Universitat
Rostock

Traditio et Innovatio

$rijndet ¥

OPTIMIZATION OF PAIRING LISTS

IN SAILING LEAGUES

NAME: CEDRIC RONNFELD
MATRIKELNUMMER: 221200104

ABGABEDATUM: 20.08.2025

BETREUER UND (GUTACHTER: PROF. DR. ACHILL SCHURMANN

UNIVERSITAT ROSTOCK

INSTITUT FUR MATHEMATIK
(GUTACHTER: PrOF. DR. THOMAS KALINOWSKI
UNIVERSITAT ROSTOCK

INSTITUT FUR MATHEMATIK

BACHELORARBEIT AM INSTITUT FUR MATHEMATIK

MATHEMATISCH- N ATURWISSENSCHAFTLICHE FAKULTAT

CONTENTS

CONTENTS

1 Introduction 1

2 Theoretical Background 2
2.1 Mathematical Model 2
2.2 Necessary conditions for fair and almost fair schedules 7

3 Optimization Analysis 12
3.1 Properties of the minimal fairness deviation 12
3.2 Formulation as programming problem 16
3.3 Some special cases 30
3.4 Algorithmic Abstraction 48

4 Conclusion 61

5 Literature 63

6 Erklarung iiber die selbstiandige Abfassung einer schriftlichen Arbeit 64

1. INTRODUCTION

1 INTRODUCTION

In the proposed thesis we will study the construction of pairing lists in the application
of sailing leagues through the ideas of combinatorial designs and integer optimization,
continuing previous work of Robert Schiiler and Achill Schiirmann [1] on the topic from

a more theoretical point.

We define a fairness term based on the distribution of co-occurrences between two teams
and aim to find the minimal span f of these distributions for fixed configurations of

teams and flights.

To analyze possible values of f we will find necessary divisibility constraints for the
cases of f =0 and f = 1, providing alternative proofs to known theorems for specific

types of designs and Hadamard-Matrices.

One of our main theoretical result is a complete characterization of f in the cases of n =
6,k = 3 and n = 8,k = 4 which both showing periodic behavior. Using the developed
method of proving we design an algorithmic way of constructing or contradicting the

existence of fair and almost fair schedules.

On the algorithmic side we compare six MILP and MIQP formulations for finding
optimal schedules in the case of n = 2k and evaluate them for different amounts of

teams and flights.

Lastly we will apply the work on the polish sailing league providing a alternative sched-
ule that increases our understanding of fairness by a significant amount as well as
providing proof for a lower bound of the specific case, because even the showcased al-
ternative may not be optimal. In the scenario of real world application we also discuss
the possibilities to further enhance the schedules to form more robust designs, viable

for cutting the amount of planned flights while still keeping fairness.

2. THEORETICAL BACKGROUND

2 THEORETICAL BACKGROUND

In practice a sailing league competition consists of a fixed number of teams that compete
against each other. The competitions often features multiple flights that each consists

of smaller races, called heats.

In our case, a flight always splits the teams into equally sized heats, this way not all
teams compete at the same time. This allows for more control over the races but makes

it difficult to create a fair ranking for all teams.

Since the finishing times of each team may vary by outside condition like weather, which
may change from one race to another, the common way of ranking is by adding the
group rankings of each heat. Doing so creates a potential problem, if the teams are not

fairly grouped.

For example it could occur, that an average team always faces below average teams and
therefore wins their group often, while a originally better team always faces way better

teams and loses. The resulting ranking would then place the average team higher.

To avoid such problems and ensure maximal fairness, we hope for a pair of two teams

to face each other as often as every other pair.

2.1 MATHEMATICAL MODEL

To start, we need a mathematical representation of the pairing lists, that decide which

teams are grouped into heats:

Definition 1. Let N be a n-set, i.e. |N| =n < oo and let k,r € N > 2 with, such that
n=t-k fort e Nyy.
We define a (N, k,r)-schedule as a family

S=(As|le]r],se€t])

with |Ais| = k for all 1l € [r],s € [t] and (Ais)L_, being a t-partition of N, that is a
division into t disjoint subsets.

We will further call the tuple (Ajs)t_; the l-th arrangement of the schedule and therefore
Ays the s-th block in the [-th arrangement.

2. THEORETICAL BACKGROUND

Here N is the set of all teams, k the size of each heats, and r the amount of flights
that are competed. A Block A, is therefore a set of k teams, forming the groups that
competes in the s-th heat of the [-th flight.

Definition 2. An (N, k,r)-schedule S = (Ais) and an (M, k,r)-schedule T = (Bys) are
called similar, if there exists a bijections m : N — M and permutations ¢ : [r] — [r], ¢ :
[t] — [t], such that:

T(Asw.u) = Bis

If ¢ =id, and) = id; they are called equivalent.

In practice, this definition allows us to call schedules equivalent when the teams have

different labels/orders and similar if they only differ in the order of heats or flights.

Next, we need a way to describe how often two teams compete against each other:

Definition 3. For a given (N, k,r)-schedule S and i,j € N with i # j, we define
=[{lelr]|3sell] : {i,j} C AL}

as the number of co-occurrences of v and j.

We further define

AT(S) = {Ijlgﬁ)\w(S), and A (S) = ZI%H]\I/)\W(S)
1#£] 7]

as the highest and lowest co-occurrences in S.
The difference
A(S) = AT(8) = A7 (S)

is called fairness deviation of S. If the context is clear, we will just write A, T, A\~ or
Aij-
For better readability we will write N? := {(i,7) € N*|i # j} from now on.

Corollary 1. For a given (N, k,r)-schedule S, the co-occurrence numbers are symmet-
rical, 1.e.
Aij(8) = Aji(S) for all (i, 5) € N*Q

As the name implies, a high fairness deviation implies an unfair pairing list, while a
fairness deviation close to 0 intuitively leads to a more fair grouping of the teams. Two

important special cases are 0 and 1:

2. THEORETICAL BACKGROUND

Definition 4. A schedule S is called fair, if its fairness deviation is 0, i.e. A(S) =0,
and almost fair, if it’s 1.

Remark 1. A fair (N, k,r)-schedule S, implying \;; = A € N for all 7,5 € N2, is
equivalent to a (n, k, A)-resolvable balanced incomplete Block Design (RBIBD). For
such Designs, many results are already established [2], we therefore aim to abstract the

idea of RBIBDs to non constant values for \;;.

For later representation of pairing lists in examples and solutions we need a way to

describe & more readable:

Definition 5. Let S = (Ajs) be a (N, k,r)-schedule. The schedule-tableau is given by

S — N —
1

(Sli)le[r],iEN

where S is the assignment matriz of the schedule S with S;; = s for i € A;s. Note, that
Sy is well defined, because (Ais)i_, is a partition of N for each I € [r].

For a more readable Table we will often use a renaming of F1,F2,... for the flight

numbers to distinguish between flights and teams.

Similar we have another way to represent the co-occurrence numbers using graphs:
Definition 6. Let S be a ([n], k,r)-schedule. The co-occurrence graphs are defined as
a family of graphs by (Gg)aen where A = {0|3(i,j) € N2 : \;;(S) = 0} and

Go= (N, Eg) with {i,j} € Ey < \;(S)=10

Gy is called the 6-co-occurrence graph of S.

Lemma 1. Let S be a (N, k,r)-schedule with assignment matriz S, then the following

formulations are equivalent definitions for \;;:

= {0 s) € [r] x [t} {i,5} € Ass}|
_Zzlz‘\z 1Az)

le[r] s€lt]
- Z 1{Sli}(Sl.7 Z 1{Sz] (ki)
l€[r] le[r]

2. THEORETICAL BACKGROUND

Proof. Since for each [€ [r] there can only exist at most one s € [t| with {i,j} € A
the first equation follows directly from Definition 3 of A;;:

={iel3selt] : {i,j} C A}| = |{(s) € [r] x [t][{i, 5} € A}
Using the definition of the indicator function, the second equation follows using

L@ =" T S L@ e = {0 e
oowed 0, {r,y}g A

and therefore

{s) el xf{igy e At = Y La.(i)-1a.0)

(L,s)€lr]x[t]

- Z Z 1Als 1Al5)

le[r] s€lt]

The last two equations are based on the initial definition again:

ds € [t] : {Z,]} < Als ESZ JE Ahsli < Sh' = Slj

To revisit these Definition, we can examine an example:

Ezxample 1. Given 6 teams, labeled 1 through 6, we aim to create a (not necessary
optimal) pairing list for 4 flights, where each race consists of exactly 3 teams.
This is equivalent of finding a ([6], 3, 4)-schedule. One suitable way of organizing the

teams could be as followed

A =1{1,2,3}, A ={4,5,6},
Agp = {1,4,6}, Ay =1{2,3,5},
Az ={1,2,4}, A3 ={3,5,6},
Ay ={1,3,6}, Ap={2,4,5}.

2. THEORETICAL BACKGROUND

The corresponding then schedule-tableau is given by

S |T1 T2 T3 T4 T5 T6
F1| 1 1 1 2 2 2
F2| 1 2 2 1 2 1
F3| 1 1 2 1 2 2
F4| 1 2 1 2 2 1

This schedule has two co-occurrence graphs Gy and Gs:

© ©,

Figure 1: 0-CO-OCCURRENCE GRAPH Figure 2: 2-CO-OCCURRENCE GRAPH

As we can see, this schedule has an fairness deviation of A(S) = 2.
We will later prove, that this is in fact a most fair schedule possible, in a sense of A(S)

being minimal under all ([6], 3, 4)-schedules.

Theorem 1. Let S and T be similar (N, k,r) -and (M, k,r)-schedules with relabelling
function m: N — M, then

Aij (S) = Mgy =() (T, for all (i,7) € N?

and

ATS) =AN(T), A (8)=A7(T), A(S)=A(T)

Proof. Since § and T are similar there exist permutations ¢ : [r] — [r] and ¢ : [t] — [{]
such that m(Agu)ws)) = Bis for all [, s.

2. THEORETICAL BACKGROUND

From Lemma 1 we use

Z Z 1Als 11415)

le[r] s€(t]

- 221“ By) () a8 1) ()

le[r] s€(t]

S b0 1)

le[r] selt]

- Z Z 1st 1st< (]))

le[r] s€lt]

= (i) (i) (T)

2.2 NECESSARY CONDITIONS FOR FAIR AND ALMOST FAIR SCHED-
ULES

After understanding our problem, we can start by formulating the first restrictions on

the existence of fair and almost fair schedules.

Lemma 2. Let S be a (N, k,r)-schedule. For everyi € N, the following equation holds:

Z Aij=1-(k—1)

JEN\{i}
Proof. Let i € N be fixes. We define a bipartite graph! G = (V, E) with
V =[r]JUN\{i} and {l,j} € E < 3Isc[t]:{i,j} C A

Using the principle of double counting we can conclude:

Z deg j —Zdegl

JEN\{i}

By the definition of co-occurrence numbers deg j = \;;.

1 Note that although the sets [r] and N\{i} may contain the same elements numerically, they
represent disjoint parts in the bipartite graph: [r] corresponds to the left vertex class and N\{i}
to the right.

2. THEORETICAL BACKGROUND

For [€ [r], deg!l counts the amount of j € N\{i} that are in the same block as 7 in the
[-th arrangement, which is just |A;\{i}| = k — 1, where s = Sj;.

