Mathematisches Institutskolloquium

Das Mathematische Institutskolloquium richtet sich an ein breites mathematisches Publikum (mit Bachelor Abschluss in Mathematik). Es soll die Diskussionen über die mathematischen Spezialisierungen der verschiedenen Arbeitsgruppen am Institut fördern. Außerdem sollen auch Studierende (Master-Studierende und fortgeschrittene Bachelor-Studierende) durch das Kolloquium die Gelegenheit erhalten sich über aktuelle Themen der Mathematik zu informieren.

Wintersemester 2018/2019

  • Prof. Dr. Michael Dellnitz (University of Paderborn, Germany)
    "Glimpse of the Infinite – on the Approximation of the Dynamical
    Behavior for Delay and Partial Differential Equations"

    Abstract: Over the last years so-called set oriented numerical methods have been developed for the analysis of the long-term behavior of finite-dimensional dynamical systems. The underlying idea is to approximate the corresponding objects of interest – for instance global attractors or related invariant measures – by box coverings which are created via multilevel subdivision techniques. That is, these techniques rely on partitions of the (finite-dimensional) state space, and it is not obvious how to extend them to the situation where the underlying dynamical system is infinite-dimensional.
    In this talk we will present a novel numerical framework for the computation of finite-dimensional dynamical objects for infinite-dimensional dynamical systems. Within this framework we will extend the classical set oriented numerical schemes mentioned above to the infinite-dimensional context. The underlying idea is to utilize appropriate embedding techniques for the reconstruction of global attractors in a certain finite-dimensional space. We will also illustrate our approach by the computation of global attractors both for delay and for partial differential equations; e. g. the Mackey-Glass equation or the Kuramoto-Sivashinsky equation.
    14.11.2018,  Der Vortrag fällt leider aus.
  • Prof. Dr. Christof Büskens (University of Bremen, Germany)
    "Entwicklung ist  teuer; -Mathematik unbezahlbar!
    Hochdimensionale nichtlineare Optimierung trifft industrielle Anforderungen"

  • Dr. John Sheekey PhD (University College Dublin, Ireland)
    "Finite Fields and their (less famous) cousins"