second column we have to take into account all co-occurrence restrictions

with the columns that are already set, in this case only 4 = ϖ12 = g
(2)
1 (1, r). We can

therefore say that Sl2 = 1 four times and Sl2 = 2 eight times.

Now the idea 1- and 2-blocks start to show, because we will start with a 1-block of size

4 and then a 2-block of size 8. For our abstractions we will store these sizes in a vector

p. And get:

p
(2) = (g(2)1 (1, r), r ⇐ g

(2)
1 (1, r)) and by following this idea also p

(1) = r

Considering the third column we start to have an actual system of equations since we

now have to consider ϖ13 and ϖ23:

ϖ13 = g
(3)
1 (1, r)

ϖ23 = g
(3)
1 (1, p(2)1) + g

(3)
2 (p(2)1 + 1, r)

54

3. Optimization Analysis

By using the properties of g and trivial bounds we get the following system:

ϖ13 = g
(3)
1 (1, p(2)1) + g

(3)
1 (p(2)1 + 1, r)

ϖ23 ⇐ (r ⇐ (p(2)1 + 1)⇐ 1) = g
(3)
1 (1, p(2)1)⇐ g

(3)
1 (p(2)1 + 1, r)

0 ↙ g
(3)
1 (1, p(2)1) ↙ p

(2)
1

0 ↙ g
(3)
1 (p(2)1 + 1, r) ↙ r ⇐ p

(2)
1

Solving this yields a new p vector for placing the third column:

p
(3) = (g(3)1 (1, p(2)1), p(2)1 ⇐ g

(3)
1 (1, p(2)1), g(3)1 (p(2)1 + 1, r), r ⇐ p

(2)
1 ⇐ g

(3)
1 (p(2)1 + 1, r))

When following this idea it may seem like the system gets exponentially harder to solve

since each steps only adds one equation, but doubles the amount of variables. A new

constraint counting 1s and 2s each row and ensuring that there can only be k teams per

flight helps with this problem when j, the column that has to be placed, gets higher.

For an more readable system we define the vector P as partial sums of p for j =

0, . . . , 2t↓1:

P
(t)
j =

t∑

l=1

p
(t)
l and therefore p

(t)
j = P

(t)
j ⇐ P

(t)
j↓1 where P

(t)
0 = 0, P (t)

2t→1 = r

As final abstraction, consider placing the t-th column. We get the following equations:

ϖlt =
2t→2∑

j=1

g
(t)

ς
(t)
l (j)

(P (t↓1)
j↓1 + 1, P (t↓1)

j) for l < t

where ⇁
(t)
l (j) describes wether to consider g(t)1 or g(t)2 .

To understand the behavior of ⇁(t)
l (j), let us go one step further in our example and

consider placing the fourth column:

55

3. Optimization Analysis

ϖ14 = g
(4)
1 (1, r)

ϖ24 = g
(4)
1 (1, p(2)1) + g

(4)
2 (p(2)1 + 1, r)

ϖ34 = g
(4)
1 (1, p(3)1)

+ g
(4)
2 (p(3)1 + 1, p(3)1 + p

(3)
2)

+ g
(4)
1 (p(3)1 + p

(3)
2 + 1, p(3)1 + p

(3)
2 + p

(3)
3)

+ g
(4)
2 (p(3)1 + p

(3)
2 + p

(3)
3 + 1, r)

this simplifies to:

ϖ14 = g
(4)
1 (P (4)

0 + 1, P (4)
1) + g

(4)
1 (P (4)

1 + 1, P (4)
2) + g

(4)
1 (P (4)

2 + 1, P (4)
3) + g

(4)
1 (P (4)

3 + 1, P (4)
4)

ϖ24 = g
(4)
1 (P (4)

0 + 1, P (4)
1) + g

(4)
1 (P (4)

1 + 1, P (4)
2) + g

(4)
2 (P (4)

2 + 1, P (4)
3) + g

(4)
2 (P (4)

3 + 1, P (4)
4)

ϖ34 = g
(4)
1 (P (4)

0 + 1, P (4)
1) + g

(4)
2 (P (4)

1 + 1, P (4)
2) + g

(4)
1 (P (4)

2 + 1, P (4)
3) + g

(4)
2 (P (4)

3 + 1, P (4)
4)

This shows that ⇁(t)
t↓1 seems to alternate between 1 and 2, and the period length doubles

when going from ⇁
(t)
l to ⇁

(t)
l↓1 (this can be shown by induction but is left out for the

sake of clarity), leaving us with

⇁
(t)
l = 2t↓l-periodic alternating sequence between 1 and 2, starting at 1

We can achieve such sequence by modifying (⇐1)j and get

⇁
(t)
l (j) =

1

2


3⇐ (⇐1)


j↓1
2t→l



We can now rewrite our system of equations into a system where the only relevant

variables are g
(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j). From Lemma 10 we get

g
(t)
2 (P (t↓1)

j↓1 + 1, P (t↓1)
j) = P

(t↓1)
j ⇐ (P (t↓1)

j↓1 + 1) + 1⇐ g
(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j)