Yo=Y &g]-}j&gl—E: (k—1)=r-(k—1)

JEN\{i} JEN\{i} =1

This Lemma leads to the first necessary condition on fair schedules:

Corollary 2. Let S be a fair (N, k,r) schedule, then r-(k—1) =0 mod (n—1). The

r(k=1)

quotient A = —-—

will be the constant value of \;j.
Proof. Since A(S) = 0 we can write \;; = A € N for all (i, j) € N2. Using Lemma 2 an
arbitrary ¢ € N gives

(n—1) Z Nij=r-(k—1) = r-(k—1)=0 mod (n—1)
JEN\{i}

]

Revisiting our previous example, we can now say, that for there can not exists a fair

([6], 3, 4)-schedule, since
ro(k—1) 4.2 8

=2 f_C¢z
n—1 5 "5 ¢

Another important results of above lemma yields information about the distribution of

co-occurrence numbers in almost fair schedules:

Corollary 3. Let S be an almost fair (N, k,r)-schedule. For a fized i € N, the distri-

bution of its co-occurrence numbers \;; is given by

[{jeN\{i}: Nij=q+1}|=p and [{je N\{i}:\j=q}|=n—1-p,

where
r-(k—=1)=q-(n—=1)+p for 1<p<n-2.

This also grants the necessary condition v - (k—1) Z0 mod (n — 1) for A(S) =

Proof. From A(S) = At — A~ = 1, we can define ¢ := A~ and conclude from its
definition, that \;; € {¢q,q + 1} for (i,7) € N2.

2. THEORETICAL BACKGROUND

Let i € N be fixed and define
Ag={jeN\{i} : \j=q} forge{qq+1}

Since only ¢ or g+ 1 are viable co-occurrence numbers, we know that A, and A,4; form
a disjoint partition of N\{i}. Defining p := |A,41| allows us to write |[A;] =n —1—p.

Using Lemma 2 we now get

re(k=1)= > Aj= > A+ Aj=plg+t)+(n—p-1g=q-(n—1)+p

JEN\{i} JENG+1 JEAg

From Ay, Ayi1 # 0 we have 1 <p <n —2. O

We will later mainly focus on the case of n = 2k and will now present a stronger version

of Corollary 2 as necessary condition for fair schedules:
Theorem 2. Let S be a fair (N, k,r)-schedule with n = 2k and k odd, thenr-(k—1) =0
mod 2(n — 1).

Proof. Let N = {xy,...,x,}. We define a helper function

b
gi(a,b) = |{l la <1<bz; € Als}‘ = Z L1y (Sizy)
l=a

fori € [n],s € [t] and 1 < a < b < r, as the amount of times, x; appears in the s-th
block of the a-th to b-th arrangement.

Since S is fair, we know A,,, = A € N for (z;,z;) € NZ. This especially implies
>\x1x2 -)\CB1$3 = /\x2x3 =\

From Theorem 1 we can assume

Ap, 1 <1<
1 € Ap and x4 € , for1<i<r (1)
AlQ,)\—l—lngT

Let = g3(1,\) with 1 < p < X\ the amount of times z3 appears in the first block of

the first A arrangements.

2. THEORETICAL BACKGROUND

x1 being always in the first block, allows us to write
A= Aoyay = g1 (1,7)

=D 1y(5)
=1

A r
= Z 1413 (Ste;) + Z 1413 (Sta;)
=1

I=X+1
=LA+ @A+ 1,r) =p+gi(A+1,r)

And therefore gi(A+ 1,7) = A\ — p is the amount of times x3 appears in the last block

of the remaining arrangements.

Since we only have 2 blocks per arrangement (n = 2k), the blocks A;; and A form a

partition N, allowing

gi(a,b) + gi(a,b) = {lla <1< bx; € A} + |[{l]a <1< ba; € Ap}|
= ‘{l|a§l§b,xi€A“ or IZ‘EAZQ}‘
={lla<1<ba; € ApUAp}
=|{lla<1<bx €N}
—|{tla<i<b)]
=b—a+1

This leads to

BA+LT) =r=A=giA+Lr)=r—A=A—p)=r+p—2\
From the placement of x5 in (1) we get

A= Aoy = (LA + BN+ 1,7) = g7+ — 2N = 20+ 7 — 2

Rearranging this equation and using Corollary 2 we have

T-(lf—l)_r> _ r(k—2)
n—1 202k — 1)

1

1
,u:§(3>\—7"):§(3

Because p € N it follows, that 2(2k —1) has to be a divisor of r(k—2). Since 2(2k—1) is

even and k — 2 is odd, we need r to be even and therefore 2| r(k —1). Corollary 2 gives

10

2. THEORETICAL BACKGROUND

2k — 1|r(k — 1) and since ged(2,2k — 1) this allows for 2(2k — 1) | r(k — 1). Granting
the expected result of - (k—1) =0 mod 2- (2k — 1). O

Note, that this condition only works for k£ odd. In a later section we will show that,
for example, there always exists a fair ([8],4, 7p)-schedule for each p € N, which would
form a contradiction to expanding the theorem to even k. A still open conjecture in
coding theory, is if there always exists a fair ([2k], k, 2k — 1)-schedule when k is even.

Many cases are already shown, the smallest unproven case being k = 334 (cf. [3],[4]).

Remark 2. A fair (n,n/2,n — 1)-schedule (for n even) is equivalent to a Hadamard
Matrix, that is a matrix H € {1,—1}"*" with HH” = nl,. Theorem 2 therefore
provides an alternative proof to the well known fact that such Hadamard Matrices can

only exists for n being a multiple of 4 (or n € {1,2}) ([5]).

11

3. OPTIMIZATION ANALYSIS

3 OPTIMIZATION ANALYSIS

Revisiting Example 1, we now aim to get information about optimal schedules for a

given parameter set (N, k,r)

Definition 7. For n,k,r € Noy with n = tk for t € No; (2) we define the minimal

fairness deviation as
f(n,k,r) =min {A(S)|S is a ([n], k,r)-schedule}
We further extend this definition by
fn,k,0)=0, f(n,k,1)=1, f(0,0,7r)=0, f(¢t,1,r)=0

to allow n, k € Ny, even though this was not covered in above section, as it’s analysis

18 trivial.

Definition 8. A (N, k,r)-schedule 8* is called optimal schedule, if

A(S*) = min{A(S) | S is (M, k,r)-schedule, | M| = n}

Using Theorem 1 this is equivalent to the condition
A(S") = min{A(S) | S is ([n], k, r)-schedule}.

Allowing us to only consider the set [n] for optimization analysis.

3.1 PROPERTIES OF THE MINIMAL FAIRNESS DEVIATION

Our first important result is that the existence of a fair schedule for ([n], k,r) for k,r > 2

always implies the existence of an almost fair schedule for ([n], k,r £ 1).

Lemma 3. For parameters n,k,r as described in Definition 7, the following inequality
holds:
\f(n,k,r) - f(n>k7r+ 1)‘ <1

12

3. OPTIMIZATION ANALYSIS

Proof. For k = 0,1 this is trivial, since f(n,k,r) is constant.

Considering the special cases for r we see that |f(n, k,0)— f(n,k,1)| = |0—1] = 1 which

satisfies the inequality. Since 0 < f(n, k,r) < r for obvious reasons, it also follows that

|f(nvk71) _f(n7k72)| - |1 _f(n7k72)| <1

We assume that k,r > 2 and split the absolute value inequality into two parts:

i) fln,k,r+1)— f(n,k,r) <1

(i) f(n,k,r)— f(n,k,r+1)<1

Allowing us to directly conclude |f(n,k,r) — f(n,k, 7+ 1)| <1 from their validity.

Starting with (i), let S©?) = (A;,) be an optimal ([n], k,7)-schedule, i.e. A(SP) =

f(n,k,r). We construct a ([n], k,r+1)-schedule &’ =

(
a arbitrary arrangement (B, ;). Examining a pair (
outcomes for \;;(S’):

r+1

)= 15,(5,) Zw)+ 15, (Sla,) = M) S) + 1,
1

Since 1gr (S741;) € {0,1} this results in
A(i7)(SCP) < Mif)(S) < A(i)(SP) +1, for all (4,5) € N?

and therefore
)‘+(3) <)\+(S()+ 1 and M\ (8) >)\—(5(01))).

For the minimal fairness deviation we then get

f(n,k,r+1) =min {A(S)|S is a ([n], k,r + 1)-schedule}
< A(S)
=28 - A (S)
< AT(SEP) 1 — A= (S0P)
= f(n,k,r)+1

which finishes (i).

By,) from S©P) by simply adding
i,j) € N? gives us two possible

(Sri15)

13

3. OPTIMIZATION ANALYSIS

The second part (ii) works analogously by simply removing the r-th arrangement from

an optimal ([n], k,r + 1)-schedule S°P) to construct a ([n], k, r)-schedule S giving
AGJ)(S) = 1 < A@)(S) < A@g)(S), forall (i,) € N?
This again results in the wanted inequality by estimating f(n, k,r):

f(n,k,r) = min {A(S)|S is a ([n], k, r)-schedule}
< A(S)
= XH(8) = A7(S)
< AH(SEP) — (A7 (8P)) — 1)
= f(n,k,r+1)+1

[
As a direct results we get two corollaries:
Corollary 4. The minimal fairness deviation is a contraction in r, i.e.
Fn,k,r) = f(n k7)< |r =7 for allr,7 € N,
Proof. W.l.o.g. 7> r. Using Lemma 3 we get
-1
|f(n,k7r) - f<n7 k'7f)| = Zf(n7 k?]) - f(nv k?] + 1)
j=r
i1
j=r
i1
<Y 1=(F-1-r+1)-1
j=r
=7r—r
O

Corollary 5. The existence of a fair schedule for ([n], k,r) implies the existence of a
almost fair schedule for ([n], k,r = 1) and prohibits the existence of fair ([n], k,r £+ 1)-

14

3. OPTIMIZATION ANALYSIS

schedules, 1.e.

fn,k,r) =0 = f(n,k,r—1)= f(n,k,r+1) =0

Proof. Applying Corollary 4 to 7 = 1 we get, that |f(n, k,r £ 1)] <1 and since f is
non-negative this implies that f(n,k,r £ 1) is either 0 or 1.
Assuming f(n,k,r + 1) = 0 while also f(n, k,r) = 0 would give

r-(k—1)=0 mod (n—1) and (r+1)-(k—1)=0 mod (n—1)

because of Corollary 2. Adding these congruences yield k —1 =0 mod (n — 1). But
for this congruence to hold we would have |[n — 1| < |k — 1| or k — 1 = 0, both being a
contradiction to n > k > 2. O]

We will later prove that, for the cases n = 6,k = 3 and n = 8,k = 4, these are also the
only times f(n,k,r) = 1 occur. Even though numerical analysis leads to the conjecture
that f(n,k,r) = 1 always results in f(n,k,7+ 1) = 0 or f(n,k,r+ 1) = 0, this still

remains unproven.

To finish the properties of f for now, we will include the subadditivity of f, which is

needed in the next sections.

Lemma 4. The minimal fairness deviation is subadditive in r, i.e.

f(n,kyry+1ro) < f(n,k,r) + f(n,k,re) for all ri,m9 € N.

Proof. The case of n = 0,1 or r = 0 is trivial and the case r = 1 follows directly from
Lemma 3.

Let SM = (A;,) and S® = (By,) be optimal schedules for r; and 5 respectively.
Similar to the proof of Lemma 3 we construct a new ([n], k,r; + r3)-schedule to create
an upper bound for f(n,k,r; +r5). We define &' = (Cy,) by concatenating SM and
S®:.

A, 1<Ii<r 1
Cis = : ! and therefore S’ = (S)

o2
Bl—rl,s r<l<ri+mry S

15

3. OPTIMIZATION ANALYSIS

For our new schedule we get

r1+72

Aii(8) =) 1g.(S))
=1

T1 r1+r2
- Z 1Sl/i(Sl,j> + Z 1Sl/i(sllj)
=1 l=r1+1

=2 L () + 2 Lo (S1)
=1 =1
= 5(8W) + Xi;(8?)
and therefore
AS) = ASD)+ ASY) = f(n,k,r1 4 12) < fln,k,r) + f(n, k,7s)

]

From now on we will mainly focus on the case n = 2k, as needed in Theorem 2, since

this allows for easier analysis, due to the binary behavior of blocks in an arrangement.

