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Abstract

The performance of a given sailing vessel is traditionally depicted by
polar performance diagrams estimating the relationship between wind and
(top performance) boat speed. For some applications, it is desirable to
create polar performance diagrams which reflect the real conditions of
the sailing vessel in use. This can be done by analyzing data obtained
during sailing trips of the particular vessel. The obtained data is likely
polluted by several effects and contains data that does not reflect the top
performance. We describe a modular preprocessing framework specialized
for the use on sailing data. We then make informed choices for the different
parts of the framework and test it on real sailing data.

1 Introduction

Polar performance diagrams and tables have been used by professional sailors
for many years. They are motivated by the natural occurring task to predict
the top boat speed (BSP) a given vessel can reach for given wind, usually given
in terms of true wind, refering to the wind a stationary observer would measure.
Note that wind is usually described as a pair of speed (TWS) and angle (TWA).
An overview of different terms regarding wind is given in Figure [I]

In practice, this information is stored in tables with fixed wind speeds and
angles, for example in steps of 2 knots (nautical miles per hour) and 5 degree
respectively. A common way to visualize polar performance diagrams is by
creating a polar plot of the TWA /BSP relation for several fixed values of TWS
(see Figure [2)).

Polar diagrams and tables given by manufacturers of sailing vessels or by
official sailing organisations like the Offshore Sailing Congress [orc] are obtained
from involved, but idealized numerical computer simulations — called Velocity
Prediction Programs (VPPs). These simulations are used by designers even
before a yacht is actually build. However, in reality it is not always reasonable
to use a polar performance diagram obtained from a VPP. Even under idealized
sea conditions, the status and capabilities of a used sailing vessel may differ
notably from these numerical simulations, which are produced for new yachts.



Figure 1: Relation of different wind terms (TWD - true wind direction, AWD -
apparent wind direction, TWA - true wind angle, AWA - apparent wind angle,
RWD - relative wind direction, BD - boat direction) (cf. [DSS22])

Also, some factors are not included in the polar diagram, as the competence of
the sailor, the condition of the hull and the sail etc.

Therefore, many professional sailors try to obtain for their yachts actual po-
lar performance data, from their own real-world measurements and experience.
In this regard, automated real life measurements and sophisticated techniques
from statistics and data science can help to obtain more realistic estimates for
polar performance diagrams. It suits not only the vessel in use, but also can
be adapted to specific skippers and their capabilities and habits. There are
only a few publicly available studies to support such measurements (cf. [Sim17],
[DSS22]).

In this paper, we refine the polar pipeline model described in [DSS22)] loosely
following concepts described in [GLHI5| and use it on a real study case.

A general description of the framework is given in Section [2| In Section
we give detailed examples on how the different abstract modular parts of the
framework might be realised and in Section [4] we use the framework and the
described realisations to analyze real data as a study case.

2 Preprocessing Pipeline Framework for Sailing
Data

Next to the usual problems to be solved by preprocessing methods (see [GLHI15],
Section 1.6.1]) there are some additional difficulties and properties in the context
of analyzing sailing data for polar performance diagrams:
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Figure 2: Plot of a polar diagram (cf. [DSS22]).

1. Sailing data is usually obtained over the course of a sailing trip from
different measurement instruments and can be documented via logging
files. Common file formats, as the NMEA 0183 log files (see [nme]), do
not translate directly to organized data sets. But we can strongly assume,
that these files describe the sailing trip in chronological order. The most
important data (TWS, TWA, BSP and the timestamp) should be already
present in these files.

2. The polar performance diagram should represent the top performance.
However, the data also contains many phases of acceleration where the
top performance is not reached.

3. Additional factors as current and waves can have a huge influence on the
measured boat speed. So, in the best case, additional data can be used to
minimize the negative effects on the resulting polar performance diagram.
Weather data (which has not been recorded by on-board measurement
equipment) is traditionally provided in gridded form, for example as GRIB
or NetCDF files, and thus do not provide complete information about the
conditions during the sailing trip.

