2-to-1 binomials from ovals and hyperovals

Alexander Oertel

11.10.2024

Projective Plane Definition

Definition

The Desarguesian projective plane PG(2, q) is defined as the set of the subspaces of \mathbb{F}_q^3 . Further,

- the one dimensional subspaces are called the points and
- ▶ the two dimensional subspaces are called the lines.

Incidence is defined by the inclusion in \mathbb{F}_q^3 .

Example: Fano Plane

Arcs, Hyperovals and Ovals

Definition

An arc of PG(2, q) is a set of points of PG(2, q) of which no three are collinear.

Definition

Let q be even. A *hyperoval* of PG(2, q) is a set of q + 2 points of PG(2, q) of which no three are collinear.

Definition

An *oval* of PG(2, q) is a set of q + 1 points of PG(2, q) of which no three are collinear.

Example: Regular Hyperoval in the Fano Plane

Definition

Let $q=2^n$. A polynom $f\in \mathbb{F}_q[x]$ is called an *o-polynomial* if the set

$$\mathcal{H}(f) := \{(1, s, f(s)) : s \in \mathbb{F}_q\} \cup \{(0, 1, 0), (0, 0, 1)\}$$

is a hyperoval containing the points (1,0,0) und (1,1,1).

Example

The polynomial $f(x) = x^2$ is an o-polynomial.

o-Polynomials

Example

Figure: $f(x) = x^2$ for q = 2

Theorem

Let $q=2^n$. A polynomial $f\in \mathbb{F}_q[x]$ is an o-polynomial if and only if

- (i) f is a permutation polynomial with f(0) = 0 and f(1) = 1 and
- (ii) the polynomial $g_a(x) = (f(x+a) + f(a))x^{q-2}$ is a permutation polynomial as well for each $a \in \mathbb{F}_q$.

Moreover, every hyperoval containing the points (1,0,0), (1,1,1), (0,1,0) and (0,0,1) may be written as $\mathcal{H}(f)$ with an o-polynomial f.

o-Polynomials

Known Monomial Families

name	o-exponent	condition	
Regular	2		
Translation	2 ^h	$\gcd(n,h)=1$	
Segre	6	n odd	
Glynn ₁	$3\sigma + 4 = 3 \cdot 2^{\frac{n+1}{2}} + 4$	n odd	
Glynn ₂	$2^{\frac{n+1}{2}} + 2^{\frac{3n+1}{4}}$	$n \equiv 1 \mod 4$	
	$\sigma + \gamma = \frac{2^{\frac{n+1}{2}}}{2^{\frac{n+1}{2}} + 2^{\frac{n+1}{4}}}$	$n \equiv 3 \mod 4$	

o-Polynomials

Known Nonmonomial o-Polynomials

name	o-polynomial	condition
Payne	$f(x) = x^{\frac{1}{6}} + x^{\frac{3}{6}} + x^{\frac{5}{6}}$	n odd
Cherowitzo	$f(x) = x^{\sigma} + x^{\sigma+2} + x^{3\sigma+4}$ $= x^{2\frac{n+1}{2}} + x^{2\frac{n+1}{2}+2} + x^{3\cdot 2\frac{n+1}{2}+4}$	n odd
Subiaco		
Adelaide		n even

2-to-1 Characterization and 2-to-1 Binomials

Definition 2-to-1 in Even Characteristic

Definition

Let q be even. A polynomial $f \in \mathbb{F}_q[x]$ is called 2-to-1 if every element of \mathbb{F}_q has either zero or two preimages.

Theorem

Let q be even and $f \in \mathbb{F}_q[x]$. Then f is an o-polynomial if and only if f(x) + bx is 2-to-1 for all $b \in \mathbb{F}_q^*$.