3.2 FORMULATION AS PROGRAMMING PROBLEM

Based on the definition of our problem we will be able to formulate a optimization

problem, that we can then solve using known algorithms.

We start by defining binary variables
by = 1{1}(5[1) for [l € [T],i S [Qk]

This allows for by; to determine if the team i is in the first heat of flight . (The nature of
n = 2k allows for two cases, that can be represented using binary variables). Technically
this is enough to fully characterize a schedule. Now we are only left with the task of
somehow representing A(S) in terms of these b; and restricting each heat to exactly k

teams.

The restriction to k£ teams can be done by simply counting how often b;; = 1 for a fixed

flight [. This yields the following first set of constraints:

16

3. OPTIMIZATION ANALYSIS

2k
> by forlelr]
=1

From the prior chapter we know that we are able to represent \;;(S) in terms of Sj; and
Sy; for I =1,...,r. This implies that we can also represent it similar in terms of b;; and
by for { =1,...,r. A trivial way of calculating \;;(S) is by simply looping over each
flight and counting how often b; and b;; are equal. We will model this process using a

new variable

1, by = by
Clij = : & for [€ [r],i,75 € [2k]

07 bli # blj

Since this way of defining is only good for an intuition but not suitable as an actual
constraint we will rewrite it. Based on the way that the constraint is formulated we
will get different problem formulations that perform differently, which is why we will

cover two such approaches.

The first way is by formulating a quadratic constraint. We can check for equality by
evaluating b;; — by, which will yield 0 if they are equal and +1 if not. This results in

the following constraint:

cij =1 — (by — by;)?

An alternative way is by modeling this constraint using multiple linear inequalities.

From exhausting all possible combinations:

bii | by i | Clij
010 1
011 0
110 0
1 1 1

we can form a tetrahedron with the different combinations as edges:

17

3. OPTIMIZATION ANALYSIS

0 0 1
P = conv of,11]1, 11
0 1

By rewriting this set using the intersection of half-spaces and fixing ¢;; € {0,1} we get

our constraints:

(buis buj, i)™ € P <= by + by + i > 1
bii + by —cuj <1
by — by +cuj <1

— by + by +cu; <1

This now allows us for counting c;;; to get A\;;(S) = >_,_, cii; and therefore allowing us
to formulate a problem that minimizes A(S).
Since AT(S) and A~ (S) form upper and lower bounds respectively, we can define them

using inequalities.

We therefore get the following two possible formulations:

18

3. OPTIMIZATION ANALYSIS

Binary quadratic problem:

Min AT =\
2k

s.t. > b=k,
=1

Clij = 1— (bli - blj)27

Aij = E Clig,

1=1

AT >N
AT < N,
bi; € {0,1},
cuj € {0,1},
Aij €N,
AT, AT EN,

159

Linear integer problem:

Min AT — AT

2k
s.t. Z by = k,
=1

bi + by + iy > 1,
bii + biy — iy < 1,
bii —bij +cuj <1,
—bii + by + iy < 1,

T

Aij = E Clig»

1=1

AT >
AT < \ij,
bi; € {0,1},
cuj € {0,1},
Aij €N,
AT AT EN,

R

for [€ [r]
for I € [r], i,j € [2K]
for i,j € [2k]

for i,j € [2k]

for 1,5 € [2k]

for [€ [r], i € [2k]
for I € [r], i,j € [2K]
for i,j € [2k]

for i,j € [2k]

for i,j € [2k]

for i,j € [2k]

for i,j € [2k]

for [€ [r], i € [2k]
for I € [r], i,7 € [2K]
for 4,5 € [2K]

for i,j € [2k]

19

3. OPTIMIZATION ANALYSIS

In practice, we can simplify both problems in multiple ways, by using the symmetry of
ciij or by eliminating variables that do not need to occur in the constraints at all (\;;

as example).
Such simplifications lead to the following systems:

Simplified binary quadratic problem (P1*):

Min AT — A\~
2%
s.t. > b=k, for [€ [r]
i=1
T_>‘+§Z(bli_blj)2; for1<i<j <2k
I=1
T—/_ZZ(bzi—blj)Q, for1<i<j <2k
I=1
bi € {0,1}, for [€ [r], i € [2K]
AT, AT EN, for i,j € [2k]

20

3. OPTIMIZATION ANALYSIS

Simplified linear integer problem (P2%*):

Min A=\
2k
s.t. > b=k, for [€ [r]
i=1
bz¢+blj+clij21, fOrlG[T],1§i<j<2/€
bli+blj_clij§1, fOI‘lE[T],lSi<j<2]€
bli_blj+clij§17 fOYlE[T],1§i<j<2]€
—by; + by + iy < 1, forler],1<i<j<2k
A= e, for 1 <i<j<2k
1=1
A<D, for 1 <i<j<2k
=1
bi; € {0,1}, for [€ [r], i € [2K]
ciij € {0,1}, forler],1<i<j<2k
AT, AT €N, for 4,5 € [2k]

There are also ways to restrict the problem more without loosing a minimal solution
by adding symmetry breaking constraints and therefore decreasing the feasible region.
Since A(S) is invariant under similarity (cf. Theorem 1) we can force an order of teams,

flights and heats that may lead to better performance in solving the problems:

To restrict permutations of team labeling we can fix the first flight by adding

1, 1<i<k
by; = (C1)
0, k+1<1<2k

Preventing permutations of heats inside a flight is possible by fixing the first team to
always be in the first heat
bp=1 for1<i<r (C2)

These two constraints turn out to be always beneficial to add. This changes with the
restricting the permutation of flights. The natural way of doing so is by defining an

order on the set of all possible flights:

21

3. OPTIMIZATION ANALYSIS

Definition 9. For finite sets A, B C N (i.e. A, B € [N]<¥) we define a binary relation:

A< B < Zza§22b

acA beB

Lemma 5. The relation from Definition 9 is a total order, i.e.

1.VAe|N]<**: A< A
2. VA B,CeNJ*:A<Band B<C = A<C(C
3. VABEN“:A<Band B<A — A=B

4. VA BeNJ**:A<BorB<A

Proof. The properties 1,2 and 4 are trivial.

For proving 3 assume that A # B, if A and B are not equal but both finite there exist
a biggest element & = max(AAB), If this k isin A\B. If k € Aand k > bfor all b € B,

we can conclude a contradiction to A < B:

k—1
Zz“z2’f22k—1222i222”
=0

a€A beB

If instead k € B\A, analogous reasoning leads to B < A. Resulting in either case
contradicting A < B and B < A. O

We can use this total order for adding the constraint 4;; < A;114 for 1 <1 < r,

rewriting this in terms of by gives

2k 2k
b2 <> b2 for1<i<r (C3)
i=1 i=1

As said this constraint does not always increase the performance, mainly because of

the high coefficients 2°. An alternative way is by adding the weaker constraint

2k 2k
D b i< bigagci for1<i<r (C4)
=1 =1

22

3. OPTIMIZATION ANALYSIS

This is not an order and therefore will not prevent all permutations, but we hope that
giving a compromise for not having too high coefficients while still restricting a good
enough portion of permutations may increase performance in some cases (we will see,
that this is not the case).

Considering these new constraints we have a total of 6 different optimization problems

which based on previous thoughts and Theorem 1 all have the same optimal value:

(P1): Problem (P1*) with constraints (C1) and (C2)
(P1s): Problem (P1*) with constraints (C1), (C2), and (C3)
(P1w): Problem (P1*) with constraints (C1), (C2), and (C4)

(P2): Problem (P2*) with constraints (C1) and (C2)
(P2s): Problem (P2*) with constraints (C1), (C2), and (C3)

(P2w): Problem (P2*) with constraints (C1), (C2), and (C4)

When it comes to solving these Problems we start by focusing on the problems P2, P2s
and P2w. The linearity allows for easier solving then the quadratic problems P1, Pls
or Plw. To revisit the procedure we start by looking at linear optimization problems

with real valued variables.

Definition 10. An linear optimization problem (LOP) in standard form is given by

Max x
s.t Arx =0
x>0

where c,x € R", b € R™ and A € R™*".

Such LOP can be solved using the simplex method. When working with arbitrary LOPs

that are not in standard form we can convert them into such:

1. If we have a minimization problem it can be converted to a maximization by going

23

3. OPTIMIZATION ANALYSIS

from ¢ to —c:

min{c’'z | Ar = b,r > 0} = —max{—c'z | Ar = b,z > 0}

argmin{c’z | Ax = b,z > 0} = argmax{—c x| Az = b,z > 0}

2. If we have an inequality ATz < b; they can be converted into an equality by adding
so called ,slack® variables and considering ATz + s < b; with s > 0 instead. For
the case of AZ-Tx < b; we use A;frx — s <, with s > 0.

3. If we have constraints = > ¢ we can shift ' = = — ¢ to get ' > 0 and have to

shift it back after solving. Similar can be done if z < ¢ by taking '’ = —x + ¢.

4. If we have free variables x € R they can be represented by = = 2’ — z” with

2, 2" > 0.

5. If we have completely bounded variables ¢; < x < ¢y we write 2’ =2 —¢; > 0

and " = (cg — 1) — 2’ > 0.

To work with integer linear optimization problems (ILP) where some (or all) variables
have the restriction to be integer a widely used algorithm to solve such is the branch-
and-cut algorithm. It is a combination of branch-and-bound algorithm and cutting-

plane algorithm.

Both algorithms are best explained on an example[6]:

FEzample 2 (Branch-and-Bound).
Consider the following ILP:

Max 2z =5z + 625
s.t. T+ 22 <5
4y + Ty < 28

r1,Te > 0

xr1,%o € 7

Branch-and-Bound works by relaxing the system by its integer constraints to find

bounds and allow for creating new constraints for subproblems.

We therefore start by solving the problem without restricting x1,x, € Z with the

24

3. OPTIMIZATION ANALYSIS

simplex method. This yields an optimal value of & ~ 27.7 at z; = { ~ 2.3 and

Ty =35~ 27

This already gives us an upper bound of % for the ILP. The idea of branch-and-bound is
to split our problem and add two cuts x5 > 3 or 25 < 2, since 7 = % ¢ 7 (alternatively
one could have created cuts z; > 3 and z; < 2, which would yield to the same final
result, but does not cover all cases that are needed for a good example). When solving

the first subproblem

(1)Max 511 + 629
S.t. 1+ 29 <5H
4y + Ty < 28

T1,T9 > 0

.T223

we get an optimal solution of 26.75 at 1y = 1.75 and x5 = 3. Since x; is still not yet an
integer solution we create new cuts x; > 2 and x; < 1 while still holding onto x5 > 3.
In the case of ;7 > 2 we do not have any feasible solution (4x1+7z5 > 8421 = 29 > 28)
therefore we only consider xy < 1 which yields an optimal solution of 25.57 at x; = 1
and zo = 3.43. We again add cuts x5 > 4 and x5 < 3 and get 24 at 1 = 0,25 = 4 and

23 at x1 = 1, z9 = 3 respectively.

Now that this branch is exhausted we return to our first time we cuttet (at xo > 3 or
zo < 2) and keep in mind that our ILP has a lower bound of 24.

We now add the cut x5 < 2 and consider the LP

(1)Max 511 + 629
S.t. T+ 29 <5H
4y + Ty < 28

T1,T9 > 0

.T2§2

25

3. OPTIMIZATION ANALYSIS

which yields an optimal solution of 27 at 1 = 3 and x5 = 2. This increases our lower

bound to 27 and also exhaust this branch.

Since we have now covered all possible integer pair x1, 2 in one of the final subproblems

we can say that our maximum of the original ILP is at 27 with (x, z2) = (3,2).

Ezxample 3. Cutting Plane For the cutting plane algorithm we consider the same ILP

as in the first example and also relax the integer restriction.