4. Additional theoretical knowledge about sailing performance might be ap-
plied.

We extend the preprocessing framework discussed in [DSS22| by several
parts, especially parts regarding additional data. We keep the general mod-
ular structure of the framework. The benefit of such a structure is, that single



parts of the framework can be identified and exchanged easily, making it easier
to compare their effects.

A visual summary of the preprocessing framework is given in Figure [3] The
framework includes these basic steps:

1. We assume we have multiple data sources containing sailing data from
different trips that can be interpreted as (multi-dimensional) time series.

2. We split all data sources in training data and test data.

3. We use various preprocessing techniques on these data sets individually.
Here we can use the assumption, that each data set represents the time
series of a single sailing trip. Thus, it is reasonable to assume similar (or
at least continuously changing) conditions for all records.

4. We concatenate all training data sets and test data sets respectively and
convert them into data sets only containing information about TWA, TWS
and BSP.

5. We use various preprocessing techniques on the simplified data.

6. We process the training data to obtain a polar performance diagram. A
discussion of the processing is not part of this paper.

7. We use the preprocessed test data in order to compute several quality
metrics.

Note, that good test data should be obtained independently from the training
data and provide broad test cases, i.e. there should be test data available for
a broad spectrum of TWA and TWS values. Of course it would be preferable
to have the data, or at least the test data, be obtained in an undisturbed
environment. However, this is often not practically possible. Therefore, in the
presented framework, the test data gets almost the same preprocessing as the
training data. This has the benefit, that polluted test data does not lead to bad
quality metrics. Of course, this includes the risk to manipulate the training and
test data in a way that the quality metrics are not meaningful. We have to take
extra care in the choice of quality metrics such that this effect will not happen
unnoticed.

In the following, we discuss the different parts of the framework in detail.

2.1 Data standardizing

In order to realize a modular framework, it is necessary to organize the data in
a standardized manner.

Data reflecting multi-dimensional time series of various attributes will be
treated as a table with named columns where each row represents a single
record and the records are ordered chronologically. In a modular framework,
it is important, that the names of these columns are consistent throughout the
framework such that the different components can be exchanged individually.
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Figure 3: Overview of the extended preprocessing pipeline model.



Thus we require that the names of the columns are standardized. Which stan-
dard to use in an implementation is up to personal preferences. Furthermore,
it is important that each column describes exactly one relevant value and each
relevant measurement time is represented by exactly one column.

Organizing data containing only TWS, TWA and BSP values in contrast
can easily be done using a three-column array.

2.2 Data Handling

In order to estimate a polar performance diagram, one might use various dif-
ferent forms of time series recorded during sailing trips under real conditions.
These data sources might include files in NMEA Standard [mme], csv files and
other sources. During the data handling, each of this data sources is supposed
to be translated into the standardized data format of the framework. This step
belongs to the preprocessing principle of Data Integration.

2.3 Data Imputation

This step is a well established preprocessing step (see for example [LGHI2]).
The different measurement equipment of the sailing vessel might send their
information in different frequencies. Due to this and various other reasons,
data obtained during the data handling might be incomplete. The imputation
process is supposed to guarantee data without these gaps by removing records
or interpolating missing data fields.

2.4 Smoothing

Often, measurements are only available in a certain precision. If this precision is
very coarse, this might further pollute the data. Since, at this point, our data is
given in the form of a time series and assume that the time series is continuous
for most measurements. The precision error might be reduced by replacing the
actual data with the graph of a suitable continuous function. A process of this
type might be called smoothing and can be categorized as Data Transformation
and Data Cleaning but can also be used for Noise Identification (see [SLHI3]).

2.5 Expanding the data

The previous preprocessing tasks are suitable for data that has been obtained
during a sailing trip and is thus given as a time series. However, for further
processing it could be profitable to add data which is not specific for the ob-
served vessel, such as weather data, geographic information, auxiliary attributes
etc. The process of expanding the data is supposed to include a way to com-
pute certain additional attributes from a given record. Most commonly, we use
latitude, longitude and time information in order to estimate the respective con-
ditions. These additional attributes are added to the current records for further
processing. This process possibly requires further interpolation techniques.