= p
(t↓1)
j ⇐ g

(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j)

56

3. Optimization Analysis

and therefore

g
(t)

ς
(t)
l (j)

(P (t↓1)
j↓1 + 1, P (t↓1)

j) = (⇐1)


j↓1
2t→l



· g(t)1 (P (t↓1)
j↓1 + 1, P (t↓1)

j) +
1

2


1⇐ (⇐1)


j↓1
2t→l


· p(t↓1)

j

Inserting this back in our original system of equations we have

ϖlt ⇐
2t→2∑

j=1

1

2


1⇐ (⇐1)


j↓1
2t→l


· p(t↓1)

j =
2t→2∑

j=1

(⇐1)


j↓1
2t→l



· g(t)1 (P (t↓1)
j↓1 + 1, P (t↓1)

j) for l < t

The system gets paired with the following restrictions:

0 ↙ g
(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j) ↙ p

(t↓1)
j (1)

g
(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j) ↑ Z (2)

If
t↓1∑

i=1

S
(t↓1)
li ⇐ 1 = k then ′j : g(t)1 (P (t↓1)

j↓1 + 1, P (t↓1)
j) = p

t↓1
j (3)

If
t↓1∑

i=1

S
(t↓1)
li ⇐ 1 = (t⇐ 1)⇐ k then ′j : g(t)1 (P (t↓1)

j↓1 + 1, P (t↓1)
j) = 0 (4)

A solution to this system allows for constructing the new values for P (t)
j , p(t)j and S

(t)
li ,

needed to perform the next iteration:

57

3. Optimization Analysis

p
(t)
2j↓1 = g

(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j), for j = 1, . . . , 2t↓2

p
(t)
2j = p

(t↓1)
j ⇐ g

(t)
1 (P (t↓1)

j↓1 + 1, P (t↓1)
j), for j = 1, . . . , 2t↓2

P
(t)
0 = 0,

P
(t)
j = P

(t)
j↓1 + p

(t)
j , for j = 1, . . . , 2t↓1

S
(t)
li = S

(t↓1)
li for l = 1, . . . , 2k and i = 1, . . . , r with i ↗= t,

S
(t)
lt =





1, if j is odd

2, if j is even
with j such that l ↑ {P (t)

j↓1 + 1, . . . , P (t)
j }

The last step is to actually solve such system under the given constraints.

The constraints (3) and (4) can simply be evaluated using if statement as they stand.

But to cover (1) and (2) we need the use of an algorithm that allows returning all

possible solutions, not just one (which would be fairly easy).

Since we have a finite amount of possible solutions (at most


j(p
(t↓1)
j + 1)) we can

exhaust them by using a box enumeration. This process can also be sped up using

small modifications:

Let us suppose we have a system of equations with bounded integer variables

Ax = b, 0 ↙ x ↙ c, A ↑ Zm↗n
, x, c ↑ Zn

, b ↑ Zm
,m ∀ n

we can find all solutions to this system using the following algorithm:

58

3. Optimization Analysis

Algorithm 2 Finding all solutions to bounded linear diophantine system

1: procedure SolveBounded(A,b,c)

2: (U,H,r) := RowHermite(A)

3: b’ := U·b

4: x par := BackSubstitution(H, b’[1:r])

5: (V,d) := NullSpaceBasis(H)

6: if x par is None then

7: return ∝
8: end if

9: if d = 0 then

10: if 0 ↙ x par ↙ c then

11: return {x par}
12: else

13: return ∝
14: end if

15: end if

16: lb, ub := ProjectBounds(x par, V, c)

17: sol := ∝
18: for all y ↑ Zd with lb <= y <= ub do

19: x := x par + V·y
20: if 0 ↙ x ↙ c then

21: append sol, x

22: end if

23: end for

24: end procedure

We start by calculating the Row-Hermite Normal Form and therefore reducing the

system into a triangular system Hx = b
↘ using the unimodular transform U (Now H

has dimensions r⇓n). This allows for a simple way of finding a single solution x par and

a basis of the Nullspace of H. After finding the Nullspace and a particular solution we

can exhaust all other possible solutions by simply iterating over our new box bounds

since we know that every combinations xpar + V · y is a solution to the real-valued

59

3. Optimization Analysis

problem.

There are a few things to watch out for when implementing, that we won’t cover here.

Just to name an example, the basis V has to be a lattice basis of the integer kernel of H.

This can be seen when considering the space {x ↑ R3 | x1+x2⇐2x3 = 0}. One possible

basis would be V = {(2, 0, 1)T , (0, 2, 1)T}, but we can clearly see that we would miss

integer solutions when only considering V Zd. Instead the needed lattice basis would be

V = {(2, 0, 1)T , (⇐1, 1, 0)T}.

There are also multiple ways of speeding up the algorithm, for example the exhaustion

of solutions xpar + V · y can be done by either pruning single coordinates after a bound

violation or by a similar approach as used in the branch-and-bound-algorithm by doing

interval propagation. Since these are again steps that are relevant in the implementation

and crucial for the general idea, we will not cover explanation of steps in this work.