The idea relies on the resulting LP form of after the simplex iterations, not only the

solution, which is why we convert our problem into standard form:

Max z = 5r1 + 619
s.t. T1+2xo+5 =05
41‘1 + 71’2 + 89 = 28

T1,T2,S51,S2 Z 0

After performing the simplex iterations we get

_ 83 11, 1

Max 2z = 5381 35
Te 1. _
S.t. T1+ 351 — 3552 =

wloo Wl

4 1
Ty — 351+ 322 =

T1,%2,51,52 >0

We can now choose an arbitrary equation constraint with non integer right-hand side,
we choose the the second constraint, and rewrite the occurring numbers (coefficients
and rhs) in the form of z 4+ ¢ where z € Z and ¢ € Q with 0 < ¢ < 1:

81— 782 <

win
Wi
wnN

Wl

I2+(—2+§)81+(0+%)l’2:2+§ < 1‘2—281—2:

Since in our ILP x5, s1, s9 € Z a rhs of % is not possible and we can further reduce it to

26

3. OPTIMIZATION ANALYSIS

.T2—281—2§0

To bring this back to standard form we add a new slack variable s3 and get the cut

1’2—281+83:2, 5320

Adding this to our LP and applying the simplex iteration again we get

Max 2z =27—3s1 — s3
s.t. 1 +381 — 83 =3
To — 281+ 83 =2
251 + S9 — 353 =2

T1,X2, 51, 52,53 Z 0

Here 1, x5 and s; form our basic variables that yield integer solutions x; = 3,29 =

2, 8o = 2 and therefore an optimal value of z = 27

If we would have non integer basic variables we could create the next cut and do another

iteration until we find the solution to our ILP.

To summarize both algorithms:

Definition 11. Branch-and-bound

1. Relax integrality and solve the LP
2. If the LP solution is integer update best known integer solution

3. Otherwise choose one fractional variable x; = q € Q\Z and branch by creating

two subproblem with the additional bounds x; < |q| or x; > [q]

4. Repeat steps for each subproblem, if integer solution is found, trace back to the

other subproblems

Definition 12. Cutting-Plane

27

3. OPTIMIZATION ANALYSIS

1. Relax integrality and solve the LP
2. If the LP solution is integer stop
3. Otherwise choose simplex tableau row with fractional right-hand side

4. Create cut and add new constraint by rounding down coefficients and right-hand

side

5. Repeat the steps until a integer solution is found

In practice the cutting plane is strong in the first few iterations, but finding a solution
by only cutting plane my take many iterations. In contrast branch-and-bound cuts are
not as effective early on, which is why the branch-and-cut algorithm combines both
advantages by starting with doing cuts from cutting plane and then branching when

the cuts are no longer effective.

Solving quadratic problems, especially in the case of non-convex feasible sets, is gener-
ally way more complicated which is why we won’t go into detail on how to solve such.
Instead we will use an established solver Gurobi for comparing our models with different
parameters. All experiments were conducted on a server running Ubuntu 24.04.3 LTS,
equipped with an Intel Xeon Gold 5218R CPU (80 cores) and 125 GB RAM as well as

an runtime limit of 60 Minutes per Model.
Examining the parameters k =3,...,9 and r = 3,...,20 we got the following results:

The left table shows the solution to the optimization process in the case that Gurobi
found such in the given time limit and the right table gives information about which

model found said solution the fastest.

The results show that for higher values of £, i.e. k£ > 7 it turns out to be surprisingly
hard to find optimal solutions for » > 8. Even after increasing the time limit to multiple
hours we are still only left with lower and upper bounds for most of these cases in each

of the six model.

We also see that there is not one best model to fit every parameter set. An obvious
result is that the models P1w and P2w turned out to perform poorly for moderate values
of k and r and most of the time did not find a optimal solution in 30 minutes where
other models succeeded in only a few minutes. Similar, but inconsistent behavior can be

observed when taking a closer look in some of the results. Take the cases (k,r) = (6, 13)

28

3. OPTIMIZATION ANALYSIS

: k 34 5 6 7 8 9 . k 3 4) 6 7 8 9
3 2 2 3 2 3 2 3 3 Plw P2s P2s Pl1 Pls P2s P2
4 2 2 3 3 3 3 3 4 P2w Pls P1 P1 P1 P1 PI1
5 2 2 3 2 4 2 4 5 P1 Pls P1 P1 Pl Pls P1
6 21 2 2 3 2 3 6 P1 P1 P1 P1 P2 Pl P1
7 2 0 3 3 3 3 3 7 P2s P2s P1 Pls Pls Pls Pl
8 2 1 3 3 8 P1 P1 Pls Pls
9 1 2 2 2 9 P2 Pls Pls P11
10 0 2 2 1 10 P2 Pls P2s P11
11 1 2 2 0 11 P1 Pls Pls P11
12 2 2 21 12 P2s P1 P1 Pl
13 2 1 2 2 13 P2s P1 P1 Pl
14 2 0 2 2 14 Pls P1 Pls Pils
15 2 1 2 2 15 P1s P1 P2s Pils
16 2 2 2 2 16 P2s Pls P1 Pl
17 2 2 1 2 17 Pls Pls P1 Pl
18 2 2 0 2 18 P1 Pls P1 Pls
19 1 2 1 2 19 P1 Pls P1 Pils
20 01 2 2 20 P1 P1 Pls P1
Table 1: OPTIMAL VALUES Table 2: BEST MODEL

and (k,r) = (6,14) as an example. The model P1 and P1s both needed a few seconds to
find a optimal solution when r was 13. Increasing its value to 14 resulted in P1 taking
more than an hour while P1s still found a solution in under a minute. Conversely when
looking at the pairs (k,r) = (9,4) and (k,r) = (9, 5) the first pair again required a few
seconds to be solved with both model P1 and Pls and for the second pair model P1
needed only 2 minutes where Pls took an hour for finding an optimal solution. The

same behavior can be found when comparing P2 and P2s on different examples.

When comparing P1/P1s with P2/P2s we can see that in general its better to choose
the models P1 or Pls, since most of the time it performs better than the models P2
or P2s and in in the cases where P2/P2s do perform better, the performance gain is
just by a small amount. Take the case k = 7 and r = 6 for example, where the table
suggests, that P2 was the best choice, but in reality the model P1 took 162 seconds
when P2 took 145 seconds, what may seem like a good improve (10 percent), but can
in generally be neglected, since we do not focus on increasing performance by small

amounts, but finding a approach that works well in general.

So to conclude this section the results of the experiments above show that the best way

29

3. OPTIMIZATION ANALYSIS

to tackle general parameters is to use the models P1 and P1s. Unfortunately for now

we cannot say beforehand what of both will work better.

3.3 SOME SPECIAL CASES

As seen in Table 1, we recognize a common pattern (periodic behavior) in the case of

k =3 and k£ = 4. We will now continue proving this observed pattern.

For k = 3 the sequence 0,1,2,2,...,2,1 seems to repeat every 10 steps, which leads to

the assumption of 10-periodic behavior.

Lemma 6. If r is a multiple of 10, then f(6,3,7) = 0 and if r = +1 mod 10 then
f(6,3,r)=1

Proof. We are using the fact, that f(6,3,10) = 0 by giving an explicit example of a fair
([6], 3, 10)-schedule:

S |T1 T2 T3 T4 T5 T6
F1 | 1 1 1 2 2 2
F2 | 1 1 2 1 2 2
F3 | 1 2 2 2 1 1
F4 | 1 2 2 1 1 2
F5 | 1 2 1 2 2 1
F6 | 1 1 2 2 1 2
Fr | 1 2 1 2 1 2
F8 | 1 2 1 1 2 2
F9 | 1 2 2 1 2 1
F10 | 1 1 2 2 2 1

The given schedule satisfies \;;(S) =4 for all ¢, j € [6] and is therefore a fair schedule.

This allows us to use the subadditivity (Lemma 4) for r = 10g with ¢ € N:

£(6,3,10¢) = f (6,3,2 10) <> f(6,3,10)=0
j=1 Jj=0

Combined with the fact, that f(6,3,7) > 0 and f(6,3,0) = 0 by definition, this com-
pletes the first statement.

30

3. OPTIMIZATION ANALYSIS

For the second part, we consider ' = r +1 = 10¢ with ¢ € N. Using the first

part we can see that f(6,3,7") = 0 and therefore, using Corollary 5, it follows that

f(6,3,7) =1

Lemma 7. For r > 0 we have an upper bound of 2, i.e. f(6,3,7) <2

Proof. The case r = 0,1 are again trivial, so assume r > 2:

There exists ([6], 3, p)-schedules S for 2 < p < 8 with A(S) = 2:

Sy |T1 T2 T3 T4 T5 T6
F1] 1 1 1 2 2 2
F2] 1 1 1 2 2 2
S, |T1 T2 T3 T4 T5 T6
F1] 1 1 1 2 2 2
F2] 1 2 1 2 1 2
F3] 1 1 2 2 2 1
F4] 1 2 2 2 1 1
S¢ | T1 T2 T3 T4 ThH T6
F1] 1 1 1 2 2 2
F2] 1 1 2 2 2 1
F3] 1 2 2 1 1 2
F4 1] 1 2 1 2 2 1
F5] 1 2 1 1 2 2
F6 | 1 2 1 2 1 2

S| T T2 T3 T4 T5 T6
F1| 1 1 1 2 2 2
F2| 1 2 2 2 1 1
F3| 1 1 2 2 2 1
S| T1 T2 T3 T4 T5 T6
F1| 1 1 1 2 2 2
F2| 1 2 1 2 1 2
F3| 1 1 2 1 2 2
F4 | 1 2 1 2 2 1
F5| 1 1 2 2 2 1
S;|T1 T2 T3 T4 T5 T6
F1| 1 1 1 2 2 2
F2 | 1 2 1 1 2 2
F3| 1 1 2 2 1 2
F4| 1 1 2 2 2 1
F5| 1 1 2 1 2 2
F6 | 1 2 1 2 2 1
Fr| 1 2 2 2 1 1

]

31

3. OPTIMIZATION ANALYSIS

Ss | T1 T2 T3 T4 T5 T6
F1| 1 1 1 2 2 2
F2 | 1 2 1 2 1 2
F3| 1 1 2 2 1 2
F4 | 1 1 2 2 2 1
F5| 1 2 1 2 2 1
F6 | 1 2 1 2 1 2
Fr| 1 1 2 1 2 2
F8| 1 2 2 1 1 2

Let r = 10g + p for 2 < p < 8 and use the contraction property (Corollary 4), we get:
f(6,3,10q + p) < f(6,3,10q) + f(6,3,p) <0+2 =2

For the remaining case of r = 10g or r = 10g £ 1, the Lemma 6 gives f(6,3,r) < 2. [

The last simple case is r =5 mod 10:

Lemma 8. Ifr =5 mod 10 then f(6,3,r) = 2.

Proof. From Lemma 7 we have f(6,3,r) < 2.

When r =5 mod 10 then » = 0 mod 5 and therefore 2r = 0 mod 5. This allows us
to use Corollary 3 for f(6,3,r) # 1 and Theorem 2 for f(6,3,r) # 0, since k is odd and
r-(k—1) = 2k is divisible by n — 1 = 5. Leaving us with f(6,3,r) > 2 and therefore
£(6,3,7) = 0. O

Lemma 9. For r = 10q + p, where 2 < p < 8, there exists no fair ([n], k,r)-schedule,

i.e. f(6,3,7)#0.
If p =5 there also does not exists a almost fair ([n|, k,r)-schedule, leaving (6,3,10q +
5) =2.

Proof. Whenp =15,i.e. r =5 mod 10 thenr =0 mod 5 and therefore 2r =0 mod 5.
This allows us to use Corollary 3 for f(6,3,r) # 1 and Theorem 2 for f(6,3,7) # 0,
since k is odd and r- (k—1) = 2k is divisible by n—1 = 5. Leaving us with f(6,3,r) > 2
and therefore f(6,3,7) = 0.