2.6 Weighing and Filtering

The available sailing data does not necessarily reflect the data we want to process
in order to obtain a polar performance diagram. This could be due to

1. Measurement errors,
2. relevant influences to the boat speed beyond wind,

3. the fact that real data contains many records which are not top-performance
as needed for the polar performance diagram.

In order to cope with these problems, we evaluate the quality of the data points
as a weight for each record and eliminate records with a bad quality (filtering).
This process can be categorized as Data cleaning and Data reduction.

The presented framework contains three rounds of weighing and filtering in
total.

The first round takes place even before the expansion of the data. The
motivation of this step is to reduce the number of records to be expanded. This
potentially leads to a relevant speed up. We call this round of weighing and
filtering Pre-Ezpander- Weighing and Pre-Expander-Filtering respectively.

The second round of weighing and filtering takes place after the expansion
of the data and before application of the influence model (see Section . The
purpose of this round is to filter the data using the additional information,
for example removing records with relatively bad weather. We call this round
of weighing and filtering Pre-Influence- Weighing and Pre-Influence-Filtering
respectively.

The third round of weighing and filtering, Post- Weighing and Post-Filtering
is meant to weigh and filter points solely based on their TWA, TWS and BSP
values after applying the influence model. This round should be used to filter
points based on their consistency and/or density in the TWA, TWS, BSP plane,
i.e. to remove outliers or to reduce the number of records in dense regions in
the TWA, TWS plane.

The weighing and filtering can be categorized as Data Reduction and Noise
Identification. Also, Data normalization should be regarded during these steps.

2.7 Influence Model

In most generality, we understand an influence model as a mapping of records
containing various parameters to records only containing the values TWA, TWS
and BSP in such a way, that the new records reflect the relationship of TWA,
TWS and BSP under idealized conditions as good as possible. A sophisticated
influence model might work with an analytical or numerical modelling of addi-
tional influences from current, waves etc.

We allow parameterized influence models. This allows, for example, for
influence models which detect and correct structural measurement errors or the
possibility to adjust some parameters of the model according to the observed
data.



The parameters of the influence model are fitted before the application using
only the training data (so the parameters are chosen independently from the
test data). On the other hand, the influence model with fitted parameters is
applied to both, training and test data.

2.8 Injecting Data

From the physics of sailing and polar diagrams which have been obtained via
VPP, we have additional knowledge on the properties of polar performance
diagrams. This knowledge can partly be modelled as additional data points
which are added to the current data during this step.

These artificial data points are only added to the training data since they
would unnecessarily pollute the test data.

It seems reasonable to use quality metrics which tests if the additional knowl-
edge is represented in the resulting polar performance diagram.

3 Realisations

In this section we discuss the specific framework components which have been
used in the study case in Section 4] This is meant to function as an illustrative
example how the different parts of the framework might be realised, further
explanation of the study case and as dicussion of possible issues and how they
might be addressed. Note, that the modular form of this framework allows to
compare the effects of exchanging different parts in the future.

The overall concept of our realisation is, to use the additional weather infor-
mation exclusively for the pre-influence-weighing and not in the influence model.
Furthermore, we formulated the parts in a very simplistic way, such that they
still have the required effect. Note, that more sophisticated realisations should
yield better results.

3.1 Data handling

We use several sailing time series given as files in NMEA 0185 standard. Such
a file can be parsed line by line (sentence by sentence) in order to get different
attributes for the standardized data. We interpret consecutive NMEA sentences
containing distinct attributes as one record. Otherwise, the data would be too
fragmented.

One difficulty is the way that the NMEA standard handles wind data (wind
speed and wind angle). To be precise, the relevant NMEA attributes are “Wind
angle”, “Wind speed” and “Reference” describing apparent wind or true wind
depending on the value of “Reference”. If we would simply adopt the NMEA
attributes, there would be columns referring to multiple attributes contradicting
the principles discussed in Section[2.1] This problem is easily addressed by filling
two columns TWA and TWS depending on the value of “Reference”.
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Figure 4: Caption

3.2 Imputator

In order to impute the missing data fields, we first delete all columns and rows
that do not contain any information. Next, we find the first and last record con-
taining a timestamp and delete all records before and after. Then we interpolate
the timestamps since we need them for further processing. If two timestamps
are too far apart (more than 2 minutes) we delete all records in between, since
we assume that the interpolation error is too high in these cases. The remaining
gaps are filled equidistantly.