Now, having a way of generating possible co-occurrence-graphs, formulated a system

to solve and found a way to actually solve it, we have a constructive and deterministic

algorithm to check for the existence of fair and almost fair schedules.

60

4. Conclusion

4 Conclusion

Summarizing the work we have done we will take a look back at the introduction

rounding up our plans.

We started by defining the fairness deviation f(n, k, r) as the span between the co-

occurrence numbers between two teams Using concepts of number theory we showed

that a fair schedule, i.e. f = 0, is only possible if r(k ⇐ 1) ↖ 0 mod (n ⇐ 1). We

strengthened this necessary condition to r(k ⇐ 1) ↖ 0 mod 2(n ⇐ 1) for the case of

n = 2k where k is odd, even though numerical experiment yet show no contradiction

it remains unclear if this condition is su”cient. We also provided the distribution of

co-occurrence numbers in case of the existence of an almost fair schedule.

After this we looked at two types of optimization formulation for the case of n = 2k,

a linear and a quadratic one. By providing di!erent types of symmetry breaking con-

straints we got a total of 6 di!erent formulations that we then tested on k = 3, . . . , 9 and

r = 3, . . . , 20 under even conditions. The results showed that for practical applications

either the basic quadratic formulation or the quadratic formulation with additional bi-

nary order of flights are most reliable. The experiments did not show a pattern when

one of these two performed better than the other. What they did show, was that for

k ↓ 7 and r ↓ 8 a clear hardness bump occurred making it hard for finding optimal

schedules for larger values of k and r.

While we proved that f(n, k, r) = 1 occur if either f(n, k, r⇐1) = 0 or f(n, k, r+1) = 0

and numerical results suggests that these are the only times that f = 1, we could not

proof that this is true in general.

Motivated by the numerical results we took a closer look at fixed k and proved 10-

periodic behavior for k = 3 and 7-periodic behavior for k = 4, allowing for complete

characterization of these cases. Proving these was done by using a helper function g to

count the occurrences of a team in a fixed flight of consecutive arrangements. Properties

of this function lead to diophantine systems of equations, contradicting the existence

of fair or almost fair schedules in the relevant cases.

We used this idea to formulate an abstract algorithm for doing so in the case of arbitrary

n = 2k and r using an existing algorithm to find possible co-occurrence graphs and

applying the results to our abstracted system of equations from previous thoughts.

61

4. Conclusion

In the analysis of the polish sailing league we took a closer look at the 4th round of

2021 (Ekstraklasa) and observed a fairness deviation of 9. Using di!erent techniques

we first proofed a lower bound of 2 in the given case and presented a robust schedule

with fairness deviation of 4, that can withstand cutting the last flights without loosing

too much fairness deviation.

62

REFERENCES

5 Literature

[1] R. Schüler and A. Schürmann: Sailing League Problems, Journal of Combinatorial

Designs, vol. 32, no. 4, April 2024, pp. 171-189.

[2] C.J. Colbourn and J.H. Dinitz (eds.): Handbook of Combinatorial Designs, 2nd ed.,

Chapman & Hall, 2007.

[3] R.E.A.C. Paley: On orthogonal matrices, Journal of Mathematical Physics, vol. 12,

no. 1-4, April 1933, 311-320.

[4] H. Kharaghani and B. Tayfeh-Rezaie: A Hadamard matrix of order 428, Journal of

Combinatorial Designs, vol. 13, No. 6, November 2005, pp. 435-440.

[5] A. Hedayat: Hadamard matrices and their applications, The Annals of Statistics,

vol. 6, no. 6, 1978, pp. 1184-1238.

[6] S. Mirzaei: Linear Programming: An Introduction, 1st ed., Kendall/Hunt, 2019

[7] M. Meringer: Erzeugung regulärer Graphen. Master’s thesis, Universität Bayreuth

(1996).

[8] SAP Sailing: Regatta Overview of Ekstraklasa 2021 Round 4, avail-

able at: https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:

eventId=323b9067-a905-47bc-9fe9-12919cc48c6c (accessed June 11, 2025).

63

https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:eventId=323b9067-a905-47bc-9fe9-12919cc48c6c
https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:eventId=323b9067-a905-47bc-9fe9-12919cc48c6c

6. Erklärung über die selbständige Abfassung einer schriftlichen
Arbeit

6 Erklärung über die selbständige Abfassung einer schriftlichen

Arbeit

Hiermit erkläre ich, Cedric Rönnfeld, Matrikel-Nr. 221200104, dass ich die vorliegende

Arbeit selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-

fertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken

sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher

Form keiner anderen Prüfungsbehörde vorgelegt.

Rostock

(Abgabedatum) (Vollständige Unterschrift)

64

Mobile User

	Introduction
	Theoretical Background
	Mathematical Model
	Necessary conditions for fair and almost fair schedules

	Optimization Analysis
	Properties of the minimal fairness deviation
	Formulation as programming problem
	Some special cases
	Algorithmic Abstraction

	Conclusion
	Literature
	Erklärung über die selbständige Abfassung einer schriftlichen Arbeit