If pe{2,3,4,6,7,8} we have p mod 5 € {1,2,3,4}, which means

(k—1)-r=2r=20g+2p=2p modb = (k—1)-r mod (n—1)¢€ {2,4,1,3}

32

3. OPTIMIZATION ANALYSIS

Using Corollary 2 this prohibits the existence of a fair ([n], k, r)-schedule. O

This leaves us with a current characterization of:

0, r=0 mod 10
f(6,3,7) =<1, r=4+1 mod 10

1 or 2, otherwise

For the remaining cases we will need the helper function used in the proof of Theorem 2,

it’s recommended to revisit the proof to remind of the idea behind it.

Definition 13. Let S = (Aj;s) be a schedule, s € [t], i € [n] and 1 < a < b < r, the
helper function g is defined as

b b
gila,b) = |{lla <1< bie A =) 1a,(i) =) 1 (k)
l=a l=a

Lemma 10. Let g be defined as in Definition 13, then:

t
Zgi(a,b):b—a—i-l

s=1

Proof. Using the Definition of Sj; we get
bt b

Zgé(a;b) - Zzl{s}(slz‘) = ZZ L (Su) = Zl =b—a+1

s=1 l=a l=a s=1 l=a

Theorem 3. Ifr =2 mod 5 there exists no almost fair ([6], 3, r)-schedule and therefore
f(6,3,7) =2 forr mod 10 € {2,7}.

Proof. Assume there exists an almost fair ([6],3,r)-schedule. From r = 2 mod 5 it

follows that 2r =4 mod 5 and Corollary 3 gives

{7 eN\{i} : \y=q+1}| =4 and [{je N\{i}:\;=q}|=1

This leaves every node in the g-co-occurrence graph with degree 1.

Up to permutations, which do not impact f by Corollary 1, the only way to achieve

33

3. OPTIMIZATION ANALYSIS

this is by
A2 = Ao1 = Asg = M3 = Asg = Ags = ¢

and \;; = ¢ + 1 otherwise.

Using Corollary 1 again, we set S;; = 1 and

This ensures, that 1 and 3 are in exactly ¢ + 1 blocks together which was given by
)\13 =q+ 1.
We now define i := ¢3(1, ¢+ 1) as the number of times 2 is in the first block of the first

q + 1 assignments. Using Lemma 1 to represent \j5 and A3 gives

Mo =Y 1ggu)(Si2)

=1

g+1
- 21{511} (Si2) + Z 1{511} (S2)

l=q+2

g1
_ s, S,
SRR SRt

=1 l=q+2

=gi(Lg+1)+gi(g+2,r)

— gillqg+2,1r)=q—p

and

A2 = 1s,,3(Sz)

g1
- Zl{sw} (Si2) + Z 1{515} (Si2)
l=q+2
g+1
S S
B ED SRt
=1 I=q+2

=gi(L,g+1)+g5(g+2,7)

— g3(q+2,r)=q+1—p

34

3. OPTIMIZATION ANALYSIS

Lemma 10 gives ¢g3(q +2,7) + g3(q + 2,7) =7 — (¢ + 2) + 1 and therefore

3g+2—r
(G—m)+(g+1-p)=r—(g+2)+1 = p=""F—
Since 2r = 5q + 4 this gives us:
_ =4 3 EA 42— p -2
=75 = 2 ST

(2)

As ¢ has to be a natural number we can conclude r = 2 mod 10, which is a contradiction

for r mod 10 =17. 2

From p := ¢3(1,q + 1) we may assume w.l.o.g. that A; C {1,2,3} for 1 <[< u. Note

that |A;s| = k = 3 which implies equality.

Similar as before we define v := ¢g}(u+1,¢+1) and get g3(q+2,7) = g — v for securing

A34 = ¢, repeating the same as above we get v = % by Ay =q+ 1.

Introducing another variable

b = Z 1{512}(514)

l=q+2
gives us a full characterization of 4:
q—+ 1=)\24
- Z 1{512}(514)
q+1 r

21{512} (S14) _'_21{512} (Sua) + Y 1gsy(Su)
=1 l=q+2
M q+1 r

= Zl{l} Su)+ D> Lp(Su) + Y s (Su)
=1 I=p+1 I=q+2

=0+gy(u+1,g+1)+b
=(@+1-(u+1) =1 —gi(p+Lg+1)+b
=q+l—p—v+b

= b=p+v=2pu

2

statement, but would just change the problem to cases of r = 40q + p.

Note that rearranging to u = ¢/4, which forces ¢ to be a multiple of 4 may seem like a stronger

35

3. OPTIMIZATION ANALYSIS

We can further analyze by writing

a = Z Ly ({Si2}) - 11y(Su), B= Z Lioy ({Si2}) - 1423 (Sa)

l=q+2 l=q+2

as the amount of times that we have the blocks {1,2,4} and {3, 2,4} in the arrangements
from ¢ + 2 to r.

This allows for:

g+l r
Mz =Y s,y (Se) + D sy (Se)
=1 l=q+2
=n+ > 1py(Se)
l=q+2
=+ Y L(Sie) - (L (Su) + Ly (Su))
l=q+2
=ptot Y 1 (Se) - 1) (Su)
l=q+2
and analogously
q+1 r
Mot =D Lisiy (Si) + D Lo (Sua)
=1 I=q+2

=v+p+ Z 1{1}(512) . 1{2}(514)

1=q+2

Using A2 = A34 and p = v then gives a = 3, the definition of b grants b = a4+ 8 and
therefore a = = b/2.

This does not directly results in a contradiction, but since k = 3 this fills enough blocks,
such that there can’t exists placements for 5 and 6, which won’t break A(S) = 1. To
be specific this leaves us with ¢ + 1 — b incomplete arrangements in the first ¢ + 1 and

r —(¢+ 1) — b in the remaining. Let

g+1

n= Z 1{1}<{Sl5})) 1{2}({516})7 77/ = Z 1{1}({515}) : 1{2}({516})

l=q+2

describe the amount of times a 5 is in the first block of such incomplete arrangements,

split between the (¢ + 1)-th and (¢ + 2)-th arrangement for easier analysis ofA;5 and

36

3. OPTIMIZATION ANALYSIS

)\35.

When considering A5 = A\35 = ¢ + 1 we get

)\15 = Z 1{5[1}({515})
=1

ptv q+1

=S L Ssh+ Y L (Ssh) + Y Lisny({Si))

I=p+v+1 l=q+2

=0+n+ Z Ly ({Sis}) - (1413 (Si6) + 1123 (Sks))

l=q+2

=n+n+ Y 1 ({Si}) 111 (Sie)

I=q+2

=n+n+ Z Loy ({Si2}) 123 (Sha)
l=q+2
=n+n+p
and analogously

Ass=n+a+(r—(¢g+1)—0b) -1

Using A5 = A35 and o = 3 gives:

2r—4
5

has to be even, but r and b = 2 are also both even making r — (¢ + 1) — b odd which
contradicts " € N. O

Since r = 2 mod 10 by assumption we know 2r—4 =0 mod 10 and therefore ¢ =

Using the same procedure one is able to cover the cases r = 3 mod 5, since using

Corollary 3 yields

e M\{i}: hy=g+1} =1 and |{je N\{i}: \; =g} =4

Corollary 6. If r =3 mod 5 there exists no almost fair ([6],3,7)-schedule and there-
fore f(6,3,7) =2 for r mod 10 € {3, 8}.

37

3. OPTIMIZATION ANALYSIS

The last cases missing to complete a characterization of f(6,3,7) are r = 4 mod 10
and r = 6 mod 10 which makes the analysis more complex: By using Corollary 3 we
get

{7 e N\{i}: A\j=q+1}|=2 and [{j e N\{i}: \;=q}| =3
or

[{jeN\{i}: \j=q+1}]=3 and [{je N\{i}:\;=q}| =2
respectively, allowing for multiple possible co-occurrence graphs, that are not isomorph.

We start by finding them all:

Lemma 11. Let G be a finite, undirected, simple and 2-regular (i.e. all nodes have

degree 2) graph, then all components of G have to be cyclic.

Proof. Let G = (V, E) be a component of G. Since G is 2-regular the component is
2-regular too.

We do an induction over n = |V :

There are no 2-regular graphs with less than 3 nodes, since the degree of a node v € V
is bounded by degv < n—1. Up to permutations, there are a total of 4 different graphs

with n = 3 nodes:

@ ®\@
® © ®

(a) FIRST GRAPH (b) SECOND GRAPH

(c) THIRD GRAPH (d) FOurRTH GRAPH

Figure 3: ALL GRAPHS WITH 3 NODES.
Only the fourth graph is 2-regular, it’s also cyclic proving the base step.

For the induction step, let G = (V, FE) be a 2-regular, connected graph with V =

{v1,...,vp41}. Since degv, 1 = 2 there exists nodes v; and vy, such that I’ > [and

38

3. OPTIMIZATION ANALYSIS

{vi, vpi1}, {vr,vns1} € E. This allows to construct a new graph G’ = (V', E’) with
V' = V\{vn41} and

E'= {{vi,v;} € Eli,j € [n]} U {{or, 0 }}

by simply removing v,, 1 and reconnecting v; and vp. We can assure that {v;, vy} ¢ E for
n > 3, because otherwise {v;, vy, v, 41} would form a component in G, which contradicts
its connectivity.

We can conclude that G’ is also connected and 2-regular and since |[V'| = n using
the induction hypothesis it follows that G’ is cyclic, i.e. there exists a permutation
7 [n] = [n] with

{{UW(1)7 Uﬂ(g)}, {UW(Q)v UW(3)}7 s {UW(”—1)7 Uﬂ(n)}7 {Uﬂ(n)7 Uﬂ(l)}} =F.

Since {v;, vy} € E' and G’ is 2-regular, on of these edges must be {v;, vy}, because
otherwise m wouldn’t be a permutation.

This allows constructing a permutation o : [n+ 1] — [n + 1] on G:

w.lo.g. m(1) =1 and 7w(n) = [. Define

This results in

o), vo@) }, {Uo@), Vo@) }s - - - {Vo(n=1), Vo(m) }+ {Vo(n)s Vo) }» {Vo(nt1)s Vo) } }
= {{vx@)s V@) }s {02, Vr(3) s - - - s {Vr(n=1)s Vrm) > {00 Vng1 }, {Vng1, 00} } = E.

proving that G is cyclic. O

Corollary 7. For a finite, undirected, simple and 2-reqular graph with exactly 6 nodes,
there are only two possible graphs up to isomorphism, a cyclic or the union of two Kj

graphs?.

Proof. Using Lemma 11 we can partition G into its cyclic components, leaving us with

3 different cases:

1. There is only one component, which implies G is cyclic.

8 The graph K, is a complete Graph with [V| = n Nodes, i.e. E = (}).

39

3. OPTIMIZATION ANALYSIS

2. There are two components of size 3, which are both cyclic and therefore equal K3

3. There is at least one component that doesn’t have have 3 or 6 nodes. This would

result in an component of size 1 or 2, which contradicts that G was 2-regular.
m

Knowing the possible types of co-occurrence graphs we can now dedicate ourself to the

cases r =4 mod 10 and r =6 mod 10:

Theorem 4. [fr =4 mod 10 there exists no almost fair ([6],3,r)-schedule and there-
fore f(6,3,1) = 2.

Proof. Assuming the existence of a ([6],3,r)-schedule S with A(S) = 1 we can use

Lemma 3 and get
{je M\{i}: \j=q+1} =2 and [{j e N\{i}: \;=q}|=3.

since r =4 mod 10 implies 2r = 5q + 3.
Looking at the (¢q)-co-occurrence graph G, of S we observe that it’s 2-regular allowing

the usage of Corollary 7, i.e. G, is either a cycle or the union of two K3 graphs.

In the case of two K3 graphs we can w.l.o.g. assume that

A2 =X = A3 =A31 = da3 = A2 = ¢
M5 = Asa = g = Aea = Asg = Ags = ¢
Aij = q+1 otherwise

If we have such schedule we are able to construct a new ([6],3,r + 1)-schedule S" by
adding ({1,2,3},{4,5,6}) as (r + 1)-th arrangement.