The other fields are then imputed by affinely interpolating the data points
time series.

3.3 Smoother

Time series measured with coarse precision tend to be composed of several time
intervals with constant values. It seems plausible, that in between these intervals
the data changes continuously in real life. In our tests we only kept the original
data of the middle of the intervals and connected them via affine interpolation
on the borders (30 seconds after first and before last record). An example plot
for the smoothing procedure is given in Figure [4

3.4 Pre-Expander-Weighing and Filtering

A polar performance diagram should only reflect the top performance and not
the time intervals of acceleration and decelaration. We weigh the points ac-
cording to the local fluctuation of the attributes TWA, TWS and BSP, roughly



following ideas from [Sim17].

For a fixed attribute and a given record, we consider the standard variation
o of all records that where measured at most 10 seconds before and at most
30 seconds after the examined data point. For a given upper bound 7 on the
standard variation, the weight is then computed by a mirrored and stretched

ReLu function, i.e.
0if o >
o foos

(v — o)/ otherwise

Thus, a standard variation of 0 will get a weight of 1 while standard varia-
tions exceeding v will get a weight of 0.

We choose an upper bound of v = 20 for TWA and upper bounds of v =
2 knots for TWS and BSP since it seems reasonable that a variance exceeding
these values is “too fluctuant”. We then multiplied the respective weights and
removed all the worst 60% of records.

3.5 Expander

We expand our data using weather data from meteostat [met] and the DWD
[dwd] made available by the Leibniz Institute for Baltic Research Warnemiinde.
The weather data has been given as gridded data obtained via the meteostat
Python package or given as a file in the NetCDF data format. In order to esti-
mate the data at a given time and location, we use iterative affine interpolation.

3.6 Pre-Weighing and Filtering

This round of weighing and filtering is aimed on excluding records with unusual
weather conditions. In order to do so, we use concepts from fuzzy logic (see for
example [BB95]). In particular, we use the sigmoid function

1

e
X 1+ eo-a-(r—c)

to define the truth value of z < ¢ (0 = 1) and the truth value of z > ¢ (0 = —1)
respectively. We chose a slope coefficient of a = 10 since then the “range of
uncertainty” (length of the interval where the value is between 0.1 and 0.9)
is less than 0.5 which seems reasonable. Furthermore, we model the boolean
functions and and or using the minimum and the maximum respectively. Using
this modelling, we check for the following conditions:

1. The Temperature is between 10C*° and 30C"°,
2. The gusts are slower than 50km/h (~~ 21.6 knots),
3. The TWS is above 5 knots,

4. The meteostat weather condition code is smaller than 4.5 indicating clear,
fair, cloudy or overcast weather,
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5. The wave heights are lower than 1.5 meter.

We then remove all records with a truth value/weight of lower than 0.3.

3.7 Influence Model

We use a very simple influence model which is aimed to correct a structural
measurement error in TWA. The underlying method assumes, that data in
almost each direction relative to the wind has been recorded with the exception
of the direction against the wind (0°). In the fitting phase of the influence model,
we approximate a local density for a given TW A value wa and an interval length
I (we use | = 30) by using Gauss-kernels as

, _(\wa—wa/\ (mod 360))2
dens(wa) = E ws' - e ! .

wa' , ws' €ETWATWS

We assumed that the wind angle with the lowest local density is the actual zero
and corrected the data respectively.

