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Definitions
Projective Plane Definition

Definition

The Desarguesian projective plane PG(2, q) is defined as the set of
the subspaces of F3

q. Further,

▶ the one dimensional subspaces are called the points and

▶ the two dimensional subspaces are called the lines.

Incidence is defined by the inclusion in F3
q.
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Definitions
Example: Fano Plane
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Definitions
Arcs, Hyperovals and Ovals

Definition

An arc of PG(2, q) is a set of points of PG(2, q) of which no three
are collinear.

Definition

Let q be even. A hyperoval of PG(2, q) is a set of q + 2 points of
PG(2, q) of which no three are collinear.

Definition

An oval of PG(2, q) is a set of q + 1 points of PG(2, q) of which
no three are collinear.
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Definitions
Example: Regular Hyperoval in the Fano Plane



6/ 26

o-Polynomials
Definition

Definition

Let q = 2n. A polynom f ∈ Fq[x ] is called an o-polynomial if the
set

H(f ) := {(1, s, f (s)) : s ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)}

is a hyperoval containing the points (1, 0, 0) und (1, 1, 1).

Example

The polynomial f (x) = x2 is an o-polynomial.
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o-Polynomials
Example
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Figure: f (x) = x2 for q = 2



8/ 26

o-Polynomials
Algebraic Characterization

Theorem

Let q = 2n. A polynomial f ∈ Fq[x ] is an o-polynomial if and only
if

(i) f is a permutation polynomial with f (0) = 0 and f (1) = 1 and

(ii) the polynomial ga(x) = (f (x + a) + f (a))xq−2 is a
permutation polynomial as well for each a ∈ Fq.

Moreover, every hyperoval containing the points (1, 0, 0), (1, 1, 1),
(0, 1, 0) and (0, 0, 1) may be written as H(f ) with an
o-polynomial f .
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o-Polynomials
Known Monomial Families

name o-exponent condition

Regular 2

Translation 2h gcd(n, h) = 1

Segre 6 n odd

Glynn1 3σ + 4 = 3 · 2 n+1
2 + 4 n odd

Glynn2 σ + γ =
2

n+1
2 + 2

3n+1
4

2
n+1
2 + 2

n+1
4

n ≡ 1 mod 4

n ≡ 3 mod 4
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o-Polynomials
Known Nonmonomial o-Polynomials

name o-polynomial condition

Payne f (x) = x
1
6 + x

3
6 + x

5
6 n odd

Cherowitzo
f (x) = xσ + xσ+2 + x3σ+4

= x2
n+1
2 + x2

n+1
2 +2 + x3·2

n+1
2 +4

n odd

Subiaco ...

Adelaide ... n even
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2-to-1 Characterization and 2-to-1 Binomials
Definition 2-to-1 in Even Characteristic

Definition

Let q be even. A polynomial f ∈ Fq[x ] is called 2-to-1 if every
element of Fq has either zero or two preimages.

Fq Fq

f

...
...
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2-to-1 Characterization und 2-to-1 Binomials
2-to-1 Characterization

Theorem

Let q be even and f ∈ Fq[x ]. Then f is an o-polynomial if and
only if f (x) + bx is 2-to-1 for all b ∈ F∗

q.

Idea
〈


1
t

f (t)



〉

∈
〈

a
b
1



〉⊥

⇔ a+ bt + f (t) = 0



13/ 26

2-to-1 Characterization und 2-to-1 Binomials
2-to-1 Binomials and o-Monomials

Theorem (Kölsch and Kyureghyan (2024))

Let q be even, 0 < e ̸= d, b ∈ F∗
q and let fb(x) = xe + bxd be

2-to-1. Then gcd(e, q − 1) = gcd(d , q − 1) = 1. Furthermore, the
following statements are equivalent:

1. The polynomial fb(x) = xe + bxd is 2-to-1.

2. The polynomial fb′(x) = xe + b′xd is 2-to-1 for every b′ ∈ F∗
q.

3. The monomial x
e
d is an o-monomial.

Corollary

2-to-1 binomials and o-monomials are equivalent. In particular, one
can use the known o-monomials to construct 2-to-1 binomials.
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o-Equivalence
Example
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(x, y, z) 7→ (x+ y, y + z, z)
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o-Equivalence
Definition

Definition

Two o-polynomials f , g are o-equivalent if the hyperovals H(f )
and H(g) are equivalent under PΓL(3, q).