Now we have \;; = ¢ + 1 for all (i,7) € N? resulting in f(6,3,r7 + 1) = 0. But since
r+1 =5 mod 10 this is a contradiction to Lemma 8 allowing us to focus on a cycle

as (q)-co-occurrence graph.

40

3. OPTIMIZATION ANALYSIS

The proof then follows analogously to the one of Theorem 3 by assuming

A2 = Aoz = A3q = A\g5 = As6 = A1 = ¢
A2l = A32 = A\g3 = A5y = A\g5s = Aig = ¢
Aij = q+1 otherwise

We then set S;; = 1 and

Sis = .
2, ¢q+2<I<r

writing g = ¢?(1,q+1) and v = ¢g{(u+ 1, + 1) and following from similar calculation

as before that
3g—r+1 3q—1r+2
= andy = —— —

2 ’ 2
Since both p and v are natural numbers this implies 3¢ — r + 1 and 3¢ — r 4+ 2 both

being even which is impossible. O]

The last case is again analogously proven and only really differs in the reasoning why

two K3 graphs are not viable co-occurrence graphs.

Corollary 8. Ifr =6 mod 10 there ezists no almost fair ([6],3,7)-schedule and there-
fore f(6,3,1) = 2.

Proof. From Lemma 3 we can again conclude a 2-regular graph as (¢+ 1)-co-occurrence
graph, when assuming an almost fair ([6], 3, 7)-schedule S.

By looking at the case of two K3 components of this graph we have

A2 =3 = Aga = Mas = Asg = Ag1 = ¢+ 1
M1 =Xz =A3=Asu=Ass = g =¢q+ 1

Aij = q otherwise

Taking an arbitrary fair ([6], 3, 10)-schedule 8" = (A},) we find a permutation = : [6] —
[6] such that m(A1) = {1,2,3} and 7(Aj01) = {4,5,6}. From Theorem 1 this does
not change the values of \;; and therefore the ([6], 3, 9)-schedule 8" = (7(Ais))i=1.9.5=1,2

41

3. OPTIMIZATION ANALYSIS

has the following co-occurrence numbers:

A2 = Aoz = A3g = Ags = Asg = Ag1 = ¢
Ao1 = A2 = Az = Ass = g5 = A\ig = ¢
Aij = q+1 otherwise.

When concatenating S and 8" we get a ([6], 3, r+9)-schedule with constant co-occurrence
number 2¢ + 1. This would result in f(6,3,r+9) = 0 which contradicts Lemma 8 since
r+9=5 mod 10.

Now focusing on a cyclic G411 works as before in Theorem3. n

Combining the now proven Characteristics for each case of r mod 10 we can summarize

it in an final Corollary:

Corollary 9. For an arbitrary r € N the following characterization of f(6,3,+) holds:

0, =0 mod 10
f(6,3,7) =<1, r=+1 mod 10

2, otherwise

It is noteworthy that we can proof a similar result for the special case of £k = 4 and

n =8&:

Theorem 5. For an arbitrary r € N the following characterization of f(6,3,-) holds:

0, =0 mod?7
f(8,4,r)=41, r=+1 mod?7

2, otherwise

This theorem is stated without giving full proof, since the deviation would be signifi-
cantly longer than for the case of k = 3 without showing any new methods of proving

or other interesting properties.

The idea follows the same techniques as used for proving the above case. By providing
example schedules for schedules fulfilling our hypothesis when r» < 7 we can ensure

an upper bound of 2. Following Corollary 3 we can further give an lower bound of 1

42

3. OPTIMIZATION ANALYSIS

for the case of r being no multiple of 7. For proving the characterization we are left
with contradicting the existence of a almost fair schedules in the cases of r mod 7 €
{2,3,4,5} which would give p € {6,2,5,1}.

Contradicting such existence works similar to Theorem 4 and Theorem 3, while keeping
the simplicity of these proofs the case £ = 4 turns out to be much longer, especially for
the cases of p = 2 and p = 5 since we have to cover multiple different co-occurrence-

graphs where before we were able to break it down to cover only one of such.

Conjecture 1. It remains unclear if such periodic behavior can be generalized for the

cases of k > 4 and n = 2k or for n being another multiple of k than 2k.

Our method is limited to k < 4, because after that we have to contradict the existence
of schedules with a fairness deviation of 2 or more, which, sheer to the amount of
potential co-occurrence-graphs, is not possible with our approach neither by hand nor

using an computer.

Despite this rather demotivating limitation we can still use the proofs ideas to give lower
bounds to parameters too big for our computers to find solution using the presented

optimization formulations from Section 3.2.

One such case that we wish to highlight is (n,k,7) = (18,9,15). This seemingly ar-
bitrary parameters have an actual application in sailing league problems. The polish
sailing league normally consists of four rounds, each containing a number of flights. A
flight splits the 18 competing teams into two smaller heats. The number of flights per
round is not always the same as weather conditions may influence the total amount of
races possible, but it is generally aimed to have 15 flights. Scheduling such 15 flights

leaves us with a setup of n =18,k =9 and r = 15.

To analyze the current situation we can look at an example of their schedule. We
are therefore inspecting the fourth round of the 2021 Ekstraklasa[8] which consisted of
exactly 15 flights. We can construct the corresponding schedule table to analyze the

fairness deviation of given round:

43

3. OPTIMIZATION ANALYSIS

S 12 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18
Fr 112112211 1 1 2 2 2 2 2 2 1
¥F2 /2 21221221 1 2 1 1 1 2 1 2 1
F3 /1712211212 2 1 2 1 1 2 1 2 2
r4 221112111 2 1 2 2 1 2 2 2 1
F5 /2 22111212 1 1 2 1 2 2 2 1 1
F6 111221122 1 2 2 2 1 2 2 1 1
¥Fr 211122211 1 1 2 2 2 2 1 1 2
F§ 2 21221122 2 2 1 1 1 1 1 1 2
F9 y1722121211 2 1 1 2 1 2 2 1 2
Fi0y2 21221112 1 1 1 2 2 1 1 2 2
F11/2 11111121 2 2 1 1 2 2 2 2 2
Fi2y2 22 211121 1 1 2 2 1 1 2 1 2
Fi3/2 12111212 1 2 1 2 1 1 2 2 2
Fi44y1 2 1121211 1 2 2 1 2 1 2 2 2
Fiby2 21221122 2 2 1 1 1 1 1 1 2

For simplicity we have ordered the team labels based on the result, i.e. team number 1
corresponds to ,, Yacht Klub Polski Gdynia“ which placed first, while team 18 represents
, Yacht Club Sopot“ which placed last. Analyzing the co-occurrence numbers of this

schedule yields the following table:

44

3. OPTIMIZATION ANALYSIS

Nij |12 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18
1 - 10 5 8 6 5 9 8 7 8 S5 T T 6 6 7 9
2 00 - 6 9 10 5 s 7 8 7 6 6 6 5 7 6 8
3 5 6 - 6 3 8 11 5 8 7 9 9 7 8 10 7 7
4 s 9 6 - 10 5 4 12 11 8 6 6 4 5 3 6 8
) T 100 3 10 - 6 7 9 & T 10 5 T 7T 6 4 5 9
6 6 5 8 5 6 - &8 6 5 8 10 10 10 9 7 8 4
7 5 6 11 4 7 8 - 3 6 5 9 7 9 10 8 9 7
8 9 8 512 9 6 3 - 8 9 12 5 5 5 6 5 7
9 g 7 & 11 8 5 6 - 8 9 6 6 6 5 6 8
w7 8 7 8 7 8 5 8 - 8 5 5 5 6 7 9
my 8 7 4 910 5 6 12 9 8 - 4 4 6 7 8 8
25 6 9 6 510 9 5 6 5 4 - 9 9 10 10 7 5
3,7 6 9 6 7 10 7 5 6 5 4 -7 0 7 7
47 6 7 4 7 10 9 5 6 5 6 - 8 9 7
576 5 8 5 6 9 10 6 5 &8 5 10 8 - 8 4
666 7 10 3 4 7 8 6 5 6 7 10 10 8 9 - 8 6
w7 6 7 6 5 8 9 5 6 7 8 T 9 8 8 - 7
9 8 7 8 9 4 7T 7T 8 9 &8 5 T 7T 4 6 7 -

We can therefore extract that A™(S) = 12 and A~ (S) = 3, giving A(S) =9

From our optimization part we know that these parameters are too big to expect find-
ing an optimal schedule using the formulated programs. We still aim to improve the

presented schedule.

Using the presented branch-and-cut algorithm one is able to find a (18,9, 15)-schedule
with fairness deviation of 4 creating an upper bound f(18,9,15) < 4.

Using the created technique from above we are also able to find a lower bound of 2.

Theorem 6. For the fairness deviation of the parameters (n,k,r) = (18,9,15) the
following bounds hold:

2 < f(18,9,15) < 4

Proof. We start by presenting an example of a (18,9, 15)-schedule with fairness devia-
tion of 4 to proof the upper bound:

45

3. OPTIMIZATION ANALYSIS

S 12 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18
Fr 4111111111 2 2 2 2 2 2 2 2 2
F2 121122221 1 1 1 1 2 2 1 2 2
F3 /017112122221 2 1 1 1 2 1 2 2
F4 1121212222 1 1 2 1 1 2 2 1
F5 /112122111 2 2 1 2 1 2 2 1 2
F6 /1.2 2 112122 2 2 2 1 1 2 1 1 1
rry1 12112212 1 2 1 2 2 1 1 2 2
F§ 122 212112 2 1 2 1 2 1 1 2 1
F9 1721211222 2 1 2 2 1 1 1 1 2
Fioy1 21212122 2 1 1 1 2 2 2 1 1
F1i1y1 2112 2 212 2 2 1 2 2 1 1 1 1
Fi2zy1 11221212 2 2 1 1 2 2 1 2 1
Fi3y1.171 122122 1 1 2 1 1 2 2 2 2
Fi4y1 12 2 2 2121 1 2 1 2 2 2 1 1 1
Fiby17 11221211 2 1 2 2 1 2 2 1 2

Table 3: (18,9,15)-SCHEDULE WITH FAIRNESS DEVIATION 4

Next, we can ensure f(18,9,15) # 0 because Corollary 2 requires r - (k — 1) = 0
mod (n — 1) for the existence of a fair schedule and r - (k — 1) = 120 is not divisible by
n—1=17.

For showing that no almost fair schedule exists we again assume such existence and use

Corollary 3 to conclude
{7 e N\{i}: \; =8} =1 and |[{jeN\{i}:\;=T7}=16.
Up to permutation this yields
A2 =M1 = Azg = Ag3 =+ = A\i718 = Aig17 = 8

and \;; = 7 for the remaining pairs.

w.l.o.g. we set

1, 1<1<
S“:l, and 512:
9

46

3. OPTIMIZATION ANALYSIS

From 7 =)\13 =)\23 we get

7= s =07(1,8) +¢5(9,15) = ¢7(1,8) — ¢7(9,15) + 7

Solving this system for the unknown ¢3(1,8) and ¢7(9,15) yields
97(1,8) =7/2 and ¢}(9,15) = 7/2

From ¢3(1,8) € N we already have a contradiction, resulting in f(18,9,15) # 1. O

For practical application we have to consider that while having 15 flights is the goal,
this often gets shortened and the last few flights get canceled. A good schedule should
therefore cover this case in a sense that the cut schedule is still optimal. A perfect
solution would be a schedule & where each subschedule S, consisting of the first r
arrangements fulfills A(S,) = f(18,9,r) for r = 3,...15. Finding such perfect schedule
would be increasingly harder than finding an optimal schedule and at this time it is not
even clear if such perfect schedule must exist, which is why we propose an alternative

way of of finding a ,good* schedule.