That is to say, for a fitted assumed real zero angle of wa,, the influence
model is equivalent to the mapping

TWS,TW A, BSP, other data — TWS,TWA — wa, (mod 360), BSP

3.8 Post-Weighing and Filtering

We assign weights to a data point d = (tws, twa, bsp) as follows. We define the
boat speeds in a cylinder (for » = 0.05) over this data point by

N 2 N2
C = {(bSp’) : (tws', twa’, bsp') is a data point and (tz:g ) + (t;é% ) < r2} )

Note that in this definition the true wind speed has been divided by 40 and
the true wind angle is divided by 360 for normalization purposes.

We calculate the mean m over C' and set the deviation error of the given
data point as e(d) = |m — bsp|.

We define the weights by normalizing the deviation error with respect to the
maximum and taking the difference to 1, i.e. the weight of d is defined to be

B e(d)
max({e(d’) : d' € D}’

We then filter the worst 10% according to these weights as outliers.
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3.9 Injector

It is common knowledge amongst sailors that almost all sailing vessels can not
sail directly against the wind. This should be reflected by the respective polar
performance diagram. In order to get the processing method to produce a per-
formance diagram accordingly, we extend the data by data points (tws,0,0) and
(tws, 360,0) where we choose for tws a total of 5°000 equidistantly distributed
points between the minimal and the maximal boat speed present in the data.

An alternative possibility is to choose a processing method that forces the
polar diagram to be zero against the wind. However, the method used allows us
to use a standard processing method and additionally lets the injected points
influence the approximations on other boat speeds to obtain a “smoother” polar
performance diagram.

3.10 Quality Assurance

One obvious method to measure the quality of the resulting polar performance
diagram is to consider the average quadratic error when applied to the test data.
We also want to weigh in the behaviour of the polar diagram around zero. To
this extend, we also consider the average quadratic boat speed value for points
at TWA € {0,360} and TW .S taken equidistantly between 0 and 20 knots. In
order to carefully check the quality of the test data, we used 2 quality metrics.
The first metric is the “test covering”, which we define as the number of tuples
(ws,wa) € N x {0,...,359} such that there exists a data point (ws’, wa’) with
|ws" —ws| < 0.5 and |wa — wa’| (mod 360) < 0.5. The second used metric for
the pre-processed test data is the local result difference, i.e. the difference of
the maximal and minimal boat speed at records with the same rounded TWS
and TWA values. Lastly, we also measure the execution time.

4 Study case

For our study case we gathered wind and sailing data on a private sailing vessel
of type Hiddensee during a journey in August 2020 from Rostock to Bornholm
and back via Sweden. Yachts of these type are build very uniquely and no
common polar performance diagram is known. Therefore it is an interesting
object for our study. This data has already been used in [DSS22] for a proof of
concept, but no quality metric has been measured there. Therefore, we can not
compare our results.

Furthermore, we updated the hrosailing-Python package [Dan| developed
at our institution in order to include the presented preprocessing framework.
The following has been obtained using hrosailing version 0.10.1. The used
source code can be found in the appendix and the used data files can be found
at https://github.com/hrosailing /vela-trip-2021.

For the actual processing, we use a standard procedure which takes the
arithmetic mean of nearby data points on a predefined grid. The resulting
polar diagram is depicted in Figure Note that due to the simplicity of the
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Figure 5: A plot of the resulting polar diagram.

components used, the presented results most probably can be improved largely
by using more sophisticated parts of the framework.

Using the preprocessing techniques defined in [3] we obtain the following
quality metrics:

Average quadratic error 4.844
Average quadratic value at zero 0.733

Test covering 474

Local test data difference 0.556
Execution time 02:43 hours

These quality metrics seem reasonable for a first benchmark example.