Idea

$$\left\langle \begin{pmatrix} 1 \\ t \\ f(t) \end{pmatrix} \right\rangle \in \left\langle \begin{pmatrix} a \\ b \\ 1 \end{pmatrix} \right\rangle^{\perp} \Leftrightarrow a + bt + f(t) = 0$$

2-to-1 Characterization und 2-to-1 Binomials

2-to-1 Binomials and o-Monomials

Theorem (Kölsch and Kyureghyan (2024))

Let q be even, $0 < e \neq d$, $b \in \mathbb{F}_q^*$ and let $f_b(x) = x^e + bx^d$ be 2-to-1. Then $\gcd(e, q - 1) = \gcd(d, q - 1) = 1$. Furthermore, the following statements are equivalent:

- 1. The polynomial $f_b(x) = x^e + bx^d$ is 2-to-1.
- 2. The polynomial $f_{b'}(x) = x^e + b'x^d$ is 2-to-1 for every $b' \in \mathbb{F}_q^*$.
- 3. The monomial $x^{\frac{e}{d}}$ is an o-monomial.

Corollary

2-to-1 binomials and o-monomials are equivalent. In particular, one can use the known o-monomials to construct 2-to-1 binomials.

Example

Definition

Definition

Two o-polynomials f, g are o-equivalent if the hyperovals $\mathcal{H}(f)$ and $\mathcal{H}(g)$ are equivalent under $P\Gamma L(3, q)$.

Goal: Description of equivalence class for a given o-polynomial

Obtaining the Equivalence Classes

- 1. Solve smaller problem for ovals induced by o-permutations
 - $\mathcal{O}(f) = \{(1, s, f(s)) : s \in \mathbb{F}_q\} \cup \{(0, 1, 0)\}$
 - Magic Action of Penttila und O'Keefe (2002): Group action of $P\Gamma L(2, q)$ on the o-permutations
 - ► Generators of $P\Gamma L(2, q) \rightsquigarrow$ Transformations explaining the equivalence classes
- 2. Lift results to hyperovals
 - Reduction to previous case by introduction of one more transformation
 - Due to Davidova, Budaghyan, Carlet, Helleseth, Ihringer, and Penttila (2021)

Theorem (Magic action on \mathcal{F})

The group $P\Gamma L(2,q)$ acts on $\mathcal F$ through $\psi f:\mathbb F_q o \mathbb F_q$ defined by

$$x\mapsto |A|^{-\frac{1}{2}}\left((bx+d)f^{\gamma}\left(\frac{ax+c}{bx+d}\right)+bxf^{\gamma}\left(\frac{a}{b}\right)+df^{\gamma}\left(\frac{c}{d}\right)\right),$$

where $\psi = x \mapsto Ax^{\gamma}$ with $\gamma \in \operatorname{Aut}(\mathbb{F}_q)$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. This action is called the magic action. The denominators, say t, are meant to be read as multiplying by t^{q-2} . So, if a denominator is zero, then the corresponding term is zero as well.

Theorem

Two o-polynomials $f,g \in \mathbb{F}_q[x]$ are o-equivalent if and only if they arise from each other by the transformations

- 1. $(\tilde{\sigma}_a f)(x) = \frac{1}{f(a)} f(ax)$ with $a \in \mathbb{F}_q^*$,
- 2. $(\tilde{\tau}_c f)(x) = \frac{f(x+c)+f(c)}{f(1+c)+f(c)}$ with $c \in \mathbb{F}_q^*$,
- 3. $(\phi f)(x) = xf(\frac{1}{x})$,
- 4. $(\rho_{\gamma}) = f^{\gamma}(x)$ for $\gamma \in \operatorname{Aut}(\mathbb{F}_q)$ and
- 5. $(inv f)(x) = f^{-1}(x)$.

Theorem

Let $f(x) = x^e$ and $g(x) = x^j$ be o-monomials. Then f and g are o-equivalent if and only if

$$j \in B_e := \left\{ e, \frac{1}{e}, 1 - e, \frac{1}{1 - e}, \frac{e}{e - 1}, \frac{e - 1}{e} \right\},$$

where the elements of B_e are meant to be taken mod q-1.