By optimizing only a few flights per iteration while fixing the previous ones, we are
creating a schedule that is robust against cancellations of later flights. For example the
schedule from table 3 was created using an optimization with step-size 2, i.e. starting
by taking an optimal (18,9, 3)-schedule S3, we find a (18,9, 5)-schedule with minimal
fairness deviation under all such schedules where the first three flights are predetermined
by Ss. Continuing this idea we take this newly found schedule S5 and optimize for a
(18,9, 7)-schedule given the first 5 flights are fixed, repeating this step gives a robust
(18,9, 15)-schedule and even allows for extending more flights if needed without having

to restart the computation.

Using such step-by-step optimization may break optimality but provides a more practi-
cal relevant solution. For some step-sizes even this method even provided upper bounds
with short computation time in cases where Gurobi took significantly longer finding the
same bound. One may experiment with different step-sizes or a controllable step-size

which might lead to an even better bound.

Another way of increasing the robustness of a schedule after its found, is by permuting

47

3. OPTIMIZATION ANALYSIS

the arrangements. Given a (n, k,r)-schedule we can cross out each arrangement and
check for the fairness deviation that the remaining » — 1 arrangements form, placing
the one providing best results at the r-th position. Repeating this recursively ensures

that the flights that are less important for overall fairness are scheduled at the end.

3.4 ALGORITHMIC ABSTRACTION

To a certain extend it is possible to abstract the work from previous section for creating
a constructive algorithm, that allows for either finding an optimal fair / almost fair
schedule or returning that there does not exists such schedule for given parameters k
and r, resulting in f(2k, k,r) > 2. While it may be technically possible to also exhaust
the possibilities of a schedule with A(S) = 2 or even higher but we will see that this is
not realistic from a computational point of view, at least not for the idea behind the

presented algorithm.

As first step, revisiting the problems of Theorem 4, we need a way of finding all possible
assignments for the co-occurrence numbers. Since we know that there can’t exist a fair
and an almost fair schedule at the same time we can start by writing r(k — 1) =
(2k —1)qg+p for 0 < p <2k — 2.

If p = 0 we will check for the existence of a fair schedule. In this case \;; = ¢ for all

i,j € N? by Corollary 2.

Checking for the existence of an almost fair schedule in the case of p # 0 does turn out
as a harder task. Using Corollary 3 we know that the co-occurrence graphs are going

to be regular:

[{jeN\{i}: \j=q+1}|=p and [{j e N\{i}: \j=q}|=2k—1—p,

resulting in the (¢ 4+ 1)-co-occurrence graph being p-regular and the g-co-occurrence
graph being (2k — 1 — p)-regular. Luckily both graphs are complementary to each
other, allowing us to construct one by the other. We can therefore focus on finding, up
to isomorphism, all p-regular graphs (w.l.o.g. we can assume p < 2k — 1 — p). Markus

Meringer already did some work on constructing regular graphs [7] that we can use

48

3. OPTIMIZATION ANALYSIS

for constructing possible co-occurrence graphs. His algorithm only returns complete
graphs, but a small modification will yield arbitrary p-regular graphs. For the purpose

of completion we will shortly discuss the approach of this generation:

We start by revisiting the idea of isomorphic graphs. For simplicity we can assume to

have vertices 1 through n.

Definition 14. Let G, describe the set of all simple, labeled and undirected graphs with
vertices [n|. Since the vertices are fized, we can identify a graph I' € G,, by its edges

and will therefore write

D= {er,e0,...,e} C ([Z]) — X,

where X,, describes the set of all possible edges (w.l.o.g. we assume v < w for an edge
e=(v,w) € X,).
The neighborhood of a vertex v € [n] is defined as all vertices w that are connected to
v, i.€.

Nr(v) :={w € [n]| (v,w) €'V (w,v) € I'}
Definition 15. R, C K describes the set of all k-regular n graphs, i.e. I' € R, 1 if
degv = |Nr(v)| =k for allv €T,

For a formal definition of isomorphism we also need to remember the idea of a group

operating on sets by a group action:

Definition 16. Let X be a set and (G,o) be a group with identity element id. A
function o : G x X — X 1s called group action, if

1. Ve e X :a(id,z) =z
2.Vre X,g,h € G:alg,alh,z)) =a(goh,z)
The orbit of such group action on a x € X 1is the given by
Gz :={a(g,2)|g € G}.

We denote G\\X := {Gz |z € X} as the set of all orbits.

49

3. OPTIMIZATION ANALYSIS

By trivial reasoning the symmetric group S5, acts on G, with the group action « :
Sp X G, — G, defined by

a(m, {(vr,wy), ..., (v, w)}) = {a(m, (vi,wr)), ..., &, (v, we))}

where

a(m, (v,w)) = (min(7(v), 7(w)), max(mw(v), 7(w)))

This group action also allows S, to act on R, :

Lemma 12. Let I' € R, where e; = (v;, w;), then a(m,I') € Ry x, which implies that

|8, xR, 18 @ corresponding group action.

Proof. Let m € S, i.e. m is a permutation on [n|. For a fixed u,w € [n] there exist

v,z € [n] with 7(v) = u, 7(x) = w and therefore:
(u,w) € a(m,I") <= (u,w) =a(r,((v,x))) and ((v,x) € T or (z,v) € T)
This implies

(u,w) € a(r,T') or (w,u) € a(m,I') <= (v,z) €l or (z,v) €T
— (7 '(u), 7 H(w)) €T or (x ' (w), 7 ' (u)) €T,

which gives

Notrry(u) : = {w| (v, w) € a(r,T') or (w,u) € a(m,I")}
= {w| (7 (u), 7" (w)) €T or (m 1(w)77T*1(U))€F}
= {m(w) | (77" (u),w) € T or (w,7~"(u)) € I'}
= 1(Nr (77 (u)).

By definition of regularity it follows that «(m,I) is also k-regular since

degu = [Nomry(u)| = |7(Np(7~" (u)))] = [Np(r ™ (u)] = k
[l

Definition 17. Two graphs I'y,T'y € G,, are isomorph if they have in the same orbit,
1.€. SnF1 = SnFQ

20

3. OPTIMIZATION ANALYSIS

For our goal of finding all k-regular graphs we aim to find a set of orbit representatives
of S, \\ R, which satisfies the task of finding all such graphs up to isomorphism.
For algorithmic purpose the proposed paper narrows this down to finding minimal

representatives.

Definition 18. For e;,es € X,, where e; = (v, wy) and es = (vg,ws) we define a

lexicographic order on X, by
e < ey <= v < vy or (V] = vy and wy < wy)

and therefore an order on G,,. LetT'1, Ty € G, whereT'y ={e1,...,e.}, To={f1,..., [}

w.l.0.g. assume that these edges are ordered by above logic, then

I''<Ty <= (Fi <mint,r:Vj<i:e; =f; ande; < f;)
or (t<randVj<t:e; = f;)

We therefore define a set of minimal orbit representatives by

rep.(S,\\Gn) ={I' € G, |Vr e S, : I <a(r,I)}
rep. (S, \\Rux) ={L' € Rpi |Vr € S, : [< a(m,T')}

Using minimal representatives allows for an simple backtracking algorithm, that is based

on the following theorem.

Theorem 7. IfI" € G,, is a minimal orbit representative, i.e. I' € rep_(S,\\Gn), than

every smaller subset of I' is also minimal.

Proof. Suppose, for a proof by contradiction, that I' = I'y U I's where I'y < I' but
I'y ¢ rep_(S,\\Gn). Since I'; is not minimal there exists a permutation = € S, such
that a(m, I'y) < T'y.

Let a(m,I'y) = {es,...,ee}, v = {f1,..., fi}, by definition of the order there must
exists a ¢ with e; < f; and e; = f; for each j < ¢.

If we now consider a(7,I") = a(7, 1)U’y (where I's = {by, ..., b, } are just the remain-

ing edges), then we get two different cases:

1. If min; b; > e; then we can simply follow that o(7w,I') < T’y <T.

ol

3. OPTIMIZATION ANALYSIS

2. If min; b; < e;, i.e. there exists 2 < k <4 such that e;_1 < min; b; < e; then in
the compare of o(m,I') and I'; the edge min; b; is the k-th biggest edge in a(7,I").
Since for all j < k we know that e; = f; and min; b; < e, = f, its also clear that
a(m, ') <T'y <T.

Either case resulting in a contradiction to the minimality of I'. O]

We can now formulate an algorithm for finding rep_(S,\\Rux):

Algorithm 1 Recursive enumeration of k-regular graphs on n vertices

1: procedure ORDREK(I)

2 if not EXTENDABLE(I") then
3 return

4: end if

5: if I' ¢ rep_(S,, \ G,,) then

6: return

7 end if

8 if I' € R, then

9: add I' to output

10: return

11: end if

12: for all e € X,, with e > maxI do
13: ORDREK(I' U {e})

14: end for

15: end procedure

The function EXTENDABLE(T") checks for multiple necessary conditions to allow filtering
out graphs, that can not be extended to an k-regular graph. An simple example for such
necessary condition is that all vertices have degree at most k, more complex conditions

can be found in chapter 2 and 3 of [7].

The most time consuming part of the algorithm is found in line 5 where one has to
check for minimality of a graph. We won’t go into detail on how this can be done

effectively and only refer to the work of Markus Meringer again.

After finding all k-regular n-graphs, we can go back to our primary goal of checking for
the existence of almost fair schedules by iterating over these graphs and using them as

candidates for the co-occurrence-graphs.

92

3. OPTIMIZATION ANALYSIS

For a outline of the idea we will try to fill the assignment Matrix (Sli)le[r},ie[gk] it-
erative column after column while not breaking the conditions that we got from the
co-occurrence-graph for the co-occurrences between two teams. Each step will give us
an linear diophantine system of equation with some bounds. Solving this system will
give a finite solution set that is going to be explored by an divide-and-conquer approach
until we either find a full assignment matrix or a system yields no solutions allowing us

for discard this branch and backtrack to the next solution to explore.

Since every step will create a finite amount of smaller cases we can ensure the algorithm
is deterministic and will either output a assignment matrix of a almost fair schedule or

will exhaust all possible placements and ensures that no such schedule can exist.

To finish up we are left with two tasks:

1. Formulating the systems needed solve in a similar, but abstracted way to the

proofs from Section 3.3

2. Efficiently getting all solutions to bounded linear diophantine system of equation

Assuming we want to place the ¢ column of the assignment matrix, where the columns
1 to i—1 are already set, one could think of simply trying out all possible combinations.
In the long run this would be highly cost intensive which is why we are going to use
the symmetry of our problem to place bigger blocks of 1s and 2s. Lets revisit the proof

of Theorem 3 with the explicit value of r = 12 as an example:

Let n = 2k where k = 3 and let r = 12. Then (k — 1)r = g(n — 1) + p where ¢ = 4 and
p = 4. We want to check for the existence of an almost fair schedule and observe the

following co-occurrence-graphs:

93

3. OPTIMIZATION ANALYSIS

Figure 4: 4-CO-OCCURRENCE GRAPH Figure 5: 5-CO-OCCURRENCE GRAPH

Note that this graph is not minimal nor the exact same as used in the proof of said theo-
rem, but chosen because it demonstrate the idea of formulating the system of equations
really well. One could choose arbitrary other fitting co-occurrence-graph but potentially

need more steps to see the abstraction.

We start by placing the first column of the assignment matrix and see that there are

no real restrictions, since no other team has been places, and therefore start with
Sp=1 forall 1 <[<2k

For placing the second column we have to take into account all co-occurrence restrictions
with the columns that are already set, in this case only 4 = A\ = gf)(l, r). We can
therefore say that S;p = 1 four times and S;» = 2 eight times.