5 Conclusions
The presented preprocessing framework is a refinement of the preprocessing

framework discussed in [DSS22| conserving the general modular structure and
its benefits. Additional benefits of the refinement are
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1. Additional data, as weather data, which has not been recorded during the
trip can be taken into account,

2. It is possible to measure and compare the quality of the resulting polar
performance diagram using test data,

3. Parametrized influence models can adapt their models according to the
training data yielding an interface for machine learning approaches,

4. A distribution of the data into multiple data sources is supported.

5. Data recorded during a sailing trip can easily be handled as time series.

In Section [d we discussed how the quality of the resulting polar performance
diagram can benefit from suitable choices of components of the framework. We
assume that better suited choices of the framework components one will lead to
better results. Thus, a more detailed analysis of the different components and
a broader study using several different data sets is desirable. On a technical
side, the computations done during this study took quite some time. There is
some obvious potential for significant speedups using parallel computing and
relational data-bases.
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Appendix

You need hrosailing 0.10.1 and dependencies in order to run this code.

from hrosailing.pipelinecomponents import (

)

NMEAFileHandler, WeatherExpander, AffineSmoother,
FuzzyWeigher, FuzzyVariable, FluctuationWeigher,
QuantileFilter, WindAngleCorrectingInfluenceModel,
CylindricMeanWeigher, ComformingQualityAssurance,
ZeroInjector, BoundFilter, FillLocallmputator

from hrosailing.cruising.weather_model import (

)

NetCDFWeatherModel, MultiWeatherModel, GriddedWeatherModel

from hrosailing.pipeline import PolarPipeline
from hrosailing.pipeline.extensions import TableExtension

from datetime import timedelta
import os
import matplotlib.pyplot as plt

# prepare sailing files

dir_

path="src/sailing_data"

sailing_files = [

f"{dir_path}/{file_name}"
for file_name in os.listdir(dir_path)
if "FullSails" in file_name

15


https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.orc.org

test_files = sailing_files[0:2]
training files = sailing files[2:]

# Define all pipeline components
data_handler = NMEAFileHandler ()

imputator = FillLocalImputator()
smoother = AffineSmoother ()

pre_expander_weigher = FluctuationWeigher (
timespan=(
timedelta(seconds=30),
timedelta(seconds=10)
),
dimensions=["TWA", "TWS", "S0G"],
upper_bounds=[20, 2, 2]

pre_expander_filter = QuantileFilter(60)

weather_model = MultiWeatherModel (

NetCDFWeatherModel (
"src/weather_data/WB600m.nc4",
aliases={"lat": "latc", "lon": "lonc", "datetime":"time"},

further_indices={"level": 0}
),
GriddedWeatherModel.from_file(
"src/weather_data/mwm. json"),
exception_sensitive=True
expander = WeatherExpander (weather_model=weather_model)
x = FuzzyVariable(0.1)
pre_influence_weigher = FuzzyWeigher(
(x["coco"] < 4) & (x["temp"] > 10) & (x["temp"] < 30)
& (x["gust"] < 50) & (x["TwS"] > 5) & (x["waveH"] < 4)

pre_influence_filter = BoundFilter(0.5)

influence_model = WindAngleCorrectingInfluenceModel()
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post_weigher = CylindricMeanWeigher()
post_filter = QuantileFilter(10)

injector = ZeroInjector(5000)
extension = TableExtension()
quality_assurance = ComformingQualityAssurance()

# setup pipeline

pipeline = PolarPipeline(
data_handler=data_handler,
imputator=imputator,
smoother=smoother,
pre_expander_weigher=pre_expander_weigher,
pre_expander_filter=pre_expander_filter,
expander=expander,
pre_influence_weigher=pre_influence_weigher,
pre_influence_filter=pre_influence_filter,
influence_model=influence_model,
post_weigher=post_weigher,
post_filter=post_filter,
injector=injector,
extension=extension,
quality_assurance=quality_assurance

# setup result files

log_path = "results/quality_metrics.log"

with open(log_path, "w", encoding="utf-8") as file:
file.write("")

# process data

out = pipeline(
training_data=training_files,
test_data=test_files

stats = out.training_statistics.quality_assurance

#uwrite logs
with open(log_path, "a", encoding="utf-8") as file:
for key, value in stats.items():
file.write(f"{key} : {value}\n")
file.write("\n\n")
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#save polar diagram
out.polardiagram.to_csv(f"results/vela.pd")
#plot polar diagram

ax = plt.subplot(projection="polar")

out.polardiagram.plot_polar(

ax=ax,
show_legend=True,
legend_kw={"location" : "bottom"}
)
plt.show()
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