Goal: Description of equivalence class for a given o-polynomial
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o-Equivalence
Obtaining the Equivalence Classes

1. Solve smaller problem for ovals induced by o-permutations
▶ O(f ) = {(1, s, f (s)) : s ∈ Fq} ∪ {(0, 1, 0)}
▶ Magic Action of Penttila und O’Keefe (2002): Group action of

PΓL(2, q) on the o-permutations
▶ Generators of PΓL(2, q) ⇝ Transformations explaining the

equivalence classes

2. Lift results to hyperovals
▶ Reduction to previous case by introduction of one more

transformation
▶ Due to Davidova, Budaghyan, Carlet, Helleseth, Ihringer, and

Penttila (2021)
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o-Equivalence
Magic Action

Theorem (Magic action on F)

The group PΓL(2, q) acts on F through ψf : Fq → Fq defined by

x 7→ |A|− 1
2

(
(bx + d)f γ

(
ax + c

bx + d

)
+ bxf γ

(a
b

)
+ df γ

( c
d

))
,

where ψ = x 7→ Axγ with γ ∈ Aut(Fq) and A =
(
a b
c d

)
. This

action is called the magic action. The denominators, say t, are
meant to be read as multiplying by tq−2. So, if a denominator is
zero, then the corresponding term is zero as well.
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o-Equivalence
General Result

Theorem

Two o-polynomials f , g ∈ Fq[x ] are o-equivalent if and only if they
arise from each other by the transformations

1. (σ̃af )(x) =
1

f (a) f (ax) with a ∈ F∗
q,

2. (τ̃c f )(x) =
f (x+c)+f (c)
f (1+c)+f (c) with c ∈ F∗

q,

3. (ϕf )(x) = xf
(
1
x

)
,

4. (ργ) = f γ(x) for γ ∈ Aut(Fq) and

5. (invf )(x) = f −1(x).
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o-Equivalence
Result for o-Monomials

Theorem

Let f (x) = xe and g(x) = x j be o-monomials. Then f and g are
o-equivalent if and only if

j ∈ Be :=

{
e,

1

e
, 1− e,

1

1− e
,

e

e − 1
,
e − 1

e

}
,

where the elements of Be are meant to be taken mod q − 1.

Conclusion: To find the to H(f ) equivalent hyperovals with
monomial o-polynomials, one has to only consider permutations of
the coordinates.
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o-Equivalence
2-to-1 Binomials Obtained from Segre o-Monomial

o-exponent induced 2-to-1 binomial, b ∈ F∗
q

e x6 + bx

1− e x2
n−6 + bx

1
e x

5·2n−1−2
3 + bx

e−1
e x

2n−1+2
3 + bx

1
1−e

x
2n−2

5 + bx if n ≡ 1 mod 4

x
3·2n−4

5 + bx if n ≡ 3 mod 4

e
e−1

x
4·2n+2

5 + bx if n ≡ 1 mod 4

x
2·2n+4

5 + bx if n ≡ 3 mod 4
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Generalization to Odd Characteristic
Goal and Result

Goal: Generalize equivalence of 2-to-1 binomials and o-monomials in
even characteristic to odd characteristic.

Theorem

Let q be odd and 0 < e ̸= d. Let further fb(x) = xe + bxd be
2-to-1 for all b ∈ F∗

q. Then gcd(e, q − 1) = 2 and
gcd(d , q − 1) = 1 or the other way round.
Moreover, e

d ≡ 2 mod q − 1 or the other way round.
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Generalization to Odd Characteristic
Definition 2-to-1

Definition

Let q be odd. A polynomial f ∈ Fq[x ] is 2-to-1 if
|f −1({t})| ∈ {0, 1, 2} for all t ∈ Fq and if there is exactly one
element t ∈ Fq with |f −1({t})| = 1.

Fq Fq

f

...
...
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Generalization to Odd Characteristic
Proof Idea

1. Associate oval structure to e and d :

O(e, d) := {(1, sd , se) : s ∈ Fq} ∪ {(0, 0, 1)}

2. Count how many lines contain how many points of O(e, d)

〈


1
td

te



〉

∈
〈

1
0
b



〉⊥

⇔ 1 + bte = 0

⇝ O(e, d) is an oval



24/ 26

Generalization to Odd Characteristic
Counting Lemma

Lemma

Let k be the maximal number of collinear points of O(e, d) and let
τi denote the number of lines of PG(2, q) containing exactly i
points of O(e, d). Then the following equalities hold.

k∑

i=0

τi = q2 + q + 1,

k∑

i=1

iτi = (q + 1)2,

k∑

i=2

(i − 1)iτi = q(q + 1).
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Generalization to Odd Characteristic
Segre’s Theorem

Definition

A conic C is the set of points of PG(2, q) satisfying a non-singular
quadratic equation, that is,

C = {(x , y , z) ∈ PG(2, q) : ax2+ by2+ cz2+ fyz + gzx + hxy = 0}

with a, b, c , f , g , h ∈ Fq such that no linear substitution involving
x , y and z leads to an equivalent equation in less than three
variables.

Theorem (Segre’s Theorem)

If q is odd, then any oval of PG(2, q) is a conic.
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