Now the idea 1- and 2-blocks start to show, because we will start with a 1-block of size
4 and then a 2-block of size 8. For our abstractions we will store these sizes in a vector

p. And get:

p? = (gEQ)(l, r),r— g%z)(l, r)) and by following this idea also pt) = r

Considering the third column we start to have an actual system of equations since we

now have to consider A3 and Ag3:

Aig = 9%3)(177")
has = 917 (1,p7) + 0 0 + 1,7)

54

3. OPTIMIZATION ANALYSIS

By using the properties of g and trivial bounds we get the following system:

Aig = 9 ’ 2)) + 9%3) (PP +1,7)

a2 (1,

oy — (r = (0P +1) = 1) = ¢ (1,p7) — oV 0P +1,7)
gV (1,p) < pi”
a2

Solving this yields a new p vector for placing the third column:

3 2 2 3 2 3 2 3
p® = (@ (Lp)pt” = (L), g 0 + L), = 9 = g (0 + 1,7))

When following this idea it may seem like the system gets exponentially harder to solve
since each steps only adds one equation, but doubles the amount of variables. A new
constraint counting 1s and 2s each row and ensuring that there can only be k teams per

flight helps with this problem when j, the column that has to be placed, gets higher.
For an more readable system we define the vector P as partial sums of p for j =

0,... 271

J J

t
= sz(t) and therefore pg-t) =p_ P.(i)l where P() =0, P(t)1 =r
As final abstraction, consider placing the t-th column. We get the following equations:

2t2

Nt _Z g(?t) (PUY w1, PYYY for i <t

where wl(t) (7) describes wether to consider gp or ggt).

To understand the behavior of wl(t) (7), let us go one step further in our example and

consider placing the fourth column:

95

3. OPTIMIZATION ANALYSIS

3 3
+p§)+17p§)+p§’+p§))

3 3
pY + o+ psY +1,7)

this simplifies to:

" (P +1,PY)
BT+ 1P
95" (P" + 1, PY)

M= (B + 1, PY) + g (P + 1, PY) 4+ g +
Aoy = gt (B + L P + gl (P + L PY) + " (B + 1, PY) 4 g
+gi +

1
Maa = g\ (P + 1, PEY 4+ g (P + 1, B 4 (P 1, PYY)

N~ N~ =~

This shows that wgt_)l seems to alternate between 1 and 2, and the period length doubles

when going from wl(t) to wl(t_)l (this can be shown by induction but is left out for the

sake of clarity), leaving us with

wl(t) = 2" periodic alternating sequence between 1 and 2, starting at 1

We can achieve such sequence by modifying (—1)7 and get
A0 = (8- 1)

We can now rewrite our system of equations into a system where the only relevant

variables are gﬁt)(Pj(t__ll) +1, Pj(t_l)). From Lemma 10 we get

(P L Py = PUY POV p 1) b1 - g (P 1, P

J
_pgt 1 gt)(P(t 1 +1 P(t 1))

o6

3. OPTIMIZATION ANALYSIS

and therefore

Jj—1 j—1
t t—1 t—1 L_—zJ ¢ -1 i—1 1 L—_IJ
o0, B+ 1P = ()BT (Y 1 ’>+§<1—<—1>)

Inserting this back in our original system of equations we have

9t-2 EJ 2072 MEJ
Ne=D 5 (1—<—1>{2”)'P5-”>=Z<—1> g EY + LR for <t

The system gets paired with the following restrictions:

0<g!(P Y +1, Py < piY (1)

g (R5Y+ 1. b) ez 2)

-1
t—1

It Y8V — 1=k then Vj : g (PY +1, PIY) = pi ! (3)

? J

1Y S —1=(t—1)—kthen Vj : ¢\’ (P5" +1,P"V) =0 (4)

A solution to this system allows for constructing the new values for Pj(t), g-t) and Sl(it),

needed to perform the next iteration:

57

3. OPTIMIZATION ANALYSIS

py) 1 = g(PUY +1,PY), for j=1,... 202
pd) = p D — g (PEY 41, P for j=1,..., 207
R =0,
PY = PY +p, for j=1,...,2!7!
Sz(;) = Sl(f_l) fori=1,...,2kandi=1,...,r with i #¢,
1, if 5 is odd
Sl(tt) _ J with 7 such that [€ {Pj(t,)1 +1,..., Pj(t)}

2, if j is even

The last step is to actually solve such system under the given constraints.

The constraints (3) and (4) can simply be evaluated using if statement as they stand.
But to cover (1) and (2) we need the use of an algorithm that allows returning all

possible solutions, not just one (which would be fairly easy).

: : : . (t—1)
Since we have a finite amount of possible solutions (at most [[;(p; ' + 1)) we can
exhaust them by using a box enumeration. This process can also be sped up using

small modifications:

Let us suppose we have a system of equations with bounded integer variables

Ar=0,0<z<e¢, AcZ™" x,ceZ"beZ™ m>n

we can find all solutions to this system using the following algorithm:

o8

3. OPTIMIZATION ANALYSIS

Algorithm 2 Finding all solutions to bounded linear diophantine system

1: procedure SOLVEBOUNDED(A b,c)
2: (U,H,r) := ROWHERMITE(A)

3: b’ :=Ub

4: x_par := BACKSUBSTITUTION(H, b’[1:1])
5: (V.d) := NuLLSPACEBAsIS(H)

6: if x_par is None then

7 return ()

8: end if

9: if d = 0 then

10: if 0 < x_par < c then

11: return {x_par}

12: else

13: return ()

14: end if

15: end if

16: Ib, ub := PROJECTBOUNDS(x_par, V, c)

17: sol := ()
18: for all y € Z¢ with Ib <=y <= ub do

19: x :=x.par + V-y
20: if 0 < x < ¢ then
21: append sol, x
22: end if

23: end for

24: end procedure

We start by calculating the Row-Hermite Normal Form and therefore reducing the
system into a triangular system Hx = b’ using the unimodular transform U (Now H
has dimensions 7 xn). This allows for a simple way of finding a single solution x_par and
a basis of the Nullspace of H. After finding the Nullspace and a particular solution we
can exhaust all other possible solutions by simply iterating over our new box bounds

since we know that every combinations zp, + V -y is a solution to the real-valued

99

3. OPTIMIZATION ANALYSIS

problem.

There are a few things to watch out for when implementing, that we won’t cover here.
Just to name an example, the basis V' has to be a lattice basis of the integer kernel of H.
This can be seen when considering the space {x € R3 | z; 4+ x5 — 223 = 0}. One possible
basis would be V' = {(2,0,1)7,(0,2,1)"}, but we can clearly see that we would miss
integer solutions when only considering VZ9. Instead the needed lattice basis would be
V ={(2,0,1)T (-1,1,0)T}.

There are also multiple ways of speeding up the algorithm, for example the exhaustion
of solutions xp, +V -y can be done by either pruning single coordinates after a bound
violation or by a similar approach as used in the branch-and-bound-algorithm by doing
interval propagation. Since these are again steps that are relevant in the implementation

and crucial for the general idea, we will not cover explanation of steps in this work.

Now, having a way of generating possible co-occurrence-graphs, formulated a system
to solve and found a way to actually solve it, we have a constructive and deterministic

algorithm to check for the existence of fair and almost fair schedules.

60

4. CONCLUSION

4 (CONCLUSION

Summarizing the work we have done we will take a look back at the introduction

rounding up our plans.

We started by defining the fairness deviation f(n,k,r) as the span between the co-
occurrence numbers between two teams Using concepts of number theory we showed
that a fair schedule, i.e. f = 0, is only possible if 7(k — 1) = 0 mod (n — 1). We
strengthened this necessary condition to 7(k — 1) = 0 mod 2(n — 1) for the case of
n = 2k where k is odd, even though numerical experiment yet show no contradiction
it remains unclear if this condition is sufficient. We also provided the distribution of

co-occurrence numbers in case of the existence of an almost fair schedule.

After this we looked at two types of optimization formulation for the case of n = 2k,
a linear and a quadratic one. By providing different types of symmetry breaking con-
straints we got a total of 6 different formulations that we then tested on £ = 3,...,9 and
r =3,...,20 under even conditions. The results showed that for practical applications
either the basic quadratic formulation or the quadratic formulation with additional bi-
nary order of flights are most reliable. The experiments did not show a pattern when
one of these two performed better than the other. What they did show, was that for
k > 7 and r > 8 a clear hardness bump occurred making it hard for finding optimal

schedules for larger values of k and r.

While we proved that f(n, k,r) = 1 occur if either f(n,k,r—1) =0or f(n,k,r+1) =0
and numerical results suggests that these are the only times that f = 1, we could not

proof that this is true in general.

Motivated by the numerical results we took a closer look at fixed k& and proved 10-
periodic behavior for £ = 3 and 7-periodic behavior for £ = 4, allowing for complete
characterization of these cases. Proving these was done by using a helper function g to
count the occurrences of a team in a fixed flight of consecutive arrangements. Properties
of this function lead to diophantine systems of equations, contradicting the existence

of fair or almost fair schedules in the relevant cases.

We used this idea to formulate an abstract algorithm for doing so in the case of arbitrary
n = 2k and r using an existing algorithm to find possible co-occurrence graphs and

applying the results to our abstracted system of equations from previous thoughts.

61

4. CONCLUSION

In the analysis of the polish sailing league we took a closer look at the 4th round of
2021 (Ekstraklasa) and observed a fairness deviation of 9. Using different techniques
we first proofed a lower bound of 2 in the given case and presented a robust schedule
with fairness deviation of 4, that can withstand cutting the last flights without loosing

too much fairness deviation.

62

REFERENCES

5)

1]

LITERATURE

R. Schiiler and A. Schiirmann: Sailing League Problems, Journal of Combinatorial
Designs, vol. 32, no. 4, April 2024, pp. 171-189.

C.J. Colbourn and J.H. Dinitz (eds.): Handbook of Combinatorial Designs, 2nd ed.,
Chapman & Hall, 2007.

R.E.A.C. Paley: On orthogonal matrices, Journal of Mathematical Physics, vol. 12,
no. 1-4, April 1933, 311-320.

H. Kharaghani and B. Tayfeh-Rezaie: A Hadamard matriz of order 428, Journal of
Combinatorial Designs, vol. 13, No. 6, November 2005, pp. 435-440.

A. Hedayat: Hadamard matrices and their applications, The Annals of Statistics,
vol. 6, no. 6, 1978, pp. 1184-1238.

S. Mirzaei: Linear Programming: An Introduction, 1st ed., Kendall/Hunt, 2019

M. Meringer: Erzeugung reguldrer Graphen. Master’s thesis, Universitat Bayreuth
(1996).

SAP Sailing: Regatta Overview of Ekstraklasa 2021 Round 4, avail-
able at: https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:
eventId=323b9067-a905-47bc-9fe9-12919cc48c6c (accessed June 11, 2025).

63

https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:eventId=323b9067-a905-47bc-9fe9-12919cc48c6c
https://www.sapsailing.com/gwt/Home.html#/regatta/overview/:eventId=323b9067-a905-47bc-9fe9-12919cc48c6c

6. ERKLARUNG UBER DIE SELBSTANDIGE ABFASSUNG EINER SCHRIFTLICHEN
ARBEIT

6 ERKLARUNG UBER DIE SELBSTANDIGE ABFASSUNG EINER SCHRIFTLICHEN
ARBEIT

Hiermit erklare ich, Cedric Ronnfeld, Matrikel-Nr. 221200104, dass ich die vorliegende
Arbeit selbstandig und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe. Die aus fremden Quellen direkt oder indirekt iibernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder &hnlicher

Form keiner anderen Priifungsbehorde vorgelegt.

Rostock

20.08.2025° - _
(Abgabedatum) (Vollstandige Unterschrift)

64

Mobile User

	Introduction
	Theoretical Background
	Mathematical Model
	Necessary conditions for fair and almost fair schedules

	Optimization Analysis
	Properties of the minimal fairness deviation
	Formulation as programming problem
	Some special cases
	Algorithmic Abstraction

	Conclusion
	Literature
	Erklärung über die selbständige Abfassung einer schriftlichen Arbeit