Conclusion: To find the to $\mathcal{H}(f)$ equivalent hyperovals with monomial o-polynomials, one has to only consider permutations of the coordinates.

2-to-1 Binomials Obtained from Segre o-Monomial

o-exponent	induced 2-to-1 binomial, $b \in \mathbb{F}_q^*$		
е	$x^6 + bx$		
1 – e	$x^{2^n-6}+bx$		
$\frac{1}{e}$	$x^{\frac{5\cdot 2^{n-1}-2}{3}} + bx$		
$\frac{e-1}{e}$	$x^{\frac{2^{n-1}+2}{3}} + bx$		
$\frac{1}{1-e}$	$x^{\frac{2^n-2}{5}}+bx$	if $n \equiv 1 \mod 4$	
	$x^{\frac{3\cdot 2^n-4}{5}}+bx$	if $n \equiv 3 \mod 4$	
$\frac{e}{e-1}$		if $n \equiv 1 \mod 4$	
	$x^{\frac{2\cdot 2^n+4}{5}}+bx$	if $n \equiv 3 \mod 4$	

Generalization to Odd Characteristic

Goal and Result

Goal: Generalize equivalence of 2-to-1 binomials and o-monomials in even characteristic to odd characteristic.

Theorem

Let q be odd and $0 < e \neq d$. Let further $f_b(x) = x^e + bx^d$ be 2-to-1 for all $b \in \mathbb{F}_q^*$. Then $\gcd(e, q - 1) = 2$ and $\gcd(d, q - 1) = 1$ or the other way round. Moreover, $\frac{e}{d} \equiv 2 \mod q - 1$ or the other way round.

Generalization to Odd Characteristic

Definition 2-to-1

Definition

Let q be odd. A polynomial $f \in \mathbb{F}_q[x]$ is 2-to-1 if $|f^{-1}(\{t\})| \in \{0,1,2\}$ for all $t \in \mathbb{F}_q$ and if there is exactly one element $t \in \mathbb{F}_q$ with $|f^{-1}(\{t\})| = 1$.

Proof Idea

1. Associate oval structure to *e* and *d*:

$$\mathcal{O}(e,d) := \{(1,s^d,s^e) : s \in \mathbb{F}_q\} \cup \{(0,0,1)\}$$

2. Count how many lines contain how many points of $\mathcal{O}(e,d)$

$$\left\langle \begin{pmatrix} 1 \\ t^d \\ t^e \end{pmatrix} \right\rangle \in \left\langle \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix} \right\rangle^{\perp} \Leftrightarrow 1 + bt^e = 0$$

 $\rightsquigarrow \mathcal{O}(e,d)$ is an oval

Lemma

Let k be the maximal number of collinear points of $\mathcal{O}(e,d)$ and let τ_i denote the number of lines of $\mathrm{PG}(2,q)$ containing exactly i points of $\mathcal{O}(e,d)$. Then the following equalities hold.

$$egin{aligned} \sum_{i=0}^k au_i &= q^2 + q + 1, \ \sum_{i=1}^k i au_i &= (q+1)^2, \ \sum_{i=2}^k (i-1)i au_i &= q(q+1). \end{aligned}$$

Generalization to Odd Characteristic

Segre's Theorem

Definition

A *conic* \mathcal{C} is the set of points of $\mathrm{PG}(2,q)$ satisfying a non-singular quadratic equation, that is,

$$C = \{(x, y, z) \in PG(2, q) : ax^2 + by^2 + cz^2 + fyz + gzx + hxy = 0\}$$

with $a,b,c,f,g,h\in\mathbb{F}_q$ such that no linear substitution involving x, y and z leads to an equivalent equation in less than three variables.

Theorem (Segre's Theorem)

If q is odd, then any oval of PG(2, q) is a conic.

2-to-1 binomials from ovals and hyperovals

Alexander Oertel

11.10.2024